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Temporal Variability of Alpine Solifluction: a modelling approach

Philipp Jaesche, Freising-Weihenstephan
Bernd Huwe, Helmut Stingl, Bayreuth
Heinz Veit, Bern

1 Introduction

Solifluction, the slow downslope movement of thawing
soils, is a widespread phenomenon in the alpine eco-
tone of high mountain areas (Photo 1). It results from
the combined, but variable, interaction of frost creep
and gelifluction mechanisms (FRENCH 1996; WASHBURN
1979). In the Alps, the distribution of landforms gener-
ated by solifluction has been documented by, among
others, FURRER (1954 ,1965), HGLLERMANN (1967, 1977)
and STINGL (1969). The variable altitudinal distribution
of solifluction lobes or sheets, either across a single
mountain range or between different regions, early led
to the concept of a climatically determined «perigla-
cial altitudinal belt» (BUDEL 1937; TroLL 1944).

Dating of relict solifluction landforms shows, that sev-
eral periods of enhanced movement occurred during
the Holocene (cf. STEINMANN 1978; GAMPER 1982, 1985;
VEIT 1989, 1993 on their work in the Alps; MATTHEWS
et al. 1993 for a review of studies in Europe; SMITH
1993 for North American approaches). Such «solifluc-
tion phases» frequently did not occur simultaneously
with periods of glacial advance or timberline depres-
sion. It seems solifluction responds to climatic changes
in a different way than glaciers or the timberline. Hence,
an analysis of the processes and relevant controlling
factors involved in solifluction may lead to the formula-
tion of an approach suitable for the identification and
quantification of Holocene climatic fluctuations.

There is a widespread agreement that enhanced soli-
fluction in the past reflects climatic cooling, although
knowledge about the precise nature of the dependence
of solifluction on climate is still limited (MATTHEWS et
al. 1993). As far as we know, there are only three long-
term studies investigating the present nature of this
relation in non-permafrost, mid-latitude areas — two in
the Swiss Alps (GAMPER 1981, 1987; KRUMMENACHER
et al. 1998), one in the Austrian Alps (VEIT 1988; VEIT
& HOrNER 1993; VEIT et al. 1995). They suggest that
solifluction intensity is strongly related to the annual
depth of soil freezing. The studies indicate the rel-
evance of the insulating snow cover in terms of its
autumnal onset as well as total duration. Early snow
cover may delay or even prevent ground freezing and
thus reduce soil movements. At the Swiss site, low
winter temperatures enhance frost penetration. At

the Austrian site, low summer temperatures addition-
ally induce higher soil movement rates. The expla-
nation offered is that the lower temperatures delay
ground thawing prolonging the solifluction period.
Findings of such long-term field studies are supported
by process studies of solifluction in large-scale labo-
ratory simulations, showing the importance of ground
freezing in promoting soil movements (HARRIS 1996).
Measurements by MaTsuoka et al. (1997) in the Swiss
Alps also underline the dependence of frost-creep
type soil movements on the thawing of initially frozen
ground.

To clarify the close relation between snow cover, soil
freezing and solifluction intensity, a follow-up study
was carried out at the Austrian site in 1995 (JAESCHE
& Huwe 1997; JaescHE et al. 1997). A soil physical
approach was chosen, water and heat regimes as well
as frost heave and subsurface soil movement being
monitored on two solifluction lobes. The importance
of ground freezing for triggering solifluction move-
ments could be confirmed. The strongest movements
generally occur during a period of a few days when
the ground ice is melting. They attenuate but continue
for several weeks as long as lateral water supply from
higher snow patches persists (JAESCHE 1999).

