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LA CARTE INTERNATIONALE DU MONDE 1:1000000

La carte internationale du monde au 1/M a été proposé par A. PENck 4 ’occasion du congrés inter-
nationale en 1891, 2 Berne. Aptés une période critique, la réalisation pris court en 1911, Les besoins
militaires de la guerre de 1914 4 1918 lui donnérent un grand essort. Aprés celle-ci, ’'importance de cette
carte se développe par les contributions d’environ 35 services cartographiques officielles et auttes
institutions, Durant la deuxiéme guerre mondiale, le développement reprit enormément par les travaux
des grandes puissances belligerantes, c’est-a-dire la Russie, ’Allemagne, I'Italie et les Anglo-Saxons.
L’auteur espére de la Suisse la présentation d’une feuille d’un travail fini, pouvant étre présentée con-
venablement dans cet ceuvre.

LA CARTA INTERNAZIONALE DEL MONDO 1:1000000

La carta internazionale del mondo venne proposta da A. PENCK al congresso geografico internazio-
nale a Berna nel 1891. Superati gli stadi critici iniziali, il lavoro concreto ebbe inizio nel 1911. Impulso
diedero necessita militari della prima guerra mondiale. Nel tempo successivo vi contribuirono 35 istituti
cartografici ed altre istituzioni, Durante la seconda guerra mondiale furono enormi i contributi degli
stati belligeranti (Russia, Germania, Italia e Stati Anglo-Sassoni). L’autore spera in un contributo della
Svizzera di modo che essa possa essere rappresentata onorevolmente con un foglio di qualita in questa
opera di si ampia portata,

KOTENSTREUUNG UND RELIEFFAKTOR

Von Frrirz GassMANN und HEINRICH GUTERSOHN

‘Mit 19 Abbildungen

§1. EINLEITUNG

Das Relief als Landschaftselement zahlenmiBig zu erfassen, wurde schon hiufig
versucht. Nach einer Zeit eingehender Pflege (PENCK?) traten morphometrische Unter-
suchungen wieder stark zuriick. Es fehlte thnen wohl vor allem die praktische An-
- wendung. Solange sie aber nur um ihrer selbst willen betrieben werden, kénnen sie
wenig befriedigen. Im Streben nach immer besserer Erkenntnis der Landschaft, nach
Auswertung statistischer Angaben auch tber Kulturlandschaften, die zu deren Vergleich
und Klassierung leiten, wird indessen die Zahl als knappste Moglichkeit der Charakteri-
sierung immer wieder heranzuziehen sein. Nur mufl Klarheit dariiber herrschen, was
mit dieser Zahl erfaBBt werden soll, unter welchen Einschrinkungen sie zum Vergleich
herangezogen werden darf, was sie anderseits nicht enthalten kann, und daB sie auf
alle Fille das Relief nicht eindeutig bestimmt. Die Kurvenkarte allein vermag die
Oberflichenformen mit geniligender Genauigkeit festzulegen; die gewonnene Zahl da-
gegen erhilt ihren Wert erst beim: Vergleich, wenn méglich in Relation mit weiteren
Gegebenheiten. '

Zu den hiufig verwendeten Begriffen der Morphometrie gehort die Reliefenergie.
Man versteht darunter die relative Hohe eines bestimmten Landschaftsausschnittes.
Die Reliefenergiec vermag gute Anhaltspunkte iiber die Oberflichengestalt jedes Aus-
schnittes der Lithosphire zu geben. Sie ist indessen nicht eindeutig definiert; denn im Be-
streben, eine méglichst wertvolle Zahl zu geben und gleichzeitig subjektives Ermessen
des Bearbeiters auszuschalten, wandelte sich dieser Begriff mehrfach. ‘

Partscu? bezog die Reliefenergie auf willkiirlich gewihlte Landschaftsausschnitte
von je 32 km? und definierte sie als Abstand zwischen dem Niveau der Hohenscheitel
und dem der Talgriinde. KrEBs® versteht darunter den Héhenunterschied zwischen

