Zeitschrift: Hochparterre : Zeitschrift für Architektur und Design

Herausgeber: Hochparterre

Band: 28 (2015)

Heft: [3]: Schulbesuch in Chur

Artikel: Brücken schlagen

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-595357

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Visualisierung der Bahnunterführung in Küblis. Entwurf: Beni Signer.

Brücken schlagen

Eine Brücke für die Eisenbahn, eine am Oberalp und eine neue Rheinbrücke für die Fussgängerinnen – ein Blick in die Bachelorarbeiten einer Ingenieurin und zweier Ingenieure.

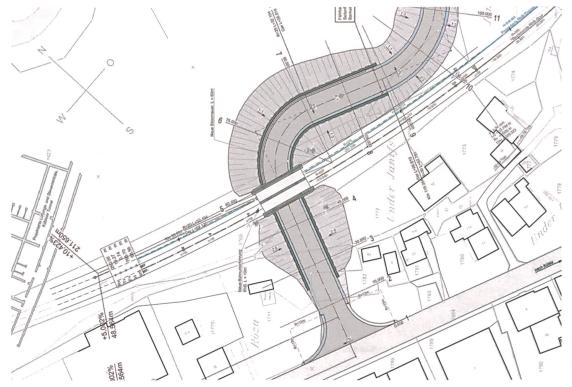
In Beni Signers Bachelorarbeit als Bauingenieur von Sommer 2014 steht zu lesen: «Gestaltung und Technik faszinierten mich schon immer. Die Ausbildung an der HTW Chur hat mich aber stark verändert. Die Faszination geht nun über in Verständnis: Das 2009 abgeschlossene Architekturstudium erweckte in mir den kritischen Philosophen und das nun vollendete Ingenieurstudium den differenzierten Akademiker. Handwerker bin ich seit jeher.» Signer, der gelernte Schreiner aus dem Appenzellischen, studierte in Chur zuerst Architektur und lernte später berufsbegleitend Ingenieur.

Im Unterschied zu den Kolleginnen und Kollegen, die drei Jahre während der ganzen Woche zur Schule gingen, arbeitete Signer als Architekt und absolvierte sein Ingenieurstudium berufsbegleitend in vier Jahren. Dank komplexer Stundenplanoperationen und einem modular aufgebauten Studium konnte er dies im Klassenverband mit den Vollzeitstudierenden tun. Denn selbstverständlich musste auch er am Schluss die nötigen 180 ETCS-Punkte vorlegen.

Das Wissen zusammenführen

Als Abschlussarbeit hat Beni Signer eine Unterführung in Küblis geplant. Dort soll die Strasse nach St. Antönien künftig unter dem Bahntrassee durchführen. Strassen- und Brückenbau sind als zwei wichtige Felder des Tiefbauingenieurs miteinander verbunden: die RhB-Brücke und unten Postauto, Autos, Traktoren und Velos. «Es ist das erste Projekt, das ich als angehender Bauingenieur mit dieser Detaillierung erstelle», schreibt er in seiner Arbeit. Sechs Themen verbindet er:

- Entwurf: Tragwerk, Situation, Stützmauern
- Statik: Projektbasis, Lastmodelle, Bemessung
- Massivbau: Vorspannung, Massivbau im Grundwasser


- Geotechnik: Pfahlfundationen, Grundwasser, Stabilität
- Gleisbau: Trassierung, Ober- und Unterbau
- Strassenbau: Lichtraumprofile, Radien, Geometrien

Dazu kommen Themen wie Kosten, Recherche und Konzeption des Bauablaufs, Darstellung in Fotomontagen, Situations-, Plan- und Werkzeichnungen, Zwischen- und Schlusspräsentationen und die Dokumentation der Arbeit mit den Quellen, Berechnungen, Besprechungen, Plangrundlagen in einem gut sechzig Seiten dicken Bericht.

Strassenbauten, Brücken, Unter- und Überführungen, Schutzbauten für Hänge und Flüsse sind die Themen etlicher Bachelorarbeiten der angehenden Ingenieurinnen und Ingenieure. Sie wählen sie selbst und vereinen darin in einer 25 Wochen dauernden Arbeit den breiten Fächerkatalog, den sie in drei oder vier Jahren besucht haben. Hohes Gewicht hatten die naturwissenschaftlich-technischen Grundlagen, der Entwurf und die Visualisierung des Bauwerks - das Verstehen-, Rechnen-, Berechnen- und Darstellen-Können. Dann das unmittelbar berufsnötige Wissen in Geotechnik, Infrastruktur-, Wasser- und Siedlungswasserbau und die Baurealisation von der Bauleitung über das Baurecht bis zur Kostenplanung. Kurz - eine Grundlage für die Arbeit als Bauingenieur oder -ingenieurin. Frauen studieren diesen Beruf nämlich auch. Zum Beispiel Marianne Jegen aus Langwies im Schanfigg. Sie lernte Gärtnerin, war Hirtin und holte an der HTW Chur die technische Berufsmatura nach. 2011 stieg sie als Studentin des Bauingenieurwesens ein und arbeitete daneben sechzig Prozent. Sie schloss ihr Studium dieses Jahr ebenfalls mit einem Brückenprojekt ab.