In the study area, present solifluction occurs above
2600 m as.l, and leads to the formation of small,
mainly nonvegetated solifluction lobes. Densely veg-
etated and obviously inactive lobes may be found as
low as 2300 m a.s.l., representing several Holocene
phases of intensified solifluction (VEIT 1989,1993). This
strong 300 m depression of the periglacial belt may
be explained in different ways. It might be caused
by a marked decrease of mean annual air tempera-
ture by 2 °C. But if one assumes a maximum drop in
Holocene mean annual air temperatures of only 1 °C
(e.g. BUCHENAUER 1990; BurGa & PERRET 1998; LISTER
et al. 1998), the belt depression could not have been
induced by lower temperatures only. Changes in pre-
cipitation totals or annual weather characteristics must
also have influenced solifluction.

This paper demonstrates how ground freezing at the
Austrian solifluction site varies within a three-year
period. Measurements are used to calibrate a physi-
cally based soil water and heat model in order to sim-
ulate seasonal freezing from daily weather data. The
model is applied to explore freezing and solifluction
intensity during periods of changed climate and allows
quantitative inferences on climatic conditions during
Holocene solifluction phases.
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Photo 1: Solifluction lobes on the Medel Spitze (2670 m a.s.l.), Austria
Solifluktionsloben bei der Medel Spitze (2670 m ii.M.), Osterreich
Lobes de solifluxion a la Medel-Spitze (2670 m d’altitude), Autriche

2 Methods

2.1 Site description and measurements

The study area is situated in the southern Hohe Tauern
mountain range (Eastern Tyrolia, Austria) between
the Grofiglockner and the Schober Group (Fig. 1).
Lower parts of the area down to 2200 m a.s.l. are
covered by alpine tundra vegetation, higher regions
above 2600-2700 m a.s.l. are almost devoid of vege-
tation cover. Petrographically, the area is character-
ised as a mixed zone of easily weathering, calcareous
mica schists and phyllites. Solifluction processes cre-
ated lobate features of different sizes. The larger ones
can reach a length of more than 100 m, with faces
about 0.5-2.0 m high. The lower distribution limit of
solifluction lobes is at 2300 m as.l. (StiNGL 1969).
Radiocarbon dating of fossil soils buried by solifluc-
tion determined that the big lobes originated mainly
during two activity periods, 3350-2800 "C yr B.P. and
around 1250 "“C yr B.P, following an Early- to Mid-
Holocene period with stable slopes and soil evolution
(VEIT 1993).

Solifluction processes are observed on a monitoring

Photo: H. VEIT

plot at about 2640-2670 m a.s.l. (StinGL & VEIT 1998;
VEIT et al. 1995), presumably at their present lower
limit of significant activity. The site, with inclinations
between 10-20°, faces east to north and is heavily
shaded by a steep mountain ridge, especially during
winter. The mean annual temperature is about -2 °C,
precipitation reaches approx. 1200 mm a'. Observa-
tions were initiated in 1985 and have resulted in a
16-year data set of annual surface movement so far.
Movement rates are obtained from regular tachy-
metric measurements at 7 surface markers, consisting
of 20-cm-long PVC rods inserted half-way into the
ground. Spatial distribution and variability of soli-
fluction rates at the site were also observed, using at
least 90 markers, showing persistent movement pat-
terns at the site during subsequent years (JAESCHE
1999).

Instruments were installed on two solifluction lobes in
1995 in order to monitor soil temperature and liquid
water content, as well as frost heave and subsurface
movements. Soils show a high stone content of 38-50 %
by weight; soil texture is defined as being a sandy
loam. Temperature data were obtained using thermis-
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Fig. 1: The study area in the southern Hohe Tauern range, Austria
Lage des Untersuchungsgebietes in den siidlichen Hohen Tauern, Osterreich
Situation du périmétre d'étude dans les « Hohen Tauern» méridionales, Autriche

