Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: - (1994)

Heft: 22

Artikel: Les premiers pas industriels des céramiques magiques

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-551038

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les premiers pas industriels des céramiques magiques

En 1987, le Prix Nobel de physique récompensait la toute récente découverte des céramiques supraconductrices. A l'époque, on voyait déjà les trains circuler en lévitation magnétique, l'électricité se stocker indéfiniment, et des fils conduire le courant sans perte à travers le paysage. Aujourd'hui, on constate que les progrès ont été moins foudroyants que prévus. Mais ils existent. Et ils sont très encourageants.

2º objet a été présenté officiellement le 29 juin dernier à Berne par Willi Paul du Centre de recherche ABB (Asea Brown Boveri) de Baden-Dättwil, devant un parterre de journalistes. C'est un «limiteur de courant», autrement dit une sorte de fusible géant chargé d'éviter qu'une surcharge n'endommage les installations d'une usine hydroélectrique, de ses sous-stations ou d'un grand complexe immobilier. En soit, rien de nouveau: il y en a

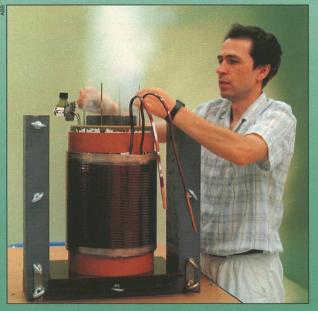
des milliers disséminés dans notre environnement. Ce limiteur est pourtant unique. D'abord parce qu'il est capable de couper le courant en une micro-seconde, soit beaucoup plus rapidement que les limiteurs existants. Et ensuite, il peut se réenclencher très vite et de luimême, aussitôt que la surcharge disparaît - contrairement aux systèmes mécaniques (qu'il faut réenclencher à la main) ou aux fusibles explosifs (qu'il faut remplacer).

Ces performances sont possibles grâce à l'utilisation d'une céramique douée de supraconductivité à haute

16

température (SHT) – une véritable révolution technologique. L'élément clé du nouveau dispositif d'ABB est un cylindre de céramique en oxyde de cuivre au bismuth, refroidi à -196°C dans de l'azote liquide (voir photo).

«Avec une puissance de déclenchement de 100000 Watt, c'est pour l'heure le plus grand instrument du monde en technologie SHT dans le domaine des techniques de l'énergie», commente le Prof. Martin Peter, Président du groupe d'experts du programme national de recherche «Supraconductivité à haute température»


(PNR30). «Et c'est aussi un symbole important. Car ce limiteur a été réalisé en collaboration entre ABB, qui est un important groupe industriel, et l'équipe du Prof. Ludwig Gauckler du Poly de Zurich, qui représente la recherche fondamentale. Le tout, sous l'impulsion d'un programme de recherche géré par le Fonds national.»

Lors de la même conférence de presse, qui visait à informer le public de l'état d'avancement des 32 projets

composant le PNR 30, un membre de la direction d'ABB a annoncé que son groupe envisageait la fabrication d'un transformateur en technologie SHT. Son rendement devrait être meilleur que celui d'un transformateur traditionnel équivalent. Mais, surtout, son encombrement et son poids seront considérablement réduits. Quand on sait que les transformateurs représentent un tiers du volume et de la masse d'une locomotive, on en comprend l'intérêt...

Ainsi, huit ans après leur découverte dans le Laboratoire IBM de Rüschlikon par

le Suisse Alex Müller (qui fait partie du groupe d'experts du PNR 30) et l'Allemand Georg Bednorz, les céramiques supraconductrices font leurs premiers pas dans l'industrie. Certes, on est encore loin du rêve né à l'époque où les deux chercheurs d'IBM recevaient le Prix Nobel de physique 1987. Si, pour les câbles distribuant de forts courants sans perte sur de longues distances, les Japonais et les Américains sont très près des applications pratiques, les fameux anneaux de stockage d'énergie (capables de conserver indéfiniment l'électricité) ne sont

pas attendus pour tout de suite. Ni d'ailleurs les trains à lévitation magnétique.

