Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: - (2006)

Heft: 69

Artikel: CO2 atmosphérique piégé dans le sol

Autor: Chlebny, Igor

DOI: https://doi.org/10.5169/seals-551441

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CO₂ atmosphérique PAR ISON CHEERTY piégé dans le sol

Une subtile alliance entre un arbre, des champignons et des bactéries permettrait de réduire sensiblement la teneur en dioxyde de carbone dans l'atmosphère, et de lutter ainsi contre l'effet de serre. Des chercheurs de Neuchâtel expliquent comment cette symbiose transforme le carbone atmosphérique en calcaire.

omasse dont une partie est transfor-

mée, directement par l'arbre ou par l'in-

termédiaire de champignons, en ion

exalate. Cette production s'accompagne

d'une accumulation concomitante de calcium, de manière à former un sel

insoluble, l'oxalate de calcium. Infer-

viennent alors des bactéries du sol

qui transforment ensuite l'oxalate en

CO pour finalement le convertir en

calcaire par un processus appelé bíomi-

de carbone pur par an sous forme

de calcaire dans le sol. Et ce carbone

n'est pas près de retourner à l'air libre,

Ainsi, un seul iroko accumule 5.7 kg

effet de serre à l'origine des changements climatiques est principalement dû au dioxyde de carbone (CO.) relâché dans l'atmosphère par les activités humaines. Des chercheurs de l'Université de Neuchâtel ont découvert un moyen de piéger le carbone atmosphérique dans le sol où il peut rester prisonnier jusqu'à un million d'années. Au cœur de cet étonnant phénomène: un arbre de la famille du figuier appelé iroko (Milicia excelsa), associé à des champignons et à des bactéries. A l'Université de Neuchâtel, Eric P. Verrecchia et ses collègues s'efforcent d'en percer les secrets dans le cadre du Pôle de recherche national (PRN) «Survie des plantes»

«Les premiers résultats sont fantastiques!», s'enthousiasme le professeur en géodynamique de la biosphère, initiateur du projet avec le professeur Michel Aragno, microbiologiste au sein de l'Alma mater neuchâteloise. «Imaginez un volume de 5 millions de mètres cubes d'air. Il s'avère que l'activité d'un seul iroko suffit à compenser l'augmentation annuelle du CO, atmosphérique observée dans un tel volume. En d'autres termes, un seul arbre parvient à stabiliser la concentration de gaz carbonique dans 5 millions de mètres cubes d'air. C'est considérable!»

Calcaire d'origine biologique

Si l'on sait depuis longtemps que les plantes vertes ont besoin de gaz carbonique pour la photosynthèse, la question d'un transfert du carbone atmosphérique vers un carbone minéral stocké dans le sol n'occupe l'esprit des scientifiques que depuis les années nonante. «Le phénomène s'explique par l'activité biologique conjuguée de l'arbre, de champignons et de bacté ries», précise Michel Aragno. «Par la photosynthèse, l'arbre fabrique de la

puisqu'il y est stocké pour une durée potentielle pouvant atteindre un million d'années. «Un tel transfert du carbone vers le sol peut contribuer de manière significative à la baisse de la concentration du gaz carbonique de l'atmosphère. La plantation d'arbres possédant cette propriété serait donc une contribution à la lutte contre l'effet de serre», commentent les chercheurs.

La piste africaine

L'iroko pousse en Afrique tropicale. Les premières prospections ont été réalisées en 2001 et 2002 en Côte d'Ivoire et au Cameroun. Dans leurs thèses, Olivier Braissant et Guillaume Cailleau, alors doctorants chez le professeur Verrecchia, ont prouvé que le carbone stocké sous forme minérale dans le sol était bien d'origine atmosphérique, transitant par la plante, les champignons et les bactéries. Le carbonate de calcium

ainsi accumulé prend des formes variées: on trouve des blocs atteignant 1.5 mètre de côté ainsi que des micro- voire des nano-

La capacité de biominéralisation de l'arbre est impressionnante : un iroko âgé de 80 ans a réussi à produire une tonne de carbone minéral au cours de sa vie, comme l'attestent des prélèvements effectués dans la souche et à son voisinage. L'étudemenée en Côte d'Ivoire a également montré qu'une seule espèce végétale dans un seul pays pouvait déjà absorber un centième du CO émis par les volcans de la Terre entière, confirmant son grand potentiel de fixateur à long terme du dioxyde de carbone.

Arbres et cactus prometteurs

Mais il y a mieux ! Loin de se limiter à l'iroko, le phénomène est observable chez d'autres arbres tropicaux. Au cours d'une mission au Burkina Faso, Katia Ferro, autre doctorante FNS du professeur Verrecchia, s'est aperçue que l'iroko, pourtant abondant en Côte d'Ivoire voisine, avait été victime d'une vaste campagne de déforestation à la fin des années quatrevingt. Ou'à cela ne tienne, la biominéralisation n'a pas disparu pour autant. Il suffit d'entendre les ouvriers des scieries se plaindre des problèmes rencontrés lors des découpes de lingué (Afzelia africana): les lames s'abîment sur les cristaux de calcite incrustés dans le tronc.

Le kapokier (Bombax costatum), de la même famille que le baobab, est également un champion de la biominéralisation. Les géologues Katia Ferro et Anouk Zosso ont alors passé au peigne fin la zone racinaire des lingués, des kapokiers et des rares irokos rencontrés durant leur traversée du pays. Elles sont revenues avec de multiples échantillons à analyser: terre, calcite, mais aussi champignons qui jouent un rôle central dans le processus. Les travaux d'Eric P. Verrecchia ont été

Comment l'iroko fixe le dioxyde de carbone sous forme de calcaire (oxalate) champicalcaire

Transformation par des champignons Transformation directe

récemment confirmés par des chercheurs de l'Université d'Arizona à Tempe (USA). Le phénomène de biominéralisation a été observé dans des déserts où poussent les cactus Carnegiea giganta. Les chercheurs de Neuchâtel continuent, quant à eux, leurs investigations sur le continent sud-américain, où, dans le cadre du PRN «Survie des plantes», ils développent un projet en Bolivie, à la recherche d'espèces végétales amazoniennes présentant des propriétés similaires.

Ce projet s'intégrera à d'autres aspects du développement durable, comme l'optimisation de la culture et du séchage des fruits, et la plantation d'arbres servant à la fois de ceinture de protection pour la forêt et de source de bois. «Ces deux aspects sont liés par l'utilisation possible de la combustion des déchets de bois dans le processus de séchage. Un projet intégrant la biominéralisation du calcaire à une gestion durable de la forêt aurait donc une plus-value certaine, d'autant plus que l'accumulation de calcaire dans les sols améliore considérablement leur fertilité», conclut Michel Aragno.

Par la photosynthèse, l'arbre tropical iroko (1) fabrique de par l'arbre ou par l'intermé diaire de champignons, en ion oxalate. Cette production s'accompagne d'une accumu lation concomitante de calcium, de manière à former un sel insoluble, l'oxalate de calciu Les cristaux de sel sont visibles électronique (2). Des bactéries du sol transforment ensuite l'oxalate en CO, pour finalement le convertir en calcaire (3 et 4)