Source: HOFNER (1995), modified

tor probes (Fenwal 10 kQ) at 10 depths between 1
and 120 cm below the surface. and registered with a
field data logger (DeltaT DL-2). Water content was
registered at 6 depths between 10 and 90 cm using an
automated time domain reflectometry (TDR) system
(IMKO TRIME-MUX6 with P2Z-probes). During the
first winter, water potential was also measured using
tensiometers with pressure-transducers. As tempera-
ture gradients tend to be minimal during winter and
frost depths difficult to determine by the interpolation
of temperature data, TDR measurements were chosen
to indicate the transition of the soil status from unfro-
zen to frozen. A comparison of TDR and thermistor
data showed a generally good correlation concerning
the onset of soil freezing. Daily weather data was
delivered from the Sonnblick Observatory (3105 m).
situated only 10 km east of the site, across the Mall
valley. Information about the snow cover was obtained
from periodical field observations and from calcula-
tions described below.

2.2 Model description and applications

The model SOIL (Jansson 1998) decribes the coupled
heat and water transport between atmosphere. snow
cover and the soil in the vertical dimension, calcula-
tions being based on diurnal precipitation and temper-
ature data. SOIL explicitly considers soil freezing and
subsequent changes in thermal and hydraulic charac-
teristics of the soil. It accounts for evaporation. sur-
face runoff and subsurface downslope water flow in
the saturated soil. as well as infiltration into the frozen
soil through previously air-filled pores. Simulated heat
flow takes conduction. convection and energy conser-
vation into consideration. Unsaturated water trans-
port is simulated in terms of the Richards equation.
A detailed technical description is found in JANSSON
(1994, 1998) and. like the model itself. may also be
found on the internet (http:// bgfserver.mv.slu.se/ bgf/
soil.htm). Recent model applications are given by Sta-
DLER, FLUHLER & JANSSON (1997) or STAHLI, JANSSON
& Lunbpin (1999).
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Precipitation was assumed to occur as rain above an
air temperature of 0 °C, as pure snow below -1°C, and
as a variable mixture at air temperatures between. The
snowpack is generally treated as a homogeneous layer,
with the thermal conductivity being a function of its
density (cf. LanGHAM 1981). Snowpack density itself
is modified according to the length of time since the
last snowfall, the total mass of the snowpack and the
liquid water content (JANsson 1998). Where a snow-
pack is present, soil surface temperature is calculated
assuming steady-state heat flow according to the ther-
mal gradient and thermal conductivity of the snow-
pack and of the topsoil. If the snow liquid water con-
tent exceeds a certain threshold value, soil surface
temperature is set at 0 °C as snowmelt conditions are
assumed. The surface temperature of both the snow-
pack and the snow-free soil were assumed to equal
air temperature, although the model also includes the
possibility of calculating surface temperatures using
energy balance approaches. Snow melt was simulated
applying a pure degree-day method, using a daily melt
rate of 6.1 mm d' K", a value taken from independent
studies (JAESCHE, BIENERT & HUWE 1998).

The hydraulic characteristics of the soils were described
by an adapted Brooks and Corey parameterisation
suitable for soil core measurement. Soil freezing char-
acteristics were deduced from TDR field data. For sim-

ulations, a 5 m deep soil profile was divided randomly
into 11 depth increments between 7.5 to 20 cm thick
in the upper metre, the thicknesses of the sections pro-
gressively increasing in the lower 4 m. A constant tem-
perature of 2 °C was chosen as the lower boundary
temperature.

Model calculations were fed with daily temperature
and precipitation data from the Sonnblick meteoro-
logical station, the data adjusted to take the 450 m
elevation difference into consideration by applying
values of regional elevation gradients found in litera-
ture. Temperature was modified using a constant lapse
rate of 6.5-107°C m™ (cf. BuCHENAUER 1990). Daily
precipitation rates were reduced by 30%, coming close
to the mean annual altitudinal lapse rate of about
100 mm per 100 m (AUER 1992a). The instrumental dif-
ficulties involved in the determination of daily precipi-
tation have to be kept in mind (e.g. AUER 1992b). First,
the snow-related model parameters were calibrated
to reflect measured snow water equivalents and
snow height data. Then, unfrozen saturated water con-
ductivity was adjusted according to measured water
content during a late-summer period without water
input from rain or snowmelt. Finally, the description of
water conductivity under frozen conditions, especially
during early autumnal snowmelt events and in spring,
was defined by visual comparison of simulated and
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measured temperature and water content time series.
These calibrations were initially performed with data
for the winters 1995/96 and 1996/97, two periods with
very strong and very low ground freezing, respec-
tively. A test with data for the following winter,
1997/98, showed reasonable results and made only
minor changes in the model parameters necessary
(JAESCHE 1999).

