Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: 21 (2009)

Heft: 83

Artikel: Jamais sans ma mouche!

Autor: Schipper, Ori

DOI: https://doi.org/10.5169/seals-971026

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Le gouet tacheté entretient avec les mouches papillons une relation déséquilibrée que l'on pourrait qualifier d'amour-haine. Alors qu'il tire profit de ce partenariat, ce n'est pas le cas pour les moucherons. L'odeur nauséabonde du gouet en fleur, qui rappelle celle de la bouse de vache où les larves de mouches papillons dénichent de précieuses substances nutritives, allèche les femelles à la recherche d'un endroit approprié pour déposer leurs œufs. Celles-ci se faufilent dans la plante, mais ne parviennent pas à s'accrocher sur la spathe qui enveloppe le spadice et glissent vers le bas à travers un réseau de poils fins. Retenues prisonnières au fond de cet entonnoir où se trouvent étamines et pistils, elles ne peuvent s'échapper que le jour d'après, moment où les poils se flétrissent, à l'issue de la floraison. Lorsque, recouvertes de pollen, elles visitent ensuite un autre gouet odorant, elles lui permettent de se reproduire, mais elles sacrifient en même temps une partie de leur brève vie.

Voies de recolonisation

Anahí Espíndola, doctorante au sein du groupe de Nadir Alvarez, a pendant plusieurs printemps parcouru l'Europe, de la Scandinavie au sud de l'Italie, des montagnes de la péninsule Ibérique aux Carpates, afin de récolter des gouets tachetés et des mouches papillons. A Neuchâtel, elle cherche

maintenant à mettre en évidence les histoires évolutives des différents représentants locaux des deux espèces. C'est sur cette base que les scientifiques tentent d'établir

comment les plantes et les insectes ont recolonisé, après la dernière glaciation, les terres dont ils avaient été chassés.

«Comme seul le gouet a besoin de la mouche papillon pour se reproduire, nous n'avons pas été étonnés de constater que les deux espèces se sont propagées de manière autonome», explique Nadir Alvarez. Le gouet a bien sûr dû trouver des mouches papillons sur les terres qu'il a reconquises. Mais le fait qu'elles soient originaires du même refuge que lui ou d'un autre endroit importait peu.

Les chercheurs tirent des conclusions identiques sur la base des observations qu'ils ont effectuées sur trois autres histoires d'amour-haine entre plantes et insectes, même si la dépendance est différente dans ces cas puisque ce sont ici les insectes qui ont besoin de certaines plantes dont ils se nourrissent exclusivement.

Les scientifiques se sont également intéressés à de belles histoires d'amour, c'est-à-dire à des interactions dont les deux partenaires tirent profit. Il en va ainsi de la relation nouée entre la lysimache et

l'abeille macropis. Cette plante herbacée à fleurs jaunes ne sécrète pas un véritable nectar entre ses pétales mais une huile spécifique qui attire une espèce particulière d'abeille. Celle-ci récolte l'huile avec laquelle elle isole les parois de son nid puis nourrit ses larves. Elle transporte ainsi le pollen d'une fleur à l'autre. Cette relation s'avère mutuellement bénéfique. «Comme les deux partenaires sont dépendants l'un de l'autre, nous sommes partis de l'idée que les voies de propagation étaient identiques », relève le biologiste.

Le chercheur a pourtant aussi trouvé dans ce type d'interaction mutuellement bénéfique des modèles de propagation différents. Même si les

> migrations de certaines plantes peuvent être partiellement influencées par l'activité humaine, les données réunies permettent d'arriver à une seule conclusion: lors de

changements environnementaux, les espèces ne se déplacent pas ensemble. «Chaque espèce a sa propre destinée», précise Nadir Alvarez.

Relations fragiles

«Nous étudions

respiration du climat.»

l'impact de la

Selon lui, il est toutefois difficile d'utiliser les migrations observées dans le passé pour éclairer la situation d'aujourd'hui. L'ampleur et la rapidité des changements climatiques actuels sont en effet cent fois plus importantes. Mais le fait que les espèces se propagent de manière autonome signifie aussi que leurs relations et donc leur survie sont fragiles et menacées. Pour survivre dans un nouvel endroit, les plantes ne devraient en effet pas seulement trouver un sol et des conditions météorologiques favorables mais également la bonne espèce d'insecte. La recolonisation dépendrait donc d'un facteur supplémentaire et difficile à évaluer. «Compte tenu du changement climatique et des menaces qui pèsent sur la biodiversité, je serais plus rassurée si nous avions prouvé l'inverse, c'est-à-dire une propagation commune», fait valoir Anahí Espíndola.

Dépendance unilatérale. Le gouet tacheté dépend de la mouche papillon pour survivre. Mais l'inverse n'est pas vrai. La plante attire ses insectes pollinisateurs (en haut) grâce à des moyens raffinés.