**Zeitschrift:** Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

**Band:** - (1992)

**Heft:** 14

**Artikel:** La banque de sperme de l'escargot

Autor: [s.n.]

**DOI:** https://doi.org/10.5169/seals-971528

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 11.12.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# La banque de sperme de l'escargot

On savait que certains escargots stockaient du sperme après l'accouplement. Des biologistes viennent de faire une découverte étonnante: pour féconder les oeufs de leur ponte, ils sont capables de mélanger la semence de plusieurs partenaires de rencontre.

les scientifiques. Depuis 400 millions d'années, il laisse sur la Terre des fossiles de sa coquille – ce qui ravit le paléontologue. Il est aussi apprécié par le neurophysiologiste, qui dispose par son intermédiaire d'un système nerveux très simplifié. L'endocrinologue, lui, repère dans les cellules sexuelles de l'animal des hormones habituellement présentes dans le système nerveux des vertébrés. Et pour les biologistes de l'Institut de zoologie de l'Université de Bâle, le gastéropode s'avère une mine d'or pour étudier

l'évolution des différents modes de reproduction.

En effet, les 60000 espèces d'escargot connues cumulent pas moins de cinq stratégies pour avoir des descendants. Chez quelques gastéropodes marins, par exemple, tous les mâles sont jeunes, et ils ne fécondent que de vieilles et grosses femelles: l'individu change de sexe au cours de sa vie.

Les chercheurs de Bâle, menés par Bruno Baur, s'intéressent plus particulièrement à un petit escargot grand comme une pièce de quatre sous, l'Arianta arbustorum, qui colonise les zones humides et les forêts d'Europe.

L'Arianta – comme la plupart des escargots terrestres – est hermaphrodite: chaque spécimen possède à la fois des organes sexuels mâle et femelle, de sorte qu'il peut soit s'autoféconder, soit s'accoupler avec un congénaire. Dans ce cas, les deux partenaires jouent en même temps le rôle du mâle et de la femelle: ils se fécondent mutuellement, s'adonnant à de l'«hermaphrodisme simultané».

Selon la théorie de l'évolution proposée par Charles Darwin, chaque plante ou animal tend à avoir le maximum de successeurs. Pour le côté femelle de l'*Arianta*, cela

signifie qu'il faut produire le plus grand nombre possible d'oeufs. Et pour le côté mâle, cela implique qu'il faut copuler avec le plus grand nombre possible de femelles. A cet égard, la production de sperme ne pose pas de problème, puisque l'organisme demande beaucoup moins d'énergie pour produire des millions de spermatozoïdes que pour fabriquer un seul oeuf.

Pour répondre à Darwin, l'*Arianta* a trouvé une solution: il stocke du sperme lors de chaque accouplement – autrement dit il se constitue une banque de sperme au fil de

ses copulations avec ses différents congénaires. Les biologistes bâlois ont montré que l'animal pouvait, lors d'une même phase de reproduction, utiliser aussi bien les spermatozoïdes de son partenaire du moment, que ceux de ses amants antérieurs. En bref, la ponte d'un escargot est le fruit d'une mère et de plusieurs pères.

Dans le fond, le procédé est logique. L'Arianta pond plusieurs fois au fil des saisons et vit dans un biotope changeant. Comme personne ne peut prévoir la météo, il a donc intérêt à engendrer une ponte d'une large variété génétique. Les embryons géné-

tiquement bien adaptés au froid et à l'humidité auront plus de chance d'éclore lors de la ponte printanière. Alors que ceux qui sont adaptés à la chaleur et à la sécheresse survivront mieux à la ponte du mois d'août.