In subsequent simulations, snow, water and tempera-
ture regimes at the site for the 13-year period from
1985 to 1998 were reconstructed, again using Sonn-
blick weather data. As an index of freezing intensity,
maximum frost depth was obtained by the interpola-
tion of temperature output time series.

In a third step, the complete 13-year set of core weather
data was modified to be able to calculate simple cli-
mate change scenarios. Monitored temperatures were
increased or decreased linearly by 0.65 °C and 1.3 °C.

For each temperature level, daily precipitation was
additionally scaled by factors of 0.5, 0.75, 1, 1.25 and
1.5 to obtain drier or wetter scenarios. This resulted in
25 scenarios characterised by mean precipitation, tem-
perature and resulting frost depth. the extremes com-
prising a very warm and wet climate on the one hand,
a rather cold and dry climate on the other hand. This
approach neglects possible shifts in the seasonal distri-
bution of single variables, but it allows the examina-
tion of the effects of climate change with regards to the
annual variability of weather data, as can be seen in
the 13 annual weather scenario data sets.

3 Results and discussion

3.1 Annual variability of solifluction rates and
external control

The 13-year record of mean solifluction movements

shows a strong interannual variability (Fig. 2). A series
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Fig. 3: Monthly mean air temperatures and precipitation sums at the investigation site from Aug. 1985 to July
1998, calculated from measurements at the Sonnblick station. Various seasonal mean values are also given.
Monatliche mitilere Lufttemperaturen und Niederschlagssummen im Untersuchungsgebiet (Aug. 1985-Juli 1998), abgelei-
tet aus Messungen am Observatorium Hoher Sonnblick. Zusiitzlich sind verschiedene saisonale Mittelwerte dargestellt.
Températures de l'air et totaux de précipitations mensuelles moyennes dans le périmétre d’étude (aoiit 1985-juillet
1998), calculées a partir des mesures effectuées par l'observatoire « Hoher Sonnblick». Diverses valeurs moyennes

saisonniéres sont également indiquées.
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of high movement rates, including the maximum value
in winter 1988/89, is followed by several lower rates
and almost complete inactivity in the 1992/93 period.
There is no indication of site disturbance due to marker
installation, as was observed in a review of other stud-
ies on solifluction (Smith 1992). The 7 surface mark-
ers for long-term observations are in relatively stable
regions, while markers used during the two intensive
monitoring periods (1985-1989 and 1994-1998) were
preferentially positioned in mobile regions. Different
inter-annual changes occurred within the two marker
groups, e.g. a solifluction decrease was observed
between 1996/97 and the next season in the one group,
whereas an increase was observed during the same
period in the other group. The differing mechanisms
of solifluction that might act within these two groups
will be discussed in detail elsewhere. Both results indi-
cate the inherent uncertainties present when dealing
with mean solifluction rates, for example in compari-
son with climatic variables as shown below.