1 Penck, A.: Morphologie der Erdoberfliche, I, Stuttgart 1894
3 ParTscH, J.: Schlesien, eine Landeskunde fiir das deutsche Volk, II, S. 586, Breslau 1911,
3 KrEess, N.: Eine Karte der Reliefenergie Siiddeutschlands. Petermanns Mitteil., 68, 1922, S. 49—53.
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benachbarten Tilern und Hohen. SCHREPFER! bezeichnete den nach Partsch ermit-
telten Wert als «maximale Reliefenergie»; daneben unterschied er noch eine «minimale»
(kleinste Niveaudifferenz), eine «mittlere» (Mittelwert simtlicher Messungen) und eine
«typische» (als Hiufungswert). Mit der zu wihlenden MaschengréBe setzten sich
GuTersOHN® und SCHLAPFER® auseinander. Letzterer diskutierte auch die Darstellungs-
moglichkeiten der Resultate und wog auBerdem Vor- und Nachteile der verschiedenen
Methoden gegeneinander ab. NEUENSCHWANDER? gab eine knappe kritische Uebersicht
liber die zahlreiche Literatur.

Die ungenaue Definition ist ein groBer Nachteil; bei Verwendung des Begriffes
muB stets Auskunft iiber das Vorgehen bei der Bestimmung gegeben werden. In jedem
Fall ist das Verfahren nicht frei vom subjektiven Ermessen des Untersuchenden. Ein
weiterer wesentlicher Nachteil besteht darin, daB zur Berechnung der Reliefenergie nur
zwei isolierte Gelindepunkte herangezogen werden. Daher sagt diese GréBe tiber das

8 8

Abb. 1

wirkliche Relief sehr wenig aus. Abb. 1 zeigt z. B. verschiedene Gelindeprofile, die
unter Beniitzung der Punkte 4—B gleiche Reliefenergie besitzen. Dieser Nachteil
wurde oft betont. Ungeeignet ist auch die Bezeichnung «Reliefenergie»; denn sie steht
mit der in der Mechanik iiblichen Auffassung von Energie in Widerspruch. Sie ist denn
auch nur von deutschsprachigen Autoren verwendet worden; Amerikaner und Polen
~ sprechen von «relativen Hohen»; die Franzosen verwenden den Ausdruck «aération».

Im folgenden sollen zwei neue, mit dem Relief zusammenhingende MaBgréBen,
Kotenstreuung und Relieffaktor genannt, entwickelt werden. Diese GréBen sind so
definiert, dal deren Berechnung erstens eindeutig ist und sich zweitens auf simtliche
Punkte der Gelindeoberfliche stiitzt.

§2. DIE MITTLERE KOTE

Zur Festlegung der Position der Punkte Peiner Gelindeoberfliche werdeein raumliches
rechtwinkliges Koordinatensystem mit gleichen Einheiten auf den 3 Achsen verwendet.
Die xy-Ebene sei horizontal, die positive Richtung der g-Achse zeige nach oben (Abb. 2).

Die xy-Ebene sei so tief gelegt, daB fiir’
alle Punkte der Gelindeoberfliche g positiv z-Achse
sei. ¢ werde einfach die Kote genannt. In
einem Gelinde ohne Depression kann die
xy-Ebene z. B. ins Meeresniveau gelegt wer-
den. ¢ istdanndie Meereshohe des Punktes P.
z ist durch x und y bestimmt, also eine Funk-
tion g(x, y). Sie ist eindeutig in jedem Ge-
biet, das keine senkrechten oder iiberhin-
genden Felspartien €nthilt. x-ése

y-Achse

Abb. 2

¢ ScHrEPFER, H., und KALLNER, H.: Die maximale Reliefenergic Westdeutschlands. Petermanns
Mitteilungen, 76, 1930, S. 225—227.