Fussgängerbrücke

Der Rhein trennt die Stadt Chur und die Gemeinde Haldenstein. Die einzige Verbindung ist die Brücke bei Haldenstein. Vom Dorf aus führt flussaufwärts ein Gehweg. Dieser endet jedoch vor einer Felswand. Früher stand hier eine Holzbrücke, die das Haldensteiner Ufer mit der

Situationsplan der RhB-Unterführung in Küblis.

Churer Seite verbunden hatte. Christian Loretz machte sich nun für seine Bachelorthesis daran, für die Fussgänger und Velofahrerinnen eigens eine neue Brücke über den Rhein zu schlagen. Im ersten Teil seiner Arbeit untersuchte er den Standort, analysierte anschliessend die Strecke, legte Profile und verkehrstechnische Anforderungen fest und trug alle weiteren Grundlagen für das Projekt zusammen. Nach dem Variantenstudium fiel Loretz' Wahl auf eine Bogenbrücke, die er als Dreigelenkbogen im System Maillart konzipierte.

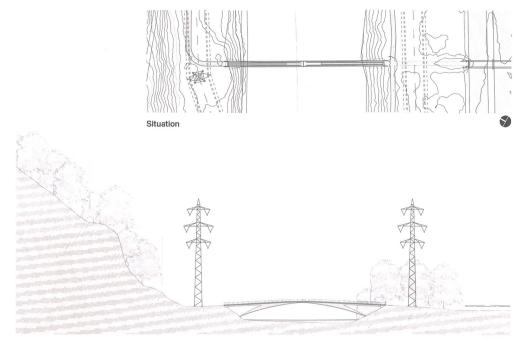
Im Verlauf der Arbeit entwickelte er Punkt für Punkt alle nötigen Detailschritte: vom Entwurf über die statischen Berechnungen, den Plan der Baustelle bis zum umfassenden Projektbericht – alles so, wie ein Ingenieur heute eine Brücke baut. Bemerkenswert auch hier, wie einerseits der Computer das Werkzeug ist, andererseits Loretz die Form seiner Brücke am Modell entwickelte.

Schwergewichtsmauern tragen die zweispurige Bahnbrücke.

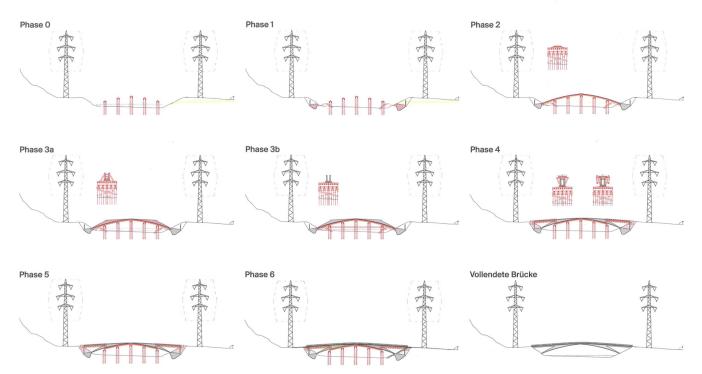
Strassen sanieren

Dass aus den locker gefügten Gerichtsgemeinden im alten Graubünden ein moderner Kanton geworden ist, hat viel mit Strassenbau zu tun. Erst nachdem man im 19. Jahrhundert mit einer pharaonischen Anstrengung das Netz der Hauptstrassen in groben Zügen, so wie wir es heute kennen, durch die Täler geführt hatte, wurde Graubünden ein Kanton. Doch bis heute beschäftigt der Ausbau und der Unterhalt dieser Strassen die Politik ungemein stark, und die klimatischen und topografischen Gegebenheiten verlangen von Ingenieuren, Wegmachern, Strassenbauern und den Unterhaltsdiensten viel. Eindrücklich sind Jahr für Jahr die Vorlagen der Regierung an den Grossen Rat für die Sanierung des Hauptstrassennetzes. So auch jene für die Strasse durch die Surselva.