En effet, les scientifiques avouent que les céramiques supraconductrices sont plus difficiles à manier que prévu. Le problème est d'arriver à «ancrer» le courant électrique dans la céramique refroidie, afin qu'il circule dans un réseau de canaux bien ordonnés et qu'il y reste! Si le courant devient trop fort, ces canaux de conduction dérivent et fusionnent: l'état supraconducteur du matériau disparaît...

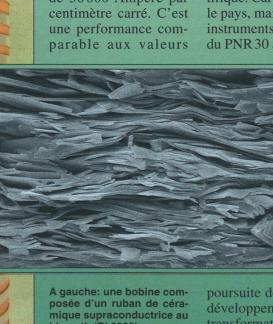
«Mais la recherche fondamentale commence à comprendre le phénomène à l'état atomique», précise le Prof. Peter. «Grâce à un microscope à force magnétique de son invention, l'équipe du Prof. Güntherodt de l'Université de Bâle a réussi à saisir les premières images de ces canaux. L'équipe du Prof. Hugo Keller de l'Université de Zurich a, elle, observé pour la première fois comment les canaux perdent leur géométrie ordonnée avant que la

supraconductivité ne s'anihile. Il faut citer aussi l'équipe du Prof. René Flükiger, de l'Université de Genève, qui a développé une méthode pour produire des rubans de céramique: refroidis dans l'azote liquide, ils conduisent sans perte des courants électriques de 30000 Ampère par records qui ont été obtenues au Japon...» (voir photos cidessous)

Le ruban et le fil supraconducteurs à haute température: c'est sous cette forme que les céramiques magiques sont prometteuses dans l'immédiat. En les enroulant, on peut envisager d'obtenir des électroaimants plus puissants que ceux déjà en service avec les supraconduceurs «classiques» – c'est-à-dire en alliage métallique refroidi par de l'hélium liquide (-269°C!). Pour parler chiffres, les ingénieurs espèrent atteindre des champs magnétiques de plus de 20 Tesla, alors qu'actuellement le maximum est de 17,5 Tesla avec les supraconducteurs métalliques. Les premières applications de ces élecro-aimants herculéens sont attendues dans l'industrie pharmaceutique et chimique pour l'analyse des molécules complexes par résonnance magnétique (RMN).

«La liste des applications possibles va évidemment s'allonger avec les progrès technologiques», précise le Prof. Peter. «Lorsque le laser a été inventé, personne n'aurait pensé qu'il remplacerait un jour l'aiguille du tourne-disque et qu'il révolutionnerait les télécommunications.»

Ne pas laisser refroidir la recherche


Dirigé par Claus Schüler, le PNR30 arrivera à son terme à la fin de l'année prochaine. La Suisse se trouvera alors dans une position de force dans le domaine scientifique. Car non seulement la SHT a été découverte dans le pays, mais aussi le *microscope à effet tunnel*, dont les instruments dérivés servent aujourd'hui aux chercheurs du PNR 30 à analyser les céramiques. De plus, le record

> de «chaleur» pour un supraconducteur est détenu par l'équipe du Prof. Ott, de l'Ecole polytechnique fédérale de Zurich: -140°C (la découverte de supraconducteurs à température ambiante, annoncé en France en 1993, n'a pas été confirmée).

> Il ne faut donc pas laisser perdre ce savoir scientifique et ces compétences humaines encouragées dès 1987 par le programme Supra 2 du Fonds national. Claus Schüler et les cinq experts du PNR 30 insistent donc pour que notre pays songe dès à présent à soutenir la

poursuite des recherches fondamentales et de quelques développements industriels bien ciblés: interrupteurs, transformateurs, systèmes de traction électrique (pour le transport ferroviaire); électro-aimants; céramiques en couches minces pour la microélectronique.

Direction du PNR30 «Supraconductivité à haute température»: Dr. Claus Schüler, Gemeindestrasse 4, CH-8967 Widen. Tél. 057/33 36 84

bismuth (Bi 2223).

En haut: les paillettes de céramique observées au microscope électronique (agrandissement: 1500 fois)