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Numerische Methoden der Relieferfassung

Peter Meier

Einleitung

Die Entwicklung der Reliefparameter Kotenstreuung

und Relieffaktor war nicht nur für die Morpho-
metrie von bahnbrechender Bedeutung1, sondern
muß auch als einer der ersten Beiträge zur modernen,

mathematisch orientierten regionalen Geographie

angesehen werden. Hier wurde nun das
Landschaftselement Relief eindeutig quantitativ erfaßt.
In den letzten Jahren stehen nun auch die
elektronischen Rechenanlagen dem Geographen als

Hilfsmittel zu Verfügung2, und das Ziel dieses

Beitrages ist die Transformation der in Gassmann und
Gutersohn (1947) eingeführten Reliefintegrale in
numerische Annäherungen, die sich zur
Computerbearbeitung eignen.

1. Das hypsometrische Polynom

Die Geländeoberfläche eines Reliefabschnittes der
Grundfläche F0 sei zunächst als Funktion Z(x, y)
dargestellt; d. h. für jedes Koordinatenpaar (x,, y()
ist die entsprechende Kote gleich Z(x;, y(). Das

Volumen des Geländeabschnittes ist damit3

V 0 Z(x, y) dxdy (1.1)

Z(x, y)dxdy (1.2)

Nun ist aber die Funktion Z(x, y) kaum explizit
darstellbar; praktisch ist man zur Benützung der
hypsometrischen Funktion F(z) gezwungen, die
durch Ausplanimetrieren der Höhenschichten
bestimmt wird.
Somit ist auch

-I" F(z)dz

und

V fz'F(z)dz

(1.3)

(1.4)

wo z' maximale Niveaudifferenz. Nun kann die

hypsometrische Funktion F(z) als Summenhäufigkeitsverteilung

sämtlicher Kotenwerte aufgefaßt
werden; die entsprechende Kotenhäufigkeitsverteilung

ist gleich f(z) dF(z)/dz. Wird nun die
hypsometrische Funktion auf die Grundfläche eins
reduziert, und die maximale Niveaudifferenz z' gleich
eins gesetzt, d. h. u z/z' und F(u) F(z)/F0, so

erfüllt f(u) d F(u)/du die Bedingung einer
Wahrscheinlichkeitsverteilung. Dazu muß

JtX) f(u)du 1 sein.

und die mittlere Kote z„ f(u) ist aber nur im Einheitsintervall definiert; d. h.

r~f(u)du= f°f(u)du + f1f(u)du + | f(u)du= f

Der Vorteil dieser Interpretation liegt darin, daß die Funktion f(u) bestimmbar ist; das p — te Moment
mittlere Kote zm direkt aus dem ersten Moment, die mp ist durch
Kotenstreuung o aus dem zweiten Moment der f i

mn up f(u) du (1.7)

gegeben. Die einfachste funktionale Darstellung der hypsometrischen Kurve ist als Polynom

F(u) a0 + aju + a2u2 + + akuk + + anu» 2 akuk.
k o

(1.8)
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Daraus folgt auch f(u) ai +2 kakuk-i (1.9)
k 2

Aus (1.6) und (1.9) folgt somit

1 n
(ai + 2 kakuki)du= 1 (1.10)

0 I k 2

d.h. 2akuk 1

und somit haben die Polynomkonstanten die Bedingung

n
2 ak=l (1.11)
k o

zu erfüllen. Die mittlere Kote zm ist somit durch das

erste Moment mi, die Kotenstreuung a durch das

zweite zentrale Moment itg und die Schiefe* S durch
das dritte absolute Moment 03 gegeben. Die Herleitung

der Formeln (1.12—1.16) ist in Anhang A
ausführlich dargestellt.

zm zo + z nh

z0 + z' (2
k=lk+1

z' ]/ (m2 — mi2)

ak)

(S.
k + 2

ak — m.2)

n
S =2

1.12)

1.13)

1.14)

1.15)