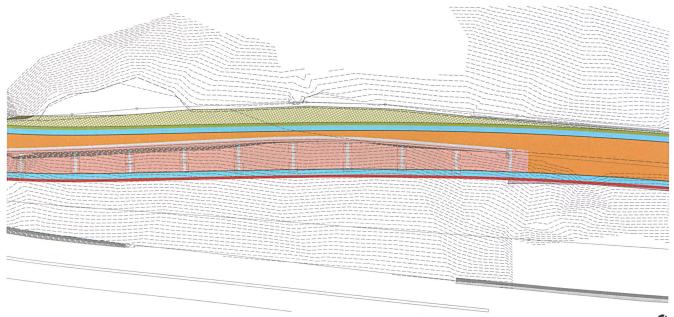
Fabian Caminada hat für den Abschnitt zwischen Cuas und Russein bei Disentis ein neues Lehnenviadukt entworfen. Die Strecke ist teils so schmal, dass Lastwagen nur im Schritttempo kreuzen können. Der Projektab-

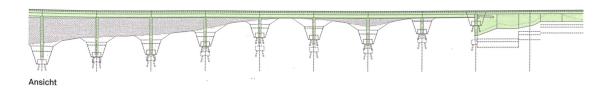

schnitt war wiederholt von Steinschlag und kleineren Felsabbrüchen betroffen. In einem Variantenstudium prüfte der Ingenieur zuerst neue Linienführungen. Nach einer ausführlichen Analyse und Beurteilung der Kosten, der Bau- und Verkehrsphasen, des Unterhalts und der Landschaftseingriffe wählte der Autor die Variante Lehnenbrücke. Das neue, 1070 Meter lange Strassentrassee verläuft weitgehend im Bereich der heutigen Oberalpstrasse. Um das Risiko der Folgen von Steinschlägen und Felsstürzen zu minimieren, hat Caminada die neue Linienführung talseits verschoben. Trotz des geringen Gefälles kann die Strasse dank eines künstlichen Längsgefälles gut entwässert werden. Die neuen Lehnenbrücken messen 835 Meter. Sie weisen Spannweiten von 10 Meter und eine Plattenstärke von 60 Zentimetern auf. Die 50 Zentimeter breiten Pfeiler werden auf 1,6 x 1,6 Meter grossen und 80 Zentimeter hohen Fundamenten gelagert. Die Mikropfähle leiten die Auflagerkräfte in den Fels.

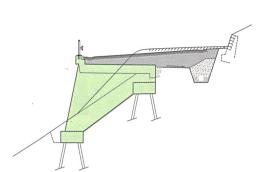
Unterführung Küblis, 2013 Die neue Abzweigung der Strasse nach St. Antönien soll in Küblis unter den Gleisen der Rhätischen Bahn hindurchführen. Dafür braucht die Bahn eine zweispurige Brücke mit hohen Stützbauwerken. Die vorgeschlagene eingeschobene Brücke mit einer Spannweite von 15,4 Metern überguert die von Schwergewichtsmauern flankierte Strasse Die Pfahlfundation wirkt im Bauzustand als Baugrubenabschluss, und sie wird durch den Brückenträger gespriesst. Die vorgespannte Brücke besteht aus zwei zusammengesetzten Trögen, die als Einfeldträger die Strasse überspannen Projekt: Bernhard Signer Betreuer: Karl Baumann Experte: Claudio Tschuor Auftraggeber: RhB, Abteilung Kunstbauten



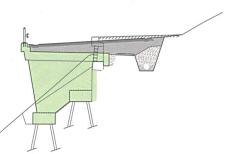
Dreigelenkbogenbrücke für Fussgänger und Velos über den Rhein bei Haldenstein. Entwurf: Christian Loretz.

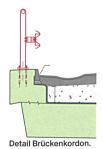



Eine Bogenbrücke kann mit einem Leergerüst vor Ort gebaut werden.



Fussgängerbrücke Haldenstein. Die sechs Bauphasen für eine Brücke sind ebenso zu recherchieren und zu konzipieren wie die Konstruktion und die Form.





Ein Lehnenviadukt passt sich der Topografie an \dots

... und hat deshalb unterschiedliche Querschnitte.

Detail Fundament.

Lehnenviadukt, Cuas-Russein, 2013 Eine Bergstrasse braucht ein Lehnenviadukt, wenn sie entlang eines Hanges geführt wird wie die Oberalpstrasse zwischen Sumvitg und Disentis. Diese Hauptstrasse hat noch eine schmale Stelle, und um diese zu sanieren, hat ein Ingenieurstudent in seiner Bachelorarbeit eine Lehne am Hang entworfen - mit Stützmauern und den nötigen Brücken.

Projekt: Fabian Caminada Betreuer: Imad Lifa Experte: Bruno Guntli

Legende

- Fahrbahn
- Kunstbauten Kordon
 Lehnenbrücke
- Wasserschale
- Bankett
- Felsabtrag
- horizontale
 Abtragsfläche
- Beton