1/1/96

1/1/97

L

Analogous to observations made by VEIT et al. (1995)
with a shorter (7-year) data set, the greatest move-
ments, like those in the 1988/89 period, followed a
rather warm winter, while the smallest movements
occurred after a heavy, yet not unusually cold winter
(Fig. 3). Regression analysis of the 13-year data (mean
and median values) with various climate indices such
as mean monthly or seasonal (e.g. winter) tempera-
tures, generally confirmed the results of VEIT et al.
(1995): There is no significant relation between sea-
sonal or annual indices and movement; rather, seasonal
weather characteristics, especially during autumn, influ-
ence solifluction. Accordingly, a significant correlation
of annual movement rates with precipitation totals
in October is observed (r=-0.8, p<0.01). Only a weak
correlation (p<0.05) is observed between precipita-
tion totals during October and November (r=-0.6) and
mean temperature in October (r=0.6; mean movement
only). At first glance, these results seem to oppose soil
freezing. But they indicate a stable weather situation

1/1/98

" L .

Snow depth: # measured

3 F simulated

o

Frost / Snow depth [m]

Soil temperature [*C]

simulated
measured

1/1/96

1/1/97
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Fig. 4: Snow cover and ground thermal regime at a solifluction lobe at 2650 m a.s.l.: measurements and simulation

results

Schneedecke und Bodentemperaturregime an einem Solifluktionslobus auf 2650 m ii.M.: Messdaten und

Simulationsergebnisse

Couverture neigeuse et régime de température du sol sur un lobe de solifluxion a 2650 m d’altitude: résultats de

mesures et de simulation
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with temperature inversion and sunshine at mountain
sites, precluding the accumulation or even inducing
the melting of existing snow cover. Thus, subsequent
cold weather, possibly accompanied by only low snow-
falls, can induce deeper ground freezing and initiate
strong solifluction.

The correlation analysis further shows that cold sum-
mers affect slope movements, as low June, June/July
and June through August mean temperatures corre-
late negatively (r=-0.6, p<0.05) with solifluction rates.
This is seen as an indication of prolonged snowmelt
periods supporting solifluction by lateral water supply
(JaEscHE 1999), rather than the hindrance of ground
ice melt as proposed by VEIT et al. (1995).

The importance of snow depth, especially at the begin-
ning of cold winter conditions, is confirmed by model
run-throughs on snowfall intensity: A fourfold increase
of daily precipitation during deposition of the first
50 cm of snow (completed within 2 to 10 days) led to a
decrease in annual frost depth of up to 50% (JAESCHE
1999). Therefore, in order to obtain reasonable values
for frost depth and solifluction, it is necessary to con-
sider the precise seasonal course of air temperature,
precipitation and snow cover, as will be demonstrated
below. Total amounts of winter snowfall or maximum

snow depth (as reconstructed by model simulations)
do not correlate with solifluction intensity.

3.2 Annual snow cover and frost depth: measurements
and model calibration

As is to be expected when observing solifluction var-
iability and taking initial temperature measurements
(VEIT et al. 1995), snow and soil heat regimes were
highly variable during the 1995-98 study period (Fig.
4). A surprising observation is that ground freezing
continues or even commences despite snow depths of
one meter or more. This is probably caused by the
complete shading of the site from November through
the middle of February and strong radiation cooling at
the snow surface.

Snow and frost regimes were simulated using the SOIL
model (Fig. 4). Calibration of the snow sub-model with
field observations meant that an additional snow input
of 25% was made necessary. This is explained by drift-
ing snow accumulation into the concave-shaped, east
(leeward) exposed site. Melt rates during the 3-month
winter period of complete shading had to be reduced
to 10% (cf. JaescHE 1999). Observed ablation dates at
the instrumented site were met within two days. Due
to the overestimation of snow settlement and hence
snow thermal conductivity by the model’s default
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Fig. 5: Simulated dynamics of snow cover and ground freezing 1985-1998
Simulierte Schnee- und Frostdynamik zwischen 1985 und 1998
Simulation de la dynamique de la couverture neigeuse et du gel du sol de 1985 a 1998

Draft by the authors, diagram: L. BAUMANN
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values, especially during winter 1996/97.density-related
parameters were modified to describe observed snow
depths and soil surface temperatures. Measured sat-
urated water conductivity had to be increased by a
factor 10° to reflect tension changes during precipita-
tion-free periods. In turn, upward water flow towards
the freezing front was reduced. This was necessary to
prevent the delay of the frost front progression and
the thus reduced total frost depth. Once the calibra-
tion had been carried through. model results of soil
temperature and frost depth during all three winter
periods were in good agreement with field measure-
ments (Fig. 4).

