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Geographica Helvetica 1975 — Nr. 1

Guido Dorigo

Trendoberflachen

Die Trendanalyse

Die Trend Surface Analysis versucht, beliebig auf einer
Grundfliche verteilte Daten zu generalisieren oder (auf
Grund ihrer Lage) zu erkldren. Seit den funfziger Jah-
ren kommt sie in geowissenschaftlichen Untersuchun-
gen vorwiegend bei Modellbildungen zur Anwendung.
Besonders bei kartographisch interessierten Geogra-
phen faBt sie immer mehr FuB, da mit wenig Zeit-
aufwand und geringen Kosten Einzelbeobachtungen
zu einem abgerundeten Bild zusammengefligt werden
kénnen. Mit dem Fortschritt der Computertechno-
logie wurde die Bestimmung derartiger Trends auf eine
erweiterte Basis gestellt, wobei je nach Problem aber
auch einfache Trendoberflichen immer noch gewisse
Fragestellungen optimal beantworten konnen.

Die einfachste Methode umfaft die Anpassung einer
linearen (Regressions-) Oberfldche an die beliebig ver-
teilten Daten (Robinson & Bryson, 1957). Die dazu-
gehorige Funktion

z=a+bx+cy

kann bei einer iiberblickbaren Zahl von Kontroll-
punkten mit Hilfe der kleinsten quadratischen Abwei-
chungen auch von Hand bestimmt werden. Es gilt
dabei:

Y [ — (a + bx; + cy) ]* = minimal

i=1

Nach partieller Differentialrechnung konnen die ge-
suchten Konstanten a, b und ¢ aus folgendem Glei-
chungssystem berechnet werden.

a-N+bYx +cyy =3z
a)yx +bYx® +c)xy=yxz
ayy +bYxy+c)y =Yyz

Obwohl viele komplexere Trendoberflichen nach der-
selben Methode bestimmt werden, verwendet man im
allgemeinen schon fiir die Berechnung von quadra-
tischen oder kubischen polynomischen Funktionen
Computeranlagen.

Die «einfachen», linearen oder quadratischen Trend-
oberflichen sind jedoch noch heute von Bedeutung.
Beispielsweise ist es iiblich, mit Hilfe von kleinen
Teil-Trendoberflichen aus unregelméBig verteilten
Daten interpolierte, rasterbezogene Werte zu bestim-
men. Auch bei bestimmten Fragestellungen konnen

einfache Trend-Surfaces die klarste Losung vermitteln;
man denke dabei beispielsweise an die Erdélgeologie:
Durch verschiedene Bohrungen in der Umgebung ei-
nes potentiellen Olgebictes wird die Tiefe der Lager
bestimmt und mittels einer quadratischen Trendober-
fliche angendhert. Diese recht einfache Oberfliche
(als stark generalisierte Lage des olfiihrenden Ge-
steins) vermag die optimale Lage einer Olbohrung na-
tiirlich nicht anzugeben. Die einfache (quadratische
oder lineare) Trendoberfliche ist lediglich ein Zwi-
schenprodukt der Untersuchung, viel aufschlufreicher
istim erwdhnten Beispiel eine Karte der Residualwerte,
das heifit eine Darstellung der Unterschiede zwischen
wirklicher und theoretischer (bzw. generalisierter)
Hohe der erdélfiihrenden Schicht. Zwischen Punkten
mit positiven Abweichungen (Schicht liegt hoher als
Trendoberfliche) kénnen Isolinien interpoliert wer-
den, welche die 6lfilhrenden Antiklinalen darstellen.
Sind auch Karten der Residualwerte bei Trendana-
lysen mit einfachen polynomischen Regressionsfunk-
tionen ein wichtiges Glied der ganzen Untersuchung,
so treten sie bei komplexen Regressionsmodellen
stark in den Hintergrund. Die Trendoberfliche an sich
(nun nicht mehr lediglich eine Ebene) darf als eigent-
liches Ergebnis der Analyse angesehen werden.