Selon Bruno Baur, l'*Arianta* conserverait les spermatozoïdes de ses collègues de rencontre durant au moins une année, et jusqu'à deux ou trois ans, soit quasiment toute sa vie adulte! Pour mettre en évidence cette utilisation différée du sperme, son équipe a sollicité une bonne partie de sa colonie de gastéropodes, rangée dans des armoires



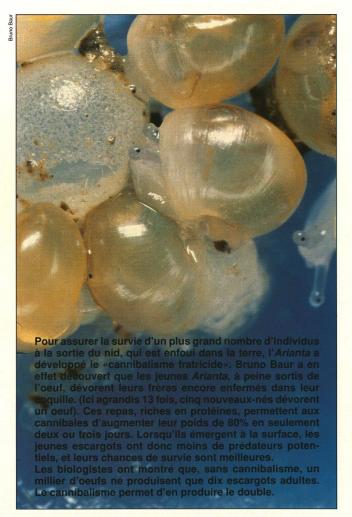


thermostatiques et copieusement nourrie. Les biologistes ont commencé par réunir 42 spécimens vierges et dotés d'une coquille jaune, afin qu'ils s'accouplent avec des partenaires de même couleur – ce qu'ils ont fait sans rechigner. Résultat attendu: tous les bébés sont nés avec une coquille jaune (la couleur jaune est due à un gène récessif).

Les mêmes 42 spécimens ont ensuite été accouplés avec d'autres partenaires, possédant une coquille brune (gène dominant). Cette fois, les descendants n'avaient pas tous la même couleur : l'escargot N°7, représentatif du groupe, a produit cinq pontes qui comportaient respectivement 70%, 86%, 92%, 100% et 100% de nouveaux-nés à la coquille brune. Sachant que la couleur brune est dominante, tous les nouveaux-nés auraient dû avoir la coquille brune, s'il n'y avait pas eu de stockage de sperme lors de la première série d'accouplements.

Si l'espacement entre deux accouplements dépasse une année, le pourcentage des coquilles brunes frôle les 100%. Bruno Baur suppose que, passé ce délai, les «vieux» spermatozoïdes stockés perdraient un peu de leur mobilité – et donc leur chance d'aller féconder les ovules, s'ils doivent entrer en compétition avec de «jeunes» spermatozoïdes fraîchement mis en banque.

## Avantageux mais risqué: l'hermaphrodisme économique


Les biologistes pensent que leur escargot n'est pas un phénomène unique: beaucoup d'espèces doivent pratiquer ce mélange de sperme, préalablement mis en banque, pour se féconder. Dans la nature, l'*Arianta* échangerait ainsi sa semence deux à trois fois par saison. Et l'autofécondation n'interviendrait que dans 1% des naissances. Elle représente en fait la solution de secours, lorsqu'un individu se trouve privé de partenaire. Toutefois, dans le vaste monde des 20000 gastéropodes terrestres, ce mode de reproduction n'est pas aussi marginal qu'on pourrait le penser.

L'évolution a amené plusieurs escargots vers une sorte

d'hermaphrodisme «économique». C'est notamment le cas pour deux espèces indigènes, que l'on trouve dans le Jura (*Chondrina avenacea*) et dans les Grisons (*Chondrina clienta*). Ces deux escargots vivent sur les rochers, un biotope qui connaît très peu de variations au cours de l'année, excepté durant l'hiver – période où les mollusques hibernent. Ils se sont adaptés à leur habitat à un point tel, qu'ils en sont arrivés à supprimer leur organe copulateur mâle! C'est de l'*aphallisme* – littéralement «sans phallus».

De cette façon, les escargots économisent l'énergie nécessaire à trouver un partenaire, puis à réussir cette pénétration simultanée, qui demande souvent plusieurs essais successifs et de longues minutes de mise en place. Ce gain d'énergie est alors mis à profit pour pondre davantage d'oeufs, sans pour autant leur donner les meilleures chances de survie. En effet, obligé de s'autoféconder, un spécimen de *Chondrina* transmet une copie conforme de ses gènes à ses descendants, qui sont donc des répliques de lui-même.

Si un changement radical de l'environnement venait à se produire, l'espèce pourrait disparaître...