5 GUTERSOHN H.: Relief und FluBdichte. Diss. Ziirich 1932.

® SCHLAPFER, ’A.: Die Berechnung der Reliefenergie und ihre Bedeutung als graphische Darstellung
Diss. Ziirich 1938,

? NEUENSCHWANDER, G.: Motphometrische Begriffe. Eine kritische Uebersicht auf Grund der
Literatur. Diss. Ziirich 1944. .
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An Hand einer Karte im MaBstab 1: M werde ein zusammenhingendes Gebiet von
zunichst beliebiger Form abgegrenzt. Hat das Gebiet auf der Karte den Flichen-
inhalt Fg, so ist Fy = M? Fj der Flicheninhalt der Normalprojektion des Gebietes
auf die xy-Ebene. F, werde Grundfliche des Gebietes genanat. Die Parallelen zur
g-Achse durch alle Punkte der Berandung von F bilden eine zylindrische Mantelfliche.
Diese begrenzt mit der Grundfliche einerseits und der Gelidndeoberfliche anderseits
einen Korper. Er soll der zur Grundfliche F gehorende Gelindekorper genanntwerden.

Die Horizontalebene mit positiver Kote g schneidet den Gelindekdrper in einer
Fliche, deren Inhalt F eine Funktion F(g) ist. Sie sei die hypsographische Funktion
des Gelindekorpers genannt. Ist g, die Kote des tiefsten, ¢’ die Kote des héchsten Ge-
. lindepunktes, so ist F(g)=F, fiir g < g, und F(3)=0 firg>g'. Das Volumen I
des Gelaindekorpers ist

z
M V= f F(z) dz.
0
In einem Gebiet ohne tiberhingende Felspartien ist auch
(2) V=f f (%) dxdy.
Fo

Die zur Grundfliche F, gehérende mittlere Kote g,, des Gelindes ist

| 4
3 =—
&) T

Bs ist die Kote, die die Gelindeoberfliche erhielte, wenn der Gelindekdrper ohne
Verinderung seines Volumens und seiner Grundfliche ausgeebnet wiirde.

§3. DIE POTENTIELLE ENERGIE DES RELIEFS

Man denke sich den Gelindekdrper erfiillt mit einem homogenen Material, das das
spezifische Gewicht 1 besitzt. Diese Vereinfachung der Wirklichkeit ist deshalb nahe-
liegend, weil die hier zu erérternden Begriffe der Morphometrie sich nur auf die Form
des Reliefs beziehen, nicht aber auf den wirklichen Inhalt des Gelindekorpers. Es werde
die potenticlle Energie des Gelindekérpers in bezug auf die xy-Ebene betrachtet. Die
potentielle Energie eines kleinen Korpers mit dem spezifischen Gewicht 1, dem Volu-
men » und der Kote g ist ».g. Zur Berechnung der potentiellen Energie des Gelinde-
korpers wird dieser durch Horizontalebenen in Platten zerlegt. Die Platte zwischen den
Ebenen mit den Koten g und g +- 4% besitzt das Volumen F(g) - dg, also die potentielle
Energie ¢ F(g) dz.

Die gesamte potenticlle Energie des Gelindekorpers ist gleich der Summe der
Energien der einzelnen Platten, also gleich

fz F(z) &.
) .

Diese Energie werde verglichen mit der Energie des ausgeebneten Gelindekdrpers. Die
Energie des letztern ist kleiner; denn aus dem ausgeebneten Gelindekérper kann man
den wirklichen herstellen, indem man an gewissen Stellen der Oberfliche Materie
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wegnimmt und auf héherem vacau auftiirmt. Die potentielle Energie des ausgeebneten
Gelindekorpers ist

Im m "
fZFo‘Z’Z: Fof?“EC:Fo%’-
0 0
Der UeberschulB
{l
() | E =fz F(z) d&— F, ?42

0

der Energie des wirklichen Gelindekorpers iiber die Energie des ausgeebneten ist
eine fiir das Relief charakteristische GroBe, die nach ihrer physikalischen Bedeutung
von der Wahl des Bezugsniveaus, d. h. von der Wahl der Lage der xy-Ebene, unabhin-
gig ist, wie man auch Jeicht durch direkte Rechnung bestitigen kann.