Im allgemeinen gelten lineare oder quadratische Mo-
delle als «einfache» Trendoberflichen. Dies sollte je-
doch genereller formuliert werden, z.B.: «einfach»
sind Trend-Surfaces mit wenigen Gliedern in der Re-
gressionsfunktion. - Das ideale Modell wird darge-
stellt durch eine einfache Regressionsgleichung bei
einer groBen Korrelation zwischen dem Modell und
den wahren Werten. Dies 148t sich durch eine schritt-
weise, multiple Regressionsanalyse verwirklichen, in
der aus rund hundert unabhidngigen Variablen die-
jenigen ausgesucht werden, welche Werte der Kontroll-
punkte am besten anndhern. Die einfachste Trend-
oberfliche muf3 so nicht unbedingt ein lineares, poly-
nomisches Modell sein, sondern kann durch eine Re-
gressionsgleichung mit Konstante und einem (beliebi-
gen) Glied (z. B. z = a + bx*y?) bestimmt werden.

Die Regressionsgleichung, welche eine Trendober-
fliche bestimmt, muB jedoch nicht aus Potenzen der
beiden Richtungsachsen aufgebaut sein; die mathe-
matische Gleichung (und damit auch das Trendmo-

Dr. Guido Dorigo, Geographisches Institut der Universitat
Zurich, Blimlisalpstrasse 10, 8006 Zirich
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Fig. 1: (oben)

Modell 1 der Waldgrenze (polynomisch, r = .81)

Fig. 2: (unten)

Modell 2 der Waldgrenze (trigonometrisch, r = .84)

Als Waldgrenze wurde das hdchste Vorkommen geschlos-
senen Waldes auf einer Testflache von jeweils 10 x 10 km
definiert, die Werte der Landeskarte 1:50 000 entnommen.

Beide Modelle zeigen einen sehr ahnlichen Verlauf mit
einer Depression im Gotthardgebiet. Im Prinzip kann keines
der Modelle dem anderen vorgezogen werden.
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Fig. 3: (oben)
Modell 1 der Solifluktionsgrenze (polynomisch, r=.79)

Fig. 4: (unten)
Modell 2 der Solifluktionsgrenze (trigonometrisch, r = .87)

Das erste Modell weist im Sudwallis sehr groBe Werte auf
(fragliche Interpolation zwischen nur 4 Kontrollpunkten!),
welche durch die Angabe «um 2500» ersetzt wurden.
Beim zweiten Modell werden lediglich auBerhalb der
Hauptkette der Alpen (NE-Ecke der Karte) zu tiefe Werte
geschatzt (diese Zone ist auch lediglich durch ein Be-
obachtungsgebiet gesichert). Da das 2. Modell auch noch
einen hoheren Korrelationskoeffizienten aufweist, ist es
dem ersteren vorzuziehen.
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Fig. 5: (oben) Wieder treten beim polynomischen Modell groe Fehl-

Modell 1 der Kernzone von Wanderbldcken interpolationen im Siidwallis auf. Diese Zone wird dagegen
(polynomisch, r =.92) in der trigonometrisch aufgebauten Trendkarte recht gut

dargestelit.
Fig. 6: (unten)
Modell 2 der Kernzone von Wanderblocken
(trigonometrisch, r = .87)
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Fig. 7: (oben)
Modell 1 der Kernzone von Girlandenbdden
(polynomisch, r=.75)

Fig. 8: (unten)
Modell 2 der Kernzone von Girlandenboden
(trigonometrisch, r = .88)
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dell) kann auch andere Funktionen der Lage (x, y)
aufweisen:

- Exponentialfunktionen

- logarithmische Funktionen

- reziproke Funktionen

- Wurzelfunktionen

- Winkelfunktionen (z. B. cos-Funktionen mit ver-
schiedenen Wellenldngen)

Theoretisch konnten alle oben aufgefiihrten Funk-
tionsarten in das Regressionsmodell integriert werden,
doch trenne ich trigonometrische Funktionen von
den {ibrigen, um die Ergebnisse der verschiedenen
Maéglichkeiten zu vergleichen.