3.3 Long-term (13-year) variability of frost depth and
solifluction activity

The successful calibration of the SOIL model pro-
vides a reasonable base for ground freezing sim-
ulations during the whole 13-year period (Fig. 5).
Again, a strong annual variability of snow cover and
frost depths may be observed. The calibration period
1995-98 almost covered the full range of frost depths
simulated, strengthening the confidence in the vahdity
of this exercise.
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Fig. 6: Relation between annual frost depth (simu-
lated) and solifluction rate (median of 7 marker meas-
urements) between 1985 and 1998

Zusammenhang zwischen jihrlicher simulierter Frost-
tiefe und Bewegungsbetrag (Medianwert aus 7 Einzel-
messungen) zwischen 1985 und 1998

Rapporis entre la profondeur simulée du gel et le taux
de soliffuxion (valeur moyenne de 7 mesures différen-
tes) entre 1985 et 1998

Draft by the authors, diagram: L. BAUMANN

While the regression results of climatic variables and
solifluction rates shown above could only be inter-
preted assuming annual varnations of ground freezing.
the simulation results presented here confirm the rela-
tion between annual frost depth and solifluction (Fig.
6). Deep freezing of the ground promotes soil move-
ments. Unexplained variability of solifluction mainly
arises from other factors influencing soil mobility. such
as soil moisture content influenced by summer snow-
melt. It must be noted that the given linear regression
is valid only for the measured range of frost depths. It
seems possible that an exponential function would better
describe the relation. especially at low frost depths. Fig.
6 raises the question of whether a minimum freezing
intensity is necessary for solifluction. As independent
observations at individual solifluction lobes have shown.
no movements occur at zero seasonal frost depth.

Under present climatic conditions, characterised by a
mean annual air temperature of -2.1 °C and a mean
annual precipitation of 1120 mm. the mean annual
frost depth during the 13-year period reaches about
70 ¢cm (Fig. 5). Continual but annually variable solif-
luction at the investigated site, leads to the formation
of lobate surface features very similar to the relict fea-
tures found at lower elevations. The reason that the
relict features are found up to a maximum of 300 m
below present solifluction activity cannot be explained
alone by minor Holocene temperature changes of | °C,
as indicated by other proxies. The model described
above offers a tool for examining freezing activity and
hence solifluction according to changes in mean tem-
perature or precipitation. taking into account their
annual variability.

3.4 Frost depth under changed climate scenarios
Similarly to the model results described in the preced-
ing section. Figure 7 shows simulated snow and result-
ing frost depths for 13 winter periods. however with
the focus on a climate change scenario moving towards
colder and drier conditions. This is achieved by run-
ning the model with modified input data: daily temper-
atures were reduced by 1.3 °C. daily precipitation rates
by 50%. The changes result in drastically enhanced
ground freezing. often reaching a depth of two metres.
Except in one summer. the durations of the snow-free
periods are long enough for ground ice melt to set
in. preventing the occurrence of permafrost formation.
Changed climate affects freezing in different years to
different degrees. c.g. by 200% in 1986/87 and by only
50% in 1993/94. Mean frost depth simulated under
these specific cold/dry conditions is 155 cm.

Analogous to this simulation. mean 13-year frost
depths were calculated according to a broad range
of climate scenarios. Figure 8 summarises the differ-
ent combinations of temperature and/or precipitation
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Fig. 7: Simulated snow cover and ground freezing under cold/dry climatic conditions, based on modified
1985-1998 daily weather data (air temperature reduction AT = -1.3 °C, precipitation reduction AP = -50%).
Present conditions are also given (cf. Fig. 5).