§4. DIE SPEZIFISCHE RELIEFENERGIE

Die Energie E des Reliefs hingt auBer vom Charakter des Reliefs offenbar noch
von der GroBe der Grundfliche F, ab. Die Energien fiir zwei verschiedene Grund-
flichen sind daher nicht direkt miteinander vergleichbar. Zum Vergleich muBl man die
Energie auf die Einheitsfliche bezichen, d. h. E durch Fy dividieren.

Die Grolle

zl
E 1 e

®) RoR) O E—F

- sei spezifische Reliefenergie der Fliche F, genannt. Sie hat die Dimension einer
Fliche, wird also z. B. in Quadratmeter ausgedriickt. Die spezifische Reliefenergie ist
ein MaB3 fiir die Abweichung des Reliefs von der Horizontalebene. Durch Wurzel-
ziehen wiirde man ein in » ausgedriicktes Mal3 erhalten, was in gewisser Beziehung
anschaulicher wire. Der nichste Abschnitt wird auf anderem Wege zu einem solchen
MaB fiihren.

§5. DIE KOTENSTREUUNG

Man kann die Abweichung des Reliefs des Gelindekoérpers mit der Grundfliche F
vom ausgeebneten Gelindekorper gleicher Grundfliche und gleichen Volumens auch
mit einer der Statistik entnommenen Methode messen. Betrachtet man nimlich in der
Statistik eine Reihe von GroBen g,, %, - .. %, deren arithmetisches Mittel

1
m=—(u+zt... +2)
ist, so nennt man den quadratischen Mittelwert der Abweichungen der einzelnen GroBen

von ihrem arithmetischen Mittel die Streuung r der GréBen.

r? ist also gleich 1; [(z1—2m)? + - -« + (%— 3w)?] 8 Bei der Anwendung auf den

vorliegenden Fall sind die Summen durch die entsprechenden iiber die Grundfliche zu
erstreckenden Integrale zu ersetzen und # durch den Flicheninhalt Fy der Grundfliche.
Dabei sollen vorliufig Gebiete mit senkrechten und iiberhingenden Felspartien aus-

8 Rierz, H. L.: Handbuch der mathematisch. Statistik. Deutsch v. F. Baur. §.39. Teubner, Leipzig 1930.
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geschlossen werden, d. h. g soll als eindeutige Funktion von x und y vorausgesetzt
werden. (Diese Einschrinkung kann spiter wieder fallengelassen werden.) Nach den
Gleichungen (2) und (3) ist dann das arithmetische Mittel der Geldndekoten g gerade
die mittlere Kote g, und die Streuung » der Koten, die kurz «Kotenstreuung» genannt
werden soll, erhilt man aus der Gleichung

© - ﬂ=Effkmw—mm@a

Um das Integral umzuformen, multipliziert man das Quadrat aus, integriert die einzel-
nen Summanden und nimmt konstante Faktoren vor die Integralzeichen:

a=___ff{ dx d

- Das mittlere Integral ist nach Gleichung (2) gleich dem Volumen 17 des Gelindekorpers,

das letzte Integral gleich £, so daB die beiden Summanden zusammen unter Beriick-

sichtigung von Gleichung (3) — g,* ergeben. Im ersten Integral ist ¢ die Kote des

Gelindepunktes (siehe Abb. 2), der bei der Integration nach x und y das ganze Gebiet
7

gdxdy dx dy.

durchwandert. Setzt man g2 =2 f # du, so wird der erste Summand von 72 ein dreifaches