Die Trendanalyse kann uns (n-1) Regressionsgleichun-
gen liefern (wobei n = Anzahl der Beobachtungen),
falls die Rundungsfehler im komplizierten Programm-
ablauf nicht zu groB werden; in einem solchen Fall
vermogen die komplexeren Trendoberflichen keine
bessere Anniherung an die Kontrollpunkte mehr zu
bringen. Es stellt sich nun die Frage, welches dieser
vielen Modelle das «beste» ist.

In den dargestellten Beispielen wurde die Trendober-
fliche gewihlt, nach welcher die restlichen Variablen
keine wesentliche Verbesserung der Korrelation mehr
erzielten (wobei «wesentlich» als subjektive Wertung
zu verstehen ist, da auch weitere Variablen noch signi-
fikant sein konnen). Verglichen werden stets Modelle
mit und ohne cos-Funktionen; die Daten sind aus
DORIGO (1972) entnommen. Dort wurde versucht, die
Hohenstufe von zwei Solifluktionserscheinungen (Gir-
landen und Wanderblocke) zu erfassen und auf einen
eventuellen Zusammenhang mit verschiedenen geo-
Okologischen Grenzflichen (wie Schnee- und Wald-
grenze) zu priifen.

Die trigonometrischen Variablen in den folgenden
Modellen setzen sich aus cos-Kurven mit verschie-
denen Wellenldingen zusammen. Dabei ist eine Va-
riable wie folgt aufgebaut:

a* cos(K*2 *(x-X0)/XW) *cos (L*2 *(y-YO/YW)
wobei:

a = Regressionskonstante (=Amplitude der
Welle)
X0 = Wellenursprung x-Achse

YO = Wellenursprung y-Achse
XW = Grundwellenlidnge in x-Richtung
YW = Grundwellenlidnge in y-Richtung
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K = Frequenz (pro Grundwellenlidnge)
x-Richtung

L = Frequenz (pro Grundwellenlidnge)
y-Richtung

Die obige Schreibweise wird im folgenden abgekiirzt
durch:

a * cos (K*V) * cos (L*W)

da auBer a, K, L in der ganzen Analyse sdmtliche
anderen GroBen konstant bleiben.

Beim Vergleich der verschiedenen Trendkarten wird
es vielleicht manchen Leser erstaunen, daB mit den-
selben Daten und dem gleichen Computerprogramm
derart verschiedene Modelle berechnet wurden. Je
nach den Variablen in der Analyse gelangt die «unbe-
stechliche» Rechenmaschine zu anderen Trendober-
flachen, die alle mathematisch «richtig» sind. Das rein
objektive (rechnerische) Vorgehen des Computers ver-
mag in einer weiteren Untersuchung der Probleme
nicht mehr weiterzuhelfen, der Mensch mit seiner
subjektiven Denkweise hat zwischen den verschiede-
nen Moglichkeiten, welche ihm durch den Computer
zur Verfiigung gestellt wurden, zu wihlen.

Vergleiche ich die abgebildeten, polynomischen und
trigonometrischen Modelle, so wiirde ich (rein sub-
jektiv) die letzteren aus folgenden Griinden bevor-
zugen:

- Der Abstraktionsgrad der verschiedenen Modelle
ist stets etwa gleich groB (Korrelationskoeffizienten
zwischen .84 und .88), so daB die Oberflichen besser
verglichen werden kénnen.

- Meines Erachtens sind alle dargestellten geodkolo-
gischen Oberflichen in erster Linie klimatisch be-
dingt, sie sollten deshalb auch einen Zhnlichen Ver-
lauf zeigen. Die trigonometrischen Modelle sind recht
einheitlich, mit einer Depression im Gotthardgebiet
und zwei Maxima im Siidwallis und im Oberengadin.

Gerade der zweite Punkt weist wiederum auf die Sub-
jektivitdt bei Auswahl und Interpretation von ver-
schiedenen Trendkarten hin; ich glaube jedoch nicht,
daB sich jede vorgefafite Meinung so «beweisen» laft.

Vergleich von verschiedenen Trendoberflachen
Die gebrduchlichste Methode, Werte verschiedener

Merkmale miteinander zu vergleichen, ist die Korre-
lationsanalyse mit dem «product-moment» Korre-



lationskoeffizienten als MaB der linearen Abhéngig-
keit. Fiir eine derartige Analyse werden an verschie-
denen Kontrollpunkten die einzelnen Merkmalswerte
verglichen. Es sollen nun fiir einen Untersuchungs-
raum beispielsweise die Merkmale «Ho6he der klima-
tischen Schneegrenze» und «Bevélkerungsdichte»
nebeneinandergestellt werden. Die Hohe der Schnee-
grenze mub lokal durch die Daten von Klimastationen
im Alpenraum ermittelt werden, sie ist nach Escher
(1970) in der Schweiz etwa der Hohe der -5.5° Celsius
Jahresisotherme gleichzusetzen. Es sollte dabei nur
von Gipfelstationen ausgegangen werden, um even-
tuelle Temperaturinversionen in den Alpentdlern ver-
nachldssigen zu konnen. Diese Kontrollpunkte (wie
Jungfraujoch, Sintis, WeiBfluhjoch) besitzen zwar
ebenfalls einen Wert flir das Merkmal «Bevdlkerungs-
dichte» (wobei sich dieser aus Stationspersonal und
Stationsgrundfliche errechnen ldBt), konnen aber nie-
mals die Gesamtverhiltnisse im ganzen Untersu-
chungsgebiet erldutern.

Eine Mdglichkeit, derartige «nicht gepaarte» Daten-
reihen zu vergleichen, ist durch die Trend-Surface
Analysis gegeben. Alle Merkmale (bzw. deren Werte)
kénnen durch Trendoberfichen ausgedriickt werden;
dabei kdnnen spiter sowohl Grundtendenzen als auch
genauere Trends miteinander verglichen werden. Die
Regressionsgleichung der Trend Surface stellt dabei
immer den Merkmalswert «z» an der Lage mit den
Koordinaten «x»/«y» dar, wobei die Merkmale zj durch
Funktionen der Werte xj bzw. yj angenédhert werden.
Beim Vergleich von zwei Trendoberflichen kénnen
unter anderem folgende Werte von Interesse sein;

- die lineare Abhingigkeit zwischen beiden Modellen.
-ein MaB der Abweichung zur Parallelitdt beider
Oberfldchen.

Alle Trend-Surfaces konnen zuerst vertikal verschoben
werden, bis sie denselben Mittelweg (ndmlich Null)
aufweisen.

Mittel Z; = [z, dxdy/F
wobei F = Grundfliche des Untersuchungsgebietes
und Z{* = Z — Zi

Die Korrelation von Trendoberfldchen

Fiir den «product-moment» Korrelationskoeffizienten
(r) von Pearson wird die Kovarianz durch das Pro-

dukt der Standardabweichungen dividiert. Die Grund-
formel fiir die Kovarianz kann folgendermaBen modi-
fiziert werden:

u=1/m '.gl(zj.i = Zj) (2k,i — Zi)

u=1/n Z (250" (2

i=1

und beim Uber-

gang zum Integral p={fz -z dxdy/F

Fiir den Korrelationskoeffizienten als Mal3 der line-
aren Abhingigkeit ergibt sich deshalb:
{2} -z dxdy

Vﬂ(z;*)z dxdy- ] (z)? dxdy

Dabei bedeuten negative Korrelationskoeffizienten ei-
nen widersinnigen, positive einen gleichsinnigen Ver-
lauf der Oberflichen.

r =

Ein Parallelitdtsmaf3 von Trendoberfldchen

Kaum wird je ein Modell (das durch eine Trend Sur-
face dargestellt wird) geometrisch parallel zu einem
anderen sein; es kann daher ein Mal3 der Parallelitit
gesucht werden. Dazu schlage ich eine «Streuung zur
Parallelitdt» vor, welche sich aus der allgemeinen For-
mel der Standardabweichung herleiten 1453t:

s = [/i;l(xi _%@-1)

Beim Vergleich zweier Oberflichen (z*j, z*k) stellt xj
die Vertikaldistanz (z*j, i - z*k, i) zwischen ihnen dar;
der Mittelwert X ist stets gleich Null (vgl. (1), (2) : z* =
0.0).

Die obenstehende Formel geht alsdann tiber in:

s= |/ Lati—at /-1

Oder bei der Bestimmung des quadrierten Volumens
durch Integration:

§ = l/j[(z]' - z;)? dxdy/Fl
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Dieses Integral mul3 nach der Bestimmung des Korre-
lationskoeffizienten nicht mehr neu berechnet werden,
da es aus Teilresultaten (vgl. [6]) zusammengesetzt wer-
den kann:

§l@zF — z)*dxdy = [[(z)* dxdy + [|(@5)* dxdy -
2- [z z¥)dx dy

Weisen die verschiedenen zu vergleichenden Modelle
nicht dieselbe Werteinheit auf, konnen die Oberflichen
standardisiert werden.

Beispiel

Mit Hilfe der beiden oben erlduterten Werte kdnnen
Trendoberflichen auf zwei Arten (welche sich nicht
ausschlieBen, sondern erginzen) verglichen werden:
Durch die Korrelationsanalyse wird zwischen den Al-
ternativen gleich- oder widersinnig entschieden; durch
die Streuung zur Parallelitit ein Mal des unterschied-
lichen Verlaufs berechnet.

Als praktisches Beispiel vergleiche ich im folgenden
die zuvor gezeigten Modelle. Da bei den polynomi-
schen Modellen im Wallis meist extrem wirt interpo-
liert wird, wurden zwei Varianten berechnet: - eine
erste (nur mit trigonometrischen Modellen, Tabelle 1)
iiber den gesamten Alpenraum der Schweiz; - eine
zweite (mit allen Modellen, Tabelle 2) unter Ausschluf3
des Walliser Alpenraumes.

Tabelle 1:
Trigonometrische Modelle (Raum: Schweizer Alpen):

1 Waldgrenze
X =2045 m
s = 129 m

2  Solifluktionsgrenze
¥ =2210m
s= 107Tm

81 m 0. 96 0.91

3 Woanderblocke
X = 2265 m
s= 118 m

73 m

4 Girlanden
X =2386m
s = 13om

81 m 56 m 64 m

Die Numerierung der Kolonnen entspricht der Numerierung
der Zeilen. Uber der Diagonale sind die Korrelationswerte,
darunter die Streuungen zur Parallelitat vermerkt.
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Beide VergleichsmaBe sind in einem Rechteck ange-
geben, die Korrelationen iiber, die Streuungen zur
Parallelitdt unter der Diagonalen. Fiir die einzelnen
geodkologischen Grenzflichen sind jeweils Mittelwert
und Standardabweichung angefiigt.

Die Oberflachen korrelieren alle recht hoch, am dhn-
lichsten verlaufen die Solifluktionsuntergrenze und
die Kernzone von Wanderbldcken.

Oberflachen mit verschiedenen Trendurspriingen

Die zuvor beschriebenen polynomischen und trigono-
metrischen Trendkarten besitzen einen unverdnder-
lichen Ursprung der Funktion; einerseits den Null-
punkt des Koordinatensystems, anderseits den Aus-
gangspunkt der Wellen in x- bzw. y-Richtung. Fiir
viele Fragestellungen ist jedoch ein Funktionsursprung
im Nullpunkt (man denke dabei z. B. an das schwei-
zerische Koordinatensystem) nicht erwiinscht, viel
interessanter ist eine Trendfunktion, die von mehreren
Punkten ausgeht und so nicht nur die absolute Lage
der Kontrollpunkte, sondern die relative Position zu
verschiedenen Trendurspriingen beachtet.

Die Bevélkerungsdichte von 69 Gemeinden der See-
talregion (Teile der Kantone Luzern und Aargau) soll
nun exemplarisch als Modell dargestellt werden. Den
héchsten Wert weist die Kantonshauptstadt Aarau auf,
es kann also angenommen werden, daf3 der Ursprungs-
punkt des wichtigsten Trends auf einer Karte des Mo-
delles in der Nahe dieser Metropole anzutreffen sein
wird. Fiir die Darstellung einer Bevolkerungsvertei-
lung wurde eine Trendfunktion der Art

Z=a+ b *exp (-Distanz)

gewidhlt. Das Ergebnis der Analyse ist in Tabelle 3
zusammengestellt; wobei mit jedem Schritt auf die
horizontale Grundfliche (=Mittelwert) eine weitere
kegelartige Erhohung gesetzt wird, deren Form (bzw.
deren Neigung) in erster Linie von der gewihlten
Trendfunktion abhingig ist.

Es konnten noch weitere unabhingige Trendvariablen
berechnet werden, doch vermdgen diese die erklirte
Varianz nicht mehr um 5% zu verbessern.

Aus einer geographischen Verteilung kénnen also
mit Hilfe des Computers schrittweise Ursprungskoor-
dinaten sowie Funktionskoeffizienten fir rdumliche
Trends berechnet werden. Die abhingigen Variablen
sind alle Funktionen der Distanz zum jeweiligen Trend-



Tabelle 2: Sdmtliche Modelle (Raum: Alpen der Schweiz ohne Wallis):
1 = polynomische 2 = trigonometrische Modelle

1 2 3 4 5 6 7 8

1 Waldgrenze 1
X =2006 m 0. 97 0.57 0. 56 0. 75 0. 72 0.75 0. 64
s = 108 m

2 Waldgrenze 2
X =2015m 28 m 0. 54 0. 66 0.75 0,76 0.75 0, 74
s = 116m

3 Solifluktionsgrenze 1
X =2173 m 88 m 97 m 0. 62 0.79 0.71 0. 81 0.69
s = 67 m

4 Solifluktionsgrenze 2
X=2178 m 91 m 87 m 65 m 0.68 0.93 0. 74 0.87
s = 81 m

5 Wanderblécke 1
X =22lom 74 m 78 m 66 m 76 m 0. 84 0.62 0. GO
s = 105 m

6 Wanderbldcke 2
X =2228 m 75 m T4 m 59 m 3om 56 m 0.78 0,83
s = 85 m

7 Girlanden 1
X =2358 m 70 m 77 m 45 m 57 m 82 m 53 m 0. 86
s = 78 m

8 Girlanden 2
X =2355m 90 m 80 m 79 m 54 m 95 m 59 m 57 m|
s = 109 m

Die Numerierung der Kolonnen entspricht der Numerierung
der Zeilen. Uber der Diagonale sind die Korrelationswerte,
darunter die Streuungen zur Parallelitat vermerkt.

Tabelle 3: Ergebnis der Analyse

Schritt a b Ursprung Korrelations- erkllrte
X0 YO koeffizient Varianz (%)
0 (=Mittel) 5.434 0.0
1 -1.509 + 114.4 exp (- / (248.43 - x)2 + (647.31 - y)° 0.80 63.74
2 | -o0.488 + 46.03 exp (- / (249.76 - x)° + (656.88 - y)° 0.86 73.63
3 -0.445 + 16.00 exp (- v (232.10 - x)% + (656.21 - y)° 0.90 81.66
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Fig. 8: Modell der Bevdlkerungsdichte im Seetal

A = Aarau
L = Lenzburg
R = Reinach

-]
L
[}

Pers./ha liber Mittel

—

------- = Grenze zwischen den
Zentren
wichtigste Gemeinden

>
]

= 5 km

Legende: Zur besseren Veranschaulichung des Modellauf-
baues wurde in Figur 9 die Bevodlkerungsdichte nicht als
Isolinienkarte (nach 3 Berechnungsschritten) dargestellt, son-
dern fir jeden Trendursprung iiber dem Mittelwert (— 5.434)
liegende Isolinien eingezeichnet (man beachte die verschie-
denen Steigungen!).

Die duBersten konzentrischen Kreise fir jedes Trendzentrum
sind gleich dem Mittelwert des Gesamtgebietes, Flachen mit
Werten von mehr als 10 Pers/ha uber dem Mittel (10.00 +
5.434 = 15.434) sind als Bevolkerungszentren gerastert.
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ursprung; es stehen wahlweise zur Verfiigung (An-
passung an das zu untersuchende Thema):

a) 1/Distanz; b) In(Distanz); c) exp(Distanz?); d) Di-
stanz; e) Distanz?; f) In(Distanz?); g) exp(-Distanz).
Eine der wichtigsten Entscheidungen wird stets sein,
das passende Thema auszuwihlen.
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