Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: - (2008)

Heft: 76

Artikel: Les maths à l'aide des chauves-souris

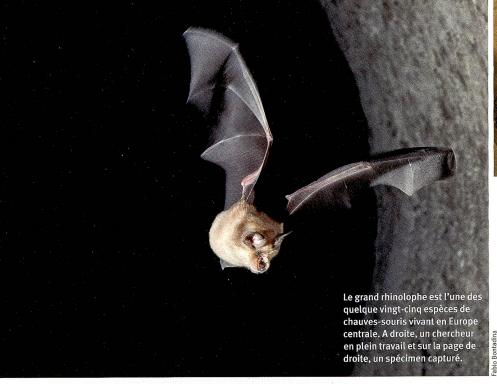
Autor: Borngräber, Sabine

DOI: https://doi.org/10.5169/seals-970782

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

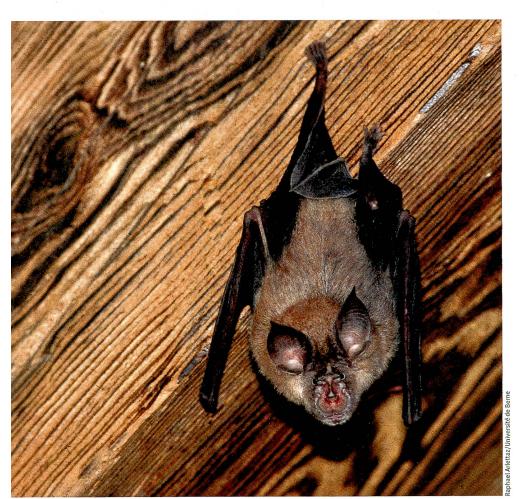
Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025


ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Le grand rhinolophe est menacé d'extinction. Afin de mieux protéger cette espèce de chauve-souris vivant en colonies cachées, des biologistes de l'Université de Berne ont développé un modèle biostatistique permettant de suivre son évolution démographique.

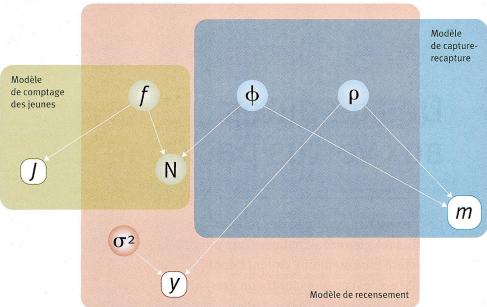
Les maths à l'aide des chauves-souris

PAR SABINE BORNGRÄBER

La protection des chauves-souris nécessite de la patience. Depuis plus d'une demi-heure, le biologiste Michael Schaub pointe ses jumelles en direction de l'église dont les combles abritent une colonie de grands rhinolophes (Rhinolophus ferrumequinum). Finalement, quelques individus sortent par une fenêtre. Le chercheur en compte 54. Dès qu'ils disparaissent dans le crépuscule, il va cueillir avec ses collaborateurs les jeunes restés dans la charpente pour les recenser et les baguer.

Sur la liste rouge

Le grand rhinolophe figure avec d'autres espèces apparentées sur la liste rouge des espèces menacées. Afin d'éviter leur extinction, les biologistes ont besoin d'informations fiables sur l'évolution des populations. «On ne réussit jamais à compter tous les individus, car les erreurs sont inévitables », explique le scientifique. Et les erreurs ont plus de répercussions si une colonie est petite. C'est pourquoi l'équipe de Michael Schaub de l'Université de Berne a développé un modèle biostatistique. Celui-ci permet, sur la base de données démographiques incomplètes,



de déterminer avec exactitude la croissance d'une population.

Impondérables

Les biologistes bernois observent depuis 1991 la colonie des grands rhinolophes du village valaisan de Vex. A l'époque, les combles de l'église abritaient 27 individus. Sur la base de recensements annuels, les chercheurs ont pu estimer l'indice démographique de reproduction et de croissance de cette population. Ils n'ont toutefois pas pu obtenir des informations fiables sur la dynamique de celle-ci car les impondérables sont trop importants. Un exemple: dans les endroits où les femelles mettent bas, il n'y a pas seulement les mères et leurs petits mais également des adolescents. Lorsqu'ils volent, ces derniers sont difficiles à distinguer des mères portantes. Ils sont donc une source d'erreur lors de l'établissement du taux de croissance d'une population et de son taux de reproduction.

Le nouveau modèle intégré de population permet de remédier à cette erreur. Il est désormais possible de combiner des ensembles de données de divers types, comme des recensements ou des données de capture et de recapture. Jusqu'ici chaque ensemble était évalué séparément. Les résultats manquaient de précision car l'échantillon était trop petit et les données liées au taux de survie trop aléatoires. Comme le modèle combine toutes les informations recueillies par les chercheurs, il corrige les inévitables erreurs d'observation. Grâce à cela, Michael Schaub a pu rassembler les données issues des recensements effectués entre 1991 et 2005 dans les gîtes de mise bas, le nombre de naissances et le nombre des individus bagués et recapturés. Marc Kéry,

Grâce au nouveau modèle intégré de population, il est possible de déterminer plus précisément les taux de croissance, de fécondité et de reproduction d'une espèce. Le graphique montre la combinaison de trois modèles et le lien qui en résulte (flèche) entre les données (rectangles) et les paramètres de population estimés (cercles). Abréviations : J = nombre de jeunes, f = taux de fécondité, φ = taux de survie, ρ = taux de recapture, m = données de capture-recapture, N = taille de la population, y = recensement des adultes, σ^2 = erreurs de comptage.

spécialiste en écologie statistique, analyse l'évolution de ces populations à la station ornithologique de Sempach. Il est enthousiasmé par le modèle car « plus les données introduites sont nombreuses et plus le résultat est précis».

Nouvelle réjouissante

Les chercheurs bernois ont découvert que quelques exemplaires de grands rhinolophes pouvaient vivre jusqu'à 20 ans, alors que leur durée de vie moyenne est en principe de cinq ans et demi. Les femelles cessent de se reproduire après quatre ans. Malgré cela, le taux de croissance de la colonie de Vex dépasse quatre pour cent, ce qui est une nouvelle réjouissante au vu de l'effectif des chauves-souris en constante diminution au niveau mondial. Cela serait dû à l'église de Vex dont les combles ont été rénovés en 1988, en partie pour assurer la quiétude de la colonie mais également pour protéger les visiteurs des déjections. L'investissement a été payant. En 2005, la colonie comptait 59 individus. Si on y ajoute les jeunes mâles cachés dans les cavités, le nombre des animaux recensés s'élevait à 92.

Il n'existe en Suisse que trois autres colonies de cette espèce. A Castrisch dans les Grisons, on trouve la plus grande colonie d'Europe centrale avec près de 200 individus. Mais cette population donne du souci au chercheur Fabio Bontadina car elle n'a pas augmenté au cours des quinze dernières années. L'évolution est en dents de scie. Selon lui, le modèle de Michael Schaub est particulièrement intéressant pour les espèces menacées qu'on peut difficilement approcher.

A Castrisch, par crainte de nuire aux chauves-souris, celles-ci ne sont, depuis des années, plus capturées et marquées. Les scientifiques se contentent de recenser les femelles portantes et leurs petits. « Dès qu'un logiciel de modélisation facile à utiliser existera, nous envisagerons le marquage afin de mieux comprendre la dynamique de la colonie », précise Fabio Bontadina.

Comme un puzzle

Pour Michael Schaub, la modélisation a l'avantage de permettre de réunir des fragments et de recomposer le tableau comme un puzzle. La connaissance de l'évolution d'une population donne aux protecteurs de la nature une base pour poursuivre leur travail. Ils peuvent ensuite étudier dans quelles conditions les chauves-souris prospèrent. Une méthode qui devrait être applicable à d'autres espèces menacées comme la barbastelle, le lièvre ou le gypaète barbu.