Integral
%
2 dx dy | udu,
Fy
F, 0

das iiber den ganzen Gelindekorper zu erstrecken ist. Man kann nun die Reihenfolge
der Integrationen vertauschen und erhilt

zf
2
e 4 dxdy.
ﬂfz{ff e
R (V] %

Das Doppelintegral ist unter Festhaltung einer beliebigen Kote g iiber den Horizontal-
schnitt durch den Gelindekorper in der Hohe g zu integrieren, ergibt also gerade F(3),
so daB sich das dreifache Integral auf

zl
2 s
— F(z) d
Fofz (%) 4%
0

- reduziert. Fir die Kotenstreuung erhilt man damit:
. 2 z
(7) ,‘ r :_sz(Z) dZ"‘?ﬂf-
_ . F,

Duzch diese Gleichung kann die Kotenstreuung 7 auch fiir Gebiete mit senkrechten

und lberhingenden Felspartien definiert werden.  ist eine fiir das Relief charak-

teristische GroBe, die die Dimension einer Linge hat, also z. B. in »# gemessen werden
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kann, Aus Gleichung (5) folgt sofort der einfache Zusammenhang mit der spezifischen
Reliefenergie, nimlich 5

8 JF =1

® -2

Das Quadrat der Kotenstreuung ist gleich der doppelten spezifischen
Rehefenergm

Es sei bemerkt, daf3 die Begnffe Energie E des Reliefs und Kotenstreuung analog
wie die Begriffe Trigheitsmoment und Trigheitsradius in der Mechanik gebildet sind.

§ 6. DER RELIEFFAKTOR

. Die Kotenstreuung r eines Reliefs mit gegebener Grundfliche F soll nun mit einer
andern MaBgré8e in Beziehung gesetzt werden, die dem Relief entnommen werden
kann, nimlich mit der maximalen Niveaudifferenz b =g’ — g, (b = maximale Re-
liefenergie nach ScHrEPFERY). Wir fassen zunichst
simtliche méglichen Reliefformen ins Auge, die die
gleiche gegebene maximale Niveaudifferenz 4 besit-
zen. Dabei sollen, weil praktisch ohne Belang, Reliefe
mit iberhingenden Partien von der Betrachtung aus-
geschlossen sein. Gibt es eine Reliefform von gege-
benem 4, fiir die die Kotenstreuung » ein Maximum
~wird, und wie grof8 ist bejahendenfalls dieses Maxi-
mum ? Nach der Bedeutung von r als einem quadra-
tischen Mittelwert ist diese GroBe dann maximal,
wennsimtliche Gelindepunkteden gleichen Abstand
vommittleren Niveau g,, besitzen, d. h. wenniiber der Abb. 3
einen Hilfte der Grundfliche das Gelinde die Kote

e — g, iiber der andern die Kote g, +g besitzt. Die maximale Niveaudifferenz dieses

: h
Gelindes ist in der Tat 4, und die Kotenstreuung hat den maximalen Wert Py Ein solches

Gelinde soll kurz «Zweistufenrelief mit der Sprunghohe A» genannt werden (siche
Abb. 3). Fiir ein beliebiges anderes Relief mit der Grundfliche Fj ist die Kotenstreuung

< E, d. h., um aus der halben maximalen Niveaudifferenz eines Reliefs seine Koten-

streuung zu erhalten, muB3 man jene GroBe mit einem Faktor & multiplizieren, der
zwischen null und eins liegt:

©) r=k2, 0ZkEZ1.

Ist ein beliebiges Relief (Abb. 4a, schematisch) mit der maximalen Niveaudifferenz 4
und der Kotenstreuung r gegeben, so kann man seinen Relieffaktor £ folgendermaBen

Abb. 4
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geometrisch veranschaulichen. Man vergleicht das gegebene Relief mit demjenigen
Zweistufenrelief, das die gleiche spezifische Reliefenergie und damit die gleiche Koten-
streuung r besitzt (Abb. 4b). Der Relieffaktor £ ist dann einfach das Verhiltnis der
maximalen Niveaudifferenz des Zweistufenreliefs (= 2r) zur maximalen Niveau-

differenz des gegebenen Reliefs, also £ = ?r Am Zweistufenrelief ist iibrigens auch die

Reliefenergie E leicht zu veranschaulichen; denn sie ist gleich der Arbeit, die es braucht,
um aus dem ausgeebneten Gelinde das Zweistufenrelief aufzubauen. Es ist zu diesem

Zwecke ein Korper von der Grundfliche ;— F,, der Hohe  und dem spezifischen Ge-
wicht 1 um die Strecke  zu heben (in Abb. 4b durch den Pfeil angedeutet), also
E = %Fa r? in Uebereinstimmung mit Gleichung (8).