1.16)
ak — 3mim2 + 2mi3

k=lk+3

2. Die Bestimmung des hypsometrischen Polynoms

Die Bestimmung der Polynomkoeffizienten ak
erfolgt nach dem Kleinst-Quadrat-Prinzip. Gesucht ist
also ein Polynom y„ (u), dessen Verlauf im
Einheitsintervall die hypsometrische Kurve möglichst
genau wiedergibt. Ist diese Kurve durch m Plani-
metermessungen (Uj, y;) bestimmt, so ist «möglichst

genau» durch folgende Bedingung erfüllt

m
S + 2 (yn(ui) — yi)2 Minimum (2.1)

i 1

m n (2.2)
==2 (2 akukj — yj)2 Minimum

i=lk=o
Die Bestimmung der ak aus (2.2) erfolgt auf übliche

Weise. Die Partialableitungen f3S/<3ak werden

C-8--

0-6

S SCHUPFHEIM

H » KASLE

L - LANGNAU I.E.
I ¦ TRUBSCHACHEN
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0-2-•

0-0 0-2 C-4 0-6 OB

U=7

Figur 1. Reduziert hypsometrische Kurven

gleich Null gesetzt und das resultierende System von
(n + 1) Gleichungen in (n + 1) Unbekannten (a0,

ai, an) durch Gauss'sche Elimination gelöst5.
Da jedoch aus (1.11)

r
2 ak= 1

k 0

und yn (0) 0 folgt, reduziert sich das Lösungssystem

eines Polynoms n-ten Grades auf (n — 1)

Unbekannten. Die Lösung dieser Gleichungen wird
in Anhang B näher diskutiert.

3. Anwendung

Die reduziert hypsometrischen Kurven für die
Gemeinden Schüpfheim, Hasle, Trubschachen und
Langnau i. E. sind in Figur 1 aufgezeichnet. Ein
Vorteil dieser Darstellungsart ist die Möglichkeit
direkter Vergleiche der allgemeinen morphologischen

Entwicklung. Somit folgt z. B. aus Figur 1,

wie auch durch Kenntnis der entsprechenden
Landschaften bestätigt ist, daß Langnau und Trubschachen

morphologisch ein relativ «reifes» Stadium
darstell en6, während Schüpfheim sich eher dem «Mo-
nadnock»-Stadium nähert.

Die Polynomkonstanten und Reliefparameter sind
auf Tabelle 1 gegeben7. Sind die Höhenschichten
einmal ausplanimetriert8, so sind auch die Relief-
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parameter innerhalb weniger Sekunden auf dem
Computer erhältlich9.
Es ist zu beachten, daß die Kleinst-Quadrat-Annä-
herung nur dann eine Wahrscheinlichkeitsverteilung
darstellt, wenn <3y/r3x > 0 und y < 1 für alle 0 <
y ^ 1. Polynome, die den Wert eins innerhalb des

Einheitsintervalls überschreiten, sind auf Tabelle 1

mit * bezeichnet. In solchen Fällen haben die höheren

Momente oft sinnlose Werte (Momente sind
auch nur für echte Wahrscheinlichkeitsverteilungen
definiert!), und man ist zur Berechnung des nächst
höheren Polynoms gezwungen.

Aus Figur 2 ist ersichtlich, daß die y4-Polynome die
hypsometrischen Kurven sehr gut approximieren;
Benutzung eines ys-Polynoms ist wohl kaum sinnvoll.

Wo eine elektronische Rechenlage nicht
vorhanden ist, reicht y2 oder y3 für eine Schätzung der
mittleren Höhe, für eine Schätzung der
Kotenstreuung jedoch nicht.
Es ist leicht zu zeigen, daß das dritte absolute
Moment oder auch ein anderes Maß der Schiefe der
Kotenhäufigkeitsverteilung die vorhin erwähnte
unterschiedliche morphologische Entwicklung zum
Ausdruck bringt10. Aus Figur 1 sollte damit die
Größenordnung dieses Schiefemaßes in der
Reihenfolge Schüpfheim> Hasle> Langnau> Trub-
schachen verlaufen; dies ist in der Tat auch durch

10

0-8 \
0-6

Yq

V
0-2

//^L--Y4

0-8oo 0-2 0-4 0-6

j-yz>

Figur 2. Die beobachtete hypsometrische Kurve Y
der Gemeinde Langnau i. E. sowie die berechneten
Polynome y2, y3,y4

die S-Werte der y4-Polynome auf Tabelle 1 bestätigt".

Tabelle 1. Polynomkonstanten und Reliefparameter

Langnau i. E.

y2 l,848x—0,848x2
y3 0,914x + 2,086x2-
y4 0,220x + 6,432x2.

2,000x3
•9,574x3 + 3,922x4

y2 890
Ys(*) 883

y4 890
(**) 890

o

174
113
126
134

S

0,532
—1,613

0,237

Hasle

y2 2,041x— 1,041x2
y3 l,480x + 0,661x2 _ i(i4ixa
y4 0,625x + 5,631x2 — 9,510x3 + 4,254x*

2-m

y2 1113

ys(*) mo
y4 1127

0

316
251
275

S

0,562
im
0,692

Schüpfheim

y2 2,779x—1,779x2
y3 3,553x — 4,244x2 + 1,690x3
y4 3,471x —3,718x2 + 0,731x3

Zm 0 5

y«(*) 959 im im
ys(*) 950 224 1,200
y4 951 230 1,471

0,514x4

Trubschachen

y2 l,667x —0,667x2
y3 0,970x + 1,422x2-
y4 0,73 lx + 2,787x2-

Y2

y4

-1,393x3
-3,648x3 + 1,129x4

Zm 0 S

922 118 0,443
922 142 0,059
920 118 0,156

(*) Siehe Text. Im Moment imaginär (Polynom
keine echte Wahrscheinlichkeitsverteilung).

(**) Präzisionsplanimeterbestimmung nach Meier
(1966).
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Schlußwort

In der klassischen Arbeit «Kotenstreuung und
Relieffaktor» hat Prof. Gutersohn schon vor 20 Jahren

die Neuorientierung der Geographie in Richtung

vermehrter Benützung mathematischer
Methoden vorausgesehen. Daß diese Reliefparameter
in der geographischen Charakterisierung der
Landschaft einen nützlichen Beitrag leisten, ist auch in
seinen späteren Werken klar bewiesen12. Die
Leistungsfähigkeit der modernen Computer ermöglicht
rasche und zuverlässige Berechnung, und diese

quantitativen Reliefparameter sollten nun vermehrt
Anwendung finden.
Der Schreibende ist vor allem Prof. Gutersohn
selbst zu aufrichtigem Dank verpflichtet, nicht nur
als ehemaligen Diplomand, sondern auch für das

stete Interesse für die persönlichen und beruflichen
Anliegen eines jungen Geographen. Gedankt sei

auch Herrn Prof. J. Nebiker, Dozent an der
University of Massachusetts, für die kritische Durchschau

des Manuskriptes und dem Research Computer

Center für die Genehmigung zur Benützung
der Rechenanlage.

Anhang A. Berechnung der Momente

Das p-te Moment mp einer Wahrscheinlichkeitsverteilung f(u) ist gleich

uPf(u)dum„

O /> 1 r> °°

uPf(u)du + I uPf(u)du + I uPf(u)du

fuPf(u)du daf(u) 0 {.^<u<o

somit das erste Moment mi

mi u(ai + 2a2u + 3a3u2 + kakukl + + nanu"-i)du

1

aiu2 + - a2u3 + + akuk+1 + +
k+ 1 n + 1

anun + x

2

kn
2
k=lk+l

ak

auf analoge Weise erhält man für m2

kn

m2 2 ak

k=lk+2
und für das p-te Moment mp

kn

mD 2 aic

k= lk + P

Das dritte Moment eines y4-Po!ynomes ist z. B. gleich

m3
ai 2a2 3a3 4a4

+ h
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Anhang B. Bestimmung der Polynome

Das Polynom 2-ten Grades y2(u) ist y2(u) a0 + aiu +a2u2.
Da y2(0) 0 muß a0 0 sein. Aus (1.11) folgt weiter ai — l-a2.
Damit wird die Kleinst-Quadrat-Bedingung (2.2) gleich

S 2 { (1 — a2)ui + a2u;2 — yj \ 2 minimum
i 1

nach etwelcher Unformung erhält man

<JS m
— 2 (a2(x2i — 2x3i + x*i) + x3j — x2i — x^ — x^y,}
c5a2 i _

und a2
2 x2iyi — 2 XjYi + 2 x2; — 2 x3f

(2 x2; — 2 2x3; + S x*;)

Für ein Polynom n-ten Grades ist das Gleichungs system gleich

Xa P

mit dem Lösungsvektor

a =X-iP

a2

a3

a4 P

2x2 — 2x3 + 2x2y — 2xy
2x2 — 2x4 + 2x3y _ Sxy
2x2 — 2x5 4- 2x4y — 2xy

2x2 — 2xn+1+ 2xny—2xy

und X (2, —3i, 4) (2, —3, —4, 5) (2, —3, —5, 6)
(2, —41, 6) (2, —4, —5, 7).

(2, —5i, 8)

(2, —3, —(n + 1), n + 2)
• (2,—4,—(n+l),n + 3)
(2, —5, —(n + 1), n + 4)

Symmetrisch

wo z. B. (2, —3, —5, 6) 2 x2
i 1

n

2 xs-
i 1

n

2
i

(2, —ni, 2n) (2, —n, —(n + 1), 2n)
(2, —(n + 1)1, 2n)

n
xä 4- 2 xß

1 i= 1

und
n n n

(2, —41, 6) 2 x2 — 2 2 x4 4 2 x«
i 1 i 1 i 1
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Bemerkungen

1 Gassmann und Gutersohn (1947). Kotenstreuung
und Relieffaktor. Geogr. Helv., 2, 122—139.
2 Siehe dazu Steiner (1966).
3 Gleichungen (1.1) — (1.4) sind in Gassmann und
Gutersohn (1947) näher begründet.
4 Siehe Abschnitt 3.
5 Siehe dazu etwa McCracken und Dorn (1964),
Kapitel 8.
6 Strahler (1954) unterscheidet zwischen «jung»,
«reif» und «Monadnock», je nach Geometrie der
reduziert hypsometrischen Kurve.
7 Sämtliche Berechnungen wurden auf der digitalen
Rechenanlage der University of Massachusetts

durchgeführt (Control Data Corporation 3600) mit
Zugang mittels Fernschreiber (sogenanntes remote
access timesharing system).
8 Zu Erleichterung der Arbeit wurden die Höhenkurven

auf Transparentpapier aufgezeichnet, die
Höhenschichten ausgeschnitten, auf einer Mettlerwaage

gewogen und die Bestimmungspunkte der
reduziert hypsometrischen Kurve durch entsprechende
Division berechnet.
9 Die durchschnittliche Berechnungszeit für das y2-
Polynom betrug 0,5 see, für das y3-Polynom 0,6 see

und für y4 0,7 see (einschließlich Berechnung der
Reliefparameter). Zwischen Anfang der Dateneingabe

auf dem Fernschreiber und Ende des

Resultatausschreibens (Polynomkonstanten, Reliefparameter

und Verlauf des Polynoms im Einheitsintervall)

verlaufen etwa 20—40 Sekunden!
10 Die Strahlersche Stufe «jung» entspricht einer
rechtsschiefen, «reif» einer symmetrischen und
«Monadnock» einer linksschiefen Kotenhäufigkeitsverteilung.

Siehe dazu auch Meier (1966).
11 Kopien des Fortran-Programmes für die Berechnung

sind von Peter Meier, Departement of Civil
Engineering, University of Massachusetts, Amherst,
Mass. 01002, USA, erhältlich.
12 Besonders in dem mehrbändigen Werk «Geographie

der Schweiz».
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