Sinuilierte Schnee- und Frostdynamik unter kalt-trockenen Klimabedingungen, berechnet auf Basis modifizierter
taglicher Wetterdaten 1985-1998 (Reduktion der Lufttemperaturen AT = -1.3 °C bzw. Niederschlige AP = -50%).
Zum Vergleich sind die Verhilinisse unter aktuellen Bedingungen angegeben (vgl. Fig. 5).

La simulation d’une dynamique nivale et de gélivation dans des conditions climatiques froides et séches, calculées sur la
base de données météorologiques quotidiennes relatives a la période 1985-1998 (réduction des températures de l'air AT =
-1.3°C, respectivement des précipitations AP = -50%). A titre comparatif, nous indiguons les conditions actuelles (cf fig. 3).

Draft by the authors, diagram: L. BAUMANN

changes applied and shows the resulting 13-year mean
frost depths. The heaviest freezing occurred in the
cold/dry scenario presented above (Fig. 7); mean frost
depth under present conditions (Fig. 5) is to be found
in the centre of the figure. Though individual years had
shown different reactions to changed input data, there
is a significant increase of long-term mean frost depth
with decreasing temperature or precipitation. Con-
trary changes in climate variables, though, may bal-
ance each other to leave mean frost depth unchanged.
This relation is approximated by a bivariate linear
regression model, applied to the absolute values of
mean temperature and precipitation, as

(1) F=-100+19T+0.059 P (r’=0.92,p<0.001)

with F being mean annual frost depth (in cm), 7 mean

annual air temperature (in °C), and P mean annual
precipitation (in mm).

Recalling the close relation between frost depth and
solifluction, the above results make observations about
Holocene solifluction and climate variability possible.
Colder periods are not necessarily to be associated
with intensified solifluction, in particular if precipi-
tation increases simultaneously. Under such condi-
tions, though, glacial advance is possible. Or to put it
another way, drier periods may enhance solifluction,
while causing glacial retreat, without any temperature
changes. As was mentioned before, it is not possible
to deduce Holocene temperature changes from field
observations of solifluction features only. However, by
making use of additional information from independ-
ent proxy data, e.g. studies on rock glaciers or timber-
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Fig. 8: Mean simulated frost depths occurring under systematically varied climatic conditions (see text)
Mitlere simulierte Frosttiefen unter systematisch variierten Klimaszenarien (vgl. Text)
Profondeurs moyennes simulées du gel sous des scénarios climatiques variés systématiquement (cf. texte)

line, the precipitation regime during periods of intensi-
fied solifluction phases may be reconstructed.

Maximum depression of Holocene solifluction in the
investigated region of the Hohe Tauern by about
300 m, compared to its present distribution, may be
used as an example. If Holocene mean annual air tem-
peratures never decreased by more than 1 °C, the
temperature belts shifted by 150 m at most. Solifluc-
tion occurred at sites situated another 150 m lower or
1 °C warmer than today (7 = -1.1 °C). Assuming that
the solifluction process was characterised by the same
medium frost depth observed today (F = -74 cm),
graphic illustration (Fig. 8) or use of the regression
model (Eq. 1) reveals a precipitation decrease of
325 mm or 29% in comparison to the present value.
Besides this, there is of course still the possibility of
considering a greater temperature variability during
the Holocene (e.g. a warming of almost 2 °C is doc-
umented for the period since 1864 A.D. for Switzer-
land; BAeriswiL et al. 1997) to explain the strong
depression of the periglacial belt (VEIT 1993). By the
fact that the glacier equilibrium lines show minor var-
iations (+100 m), reduced precipitation is indicated.
Furthermore, it is possible that the calculated 325 mm

precipitation reduction for the Holocene period may
be partially explained by the effects of the vertical
precipitation gradient.

4 Conclusions

Field observations of past and present alpine solifluc-
tion, in combination with intensive monitoring and
the simulation of snow depth and soil heat regimes
at a site affected by solifluction, represents a new and
promising approach towards reconstructing Holocene
climate. Although annual movement rates are highly
variable and strongly controlled by both the weather
conditions during autumn and snow cover variation,
long-term solifluction activity clearly responds to cli-
matic change. Solifluction activity is closely linked
to the seasonal frost depth. The proposed relation
between mean solifluction, temperature and precipita-
tion at a research site in the eastern Alps may be used
to explain variations between fluctuations of solifluc-
tion and snow or timber line, or even allow quanti-
fication of precipitation during Holocene solifluction
phases. However, it is necessary to deduce mean tem-
perature data from other sources.
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Based on this general approach, future work will have
to focus on the calculation of Holocene solifluction
rates and the detection of altitudinal variations. The
monitoring of soil heat regimes and solifluction on
slopes with different exposition, as well as research of
solifluction in various climatic regions is necessary to
expand the applicability of the model.
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Summary: Temporal Variability of Alpine Solifluction:
a modelling approach

Holocene periods of enhanced solifluction offer new
paleoclimatic information. Long-term observations of
present solifluction variability and process studies on
movement mechanisms, as well as model simulations
of the soil heat and water regimes, show the depend-
ence of solifiuction on ground freezing. The annual
variability of both processes is strongly controlled by
weather and resulting snow conditions immediately
before and at the beginning of the winter frost period.
Simulated long-term variations during different paleo-
climatic scenarios are regulated by both mean precipi-
tation and temperature changes. Quantitative recon-
struction of Holocene precipitation during maximum
altitudinal depression of solifluction is shown.

Zusammenfassung: Zeitliche Variabilitiat alpiner
Solifluktion: ein Modellierungsansatz

Die Untersuchung holozéner Solifluktionsphasen bietet
einen neuen Zugang zu paldoklimatischen Informa-
tionen. Langzeitbeobachtungen heutiger Soliflukti-
onsbetrige, ProzeBstudien solifluidaler Bewegungs-
mechanismen und Modellsimulationen des Boden-
wirmehaushalts zeigen die Abhéngigkeit der Solifluk-
tion von Bodenfrost. Ihre jahrliche Variabilitat wird im



Temporal Variability of Alpine Solifluction P. Jaesche, B. Huwe, H. Stingl, H. Veit

169

Wesentlichen durch die Witterungsbedingungen und die
Schneebedeckung unmittelbar vor und zu Beginn der
winterlichen Dauerfrostperiode gesteuert. Simulierte
langerfristige Abweichungen der Bodenfrostmachtig-
keit unter verschiedenen paldoklimatischen Szenarien
werden gleichermaBen von Anderungen im Tempera-
tur- als auch im Niederschlagsregime beeinfluBit. Als
Anwendungsbeispiel der Modellrechnungen wird die
Quantifizierung holozdner Niederschldge bei maxima-
ler Hohendepression der Solifluktion vorgestellt.

Résumé: La variabilité temporelle de la solifluxion
alpine: une approche modélisée

L’étude des phases de solifluxion propres a I’époque
holocéne offre une nouvelle approche a des informa-
tions paléoclimatiques. Des observations a long terme
des processus actuels de solifluxion, des recherches
relatives aux mécanismes de mobilité solifluidale et des
simulations modélisées du comportement de la cha-
leur du sol révelent la dépendance de la solifluxion du
gel du sol. Leur variabilité annuelle s’explique essen-
tiellement par les conditions météorologiques et la
couverture neigeuse immédiatement avant et au début
de la période hivernale de gel continu. Des variations
simulées spécifiques a long terme de la puissance du
gel du sol selon des scénarios paléoclimatiques dif-
férenciés sont influencées autant par les variations du
régime des températures que par celles du régime des
précipitations. Comme application concréte des cal-
culs de modélisation, nous avons choisi I’exemple de

la quantification de précipitations holocéniennes au
moment d’une dépression maximale d’altitude de la
solifluxion.
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