§7. BERECHNUNG VON KOTENSTREUUNG UND RELIEFFAKTOR

Zur Berechnung des Relieffaktors & eines gegebenen Gelindes mit der maximalen
Niveaudifferenz 4 werden mit Vorteil folgende GroéBen verwendet:

(10) w =—§- als neue Integrationsvaﬁable, dw =_?I, ,
F ) . ;
11 q(w) = B = reduzierte hypsographische Funktion,
0

(12) %o = 0 (Ausgangsniveau durch den tiefsten Punkt des Gelindes gelegt),

X
(13 o = "%
(13) po ="

Aus (12) folgt ¢' = b und aus den Gleichungen (1) und (3) von § 2
1

(14 w.=fq(w) dw.
: ’ 0

ferner aus den Gleichungen (7) und (9)
(15) k=2)2]—w,z,
wobel '

. i »
(16) ]=qu (w) dw.

¥ )

Die Kotenstreuung 7 ist dann

(17) | r=h)2]—w?

Nach diesen Formeln wird fiir ein gegebenes Gelinde zunichst an Hand einer Karte .
mit Isohypsen die hypsographische Funktion F(g) [siehe §2] bestimmt, d. h., es werden
mit dem Planimeter fiir geeignete Koten g, %,..., fiir welche Isohypsen in der Karte

“enthalten sind, die Flicheninhalte F(%;), F(%,),... ausgemessen. Diese Flicheninhalte
liefern Punkte fiir die graphische Darstellung der Funktion F(g) in einem recht-
winkligen Koordinatensystem. (Die ausgezogene Kurve in Abb. 5.)
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Die -Achse geht von unten nach oben zwi-
schen den Werten O und 4, die F-Achse von links
nach rechts zwischen den Werten 0 und Fj. Der
Uebergang von g zu » nach Gleichung (10) und
von F zu g nach Gleichung (11) bedeutet ein-
fach eine Aenderung der MaBstibe auf den
beiden Koordinatenachsen ohne Aenderun
der Kurve. Dem Intervall (0, 4) der g-Achse
entspricht das Intervall (0,1) der »-Achse, dem
Intervall (0, F,) der F-Achse, das Intervall
(0,1) der g-Achse. Nach Gleichung (14) ist w,
der Inhalt der schraffierten Fliche von ALD. 5,
gemessen im (w, ¢)-System, d. h. mit dem
Rechteck zwischen den Koordinatenachsen
und den punktierten Linien von Abb. 5 als
Einheitsfliche. Ergibt die Umfahrung der schraffierten Fliche, wie sie am Planimeter
abgelesen wird, die MaBzahl ,, die Umfahrung des Rechteckes die MaBzahl 4,, so ist

Wy = ?. Aus der ausgezogenen Kurve (Abb. 5) als der graphischen Darstellung von
0

g (w) gewinnt man die Kurve » .4 (w) [in Abb. 5 gestrichelt] durch Reduktion der
Otrdinaten im Verhiltnis »: 1, also
. B =w.Bc=32% 5
% DA .
Liefert die Umfahrung der Fliche zwischen der gestrichelten Kurve und der w-Achse
mit dem Planimeter die MaBlzahl #,, so ist nach Gleichung (16) / = ?. Auch ohne
' 0

Durcharbeitung der mathematischen Ableitungen ist das Vorgehen fiir die Bestimmung
von Kotenstreuung und Relieffaktor verstindlich: In die aufgezeichnete hypsographische
Kurve sind die punktierte Umrandung und die gestrichelte Kurve in der angegebenen
Weise einzutragen; dann gewinnt man durch planimetrische Ausmessung der Flichen
zwischen Koordinatenachse und punktierter Umrandung g, zwischen Achse und
ausgezogener Umrandung #; und zwischen Achse und gestrichelter Umrandung a,.
Die fiir die Gleichungen (15) und (17) notwendigen Werte J und »,, sind damit bekannt.

§8. ALLGEMEINE REGELN UBER DEN RELIEFFAKTOR

a) Die Energie E eines Reliefs ist nach § 3 von der Wahl des Bezugsniveaus unab-
hingig. Das gleiche gilt demnach von der Kotenstreuung » und dem Relieffaktor £,
die aus E abgeleitet sind. Zwei Reliefe, die sich lediglich in der Hohenlage unterschei-
den, besitzen daher den gleichen Relieffaktor (Abb. 6, schematisch).

ol ondl ol

b) Da in den Integralen (14) und (16) keine benannten GroBen vorkommén, ist
nach (15) der Relieffaktor unabhingig von den linearen Dimensionen des Reliefs.
Zwei Reliefe, die zueinander im strengen geometrischen Sinne dhnlich sind, besitzen
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daher den gleichen Relieffaktor (Abb. 7, schematisch). Der Relieffaktor sagt daher
wohl etwas aus {iber die Form des Reliefs, aber, im Gegensatz zur Kotenstreuung r
[sieche Formel (17)], nichts iiber seine GroBe. .

c) Geht aus einem Relief ein zweites hervor durch Multiplikation aller Koten mit einer
Konstanten (Ueberhohung eines Reliefs), so verandert sich der Relieffaktor nicht (Abb. 8,
schematisch). Es folgt dies aus der Dimensionslosigkeit der Variabeln » nach Formel (10).

L T T T

..............

~d) Nach Gleichung (1) haben Gelindekorper von gleicher Grundfliche F, das
gleiche Volumen, wenn sie die gleiche hypsographische Funktion F(g) besitzen. Dies
- ist das Prinzip von Cavalieri. Aus dem gleichen Grunde besitzen diese Gelindekorper
auch die gleiche Kotenstreuung r und den gleichen Relieffaktor £ (Abb. 9, schematisch).
e) Hat man nach den Anweisungen von § 7 fiir verschiedene, nicht iibereinander-
greifende Grundflichen F®, F@ ..., F® die Relieffaktoren bestimmt, so kann man
fir die aus diesen Grundflichen zusammengesetzte Gesamtgrundfliche F, die hypso-
graphische Funktion F(g) ohne weiteres planimetrisch bestimmen, indem man einfach
die Werte, die die hypsographische Funktion der Teilflichen fiir gleiche Meereshohen
besitzen, addiert. Aus F(g) wird dann nach § 7 der Relieffaktor, der zur Gesamtgrund-
fliche F, gehort, bestimmt.

§ 9. RELIEFFAKTOREN FUR EINFACHE GEOMETRISCHE FORMEN

a) Rotationsflichen im allgemeinen: Im ersten Quadranten eines recht-
winkligen (%, #)-Koordinatensystems sei eine Kurve #(y) gegeben, die die #-Achse
im Punkte #,, die g-Achse im Punkte 4 schneidet (Abb. 10). LiBt man diese Kurve um
die g-Achse rotieren, so beschreibt sie eine Rotationsfliche. Die Kurve selbst heif3t

2 4

Abb. 10 2 ' v Abb. 11

Up Yo

Meridiankurve dieser Fliche. Fiir die Rotationsfliche, aufgefalB3t als Relief iiber dem
Kreise mit dem Radius #,, also der Grundfliche F, = = ucz) ist offenbar

(18) F(z) == [4(3)]?
die hypsographische Funktion, aus der nach § 7 der Relieffaktor zu berechnen ist.

b) Kegel und Pyramiden: Ist die Meridiankurve der hypsographischen Funk-
‘tion eine Gerade (Abb. 11), so ist die Rotationsfliche eine gerade Kreiskegelfiiche.
Fiir diese gilt nach § 7: '
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. s
”(Z) - 0(1 b)’
F(z) =am§( —%) =F°(1—%>,

q(») =(1—w)%
1
: 2 w_l
| w,,,:f(l———w) d =g
0

1

1
jsz(l——w)za’w=1—2~,
o

V2 0,471.
3

Nach § 8 gilt dieser Wert von £ fiir gerade und schiefe Kegelflichen und Pyramiden
mit beliebig geformter Grundfliche und beliebiger Hohe; denn in allen diesen Fillen

2
ist die hypsographische Funktion' F(3) = F, (1 —%) .

v

Up bt

Abb, 12 Abb. 13 Abb. 14

c) Rotationsfliche mit konkaver, parabolischer Meridiankurve: Die
Meridiankurve sei eine Parabel n Grades, deren Scheiteltangente die #-Achse ist
(Abb. 12).

Thre Gleichung ist ¥ = iﬂ (#, — #)". Man erhilt daraus
% .
0
.
z il
=#l|l—(=)=|
* °[ (b) J

1 2
F=ma =nu§[1—(§)7],
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atm) =(1—w3),
2
Wy = >
(1 +1) (1+2)

1
]=2m+4)mn+u’

£ — 2n n+5
—(m+u(n+2)L2n+{

Fiir # = 1 erhilt man den Fall b), fiir » = 2 ist die Meridiankurve eine gewdhnliche
Parabel und £ = 1195—5 = 0,394,

[Firn = 1, P =2, 3,... erhilt man konvexe Parabeln mit dem gleichen Scheitelpunkt,

aber mit der #-Achse als Symmetrie-Achse undr einer Scheiteltangente parallel zur
g-Achse. ] :

d) Rotationsfliche mit konvexer, parabolischer Meridiankurve: Die
Meridiankurve sei eine Parabel #. Grades, deren Scheitelpunkt auf der g-Achse liegt und

deren Scheiteltangente parallel zur #-Achse verliuft (Abb. 13). Ihre Gleichung ist
% =h [1 — (—1-‘-)" ] Man erhilt daraus

#y

n
W, = >
n+2
]= l )
2(n4+1) (n+2)
£ 28

(n+2))n+1
Fiir » = 1 erhilt man den Fall b), fir n =2 ist £ = I—/f = 0,577.

e) Rotationsfliche mit S-férmiger Meridiankurve: Die Meridiankurve
sei zusammengesetzt aus zwei kongruenten Parabelbogen n. Grades, wovon der untere
die gleiche Lage hat wie in c), der obere wie in d). (Abb. 14.) Man erhilt in diesem Falle

1 LI )
u=u0(1—_2u -1 .l/%) fir 0=2g<5,
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_ ot "]/ g b
=20 " u4 1—; fiir E:z:b,
Q(”’)=(1—%”V2_W)2 | fir nggé,
g(w)=+)ad —wp fir L<wsi,
o — n” +3n+4
T A+ ) +2)
J= n 4+n+1 b — n ~|/6n3+27n2+23
A+ @Ra+1) . 20+ D) (m+2) 2141

Fiir n = 1 erhilt man den Fall b), fiir » = 2 ist
= %)/1295 = 0,600.

f) Horizontale Zylinderflichen im allgemeinen (parallele Bergketten
und Tiler): Das Relief sei eine Zylinderfliche mit
horizontalen Mantellinien parallel zur y-Achse. Die =z
Grundfliche F sei ein Rechteck mit der Seite L par- ¢
allel zur x-Achse und T parallel zur y-Achse. Der Ge-
lindekérper ist offenbar bestimmt durch sein Profil
in x-Richtung, d. h. durch seine Schnittfliche mit der .- -,
(x,%)-Ebene (Abb. 15). Der Flicheninhalt der Profil- :
fliche (in Abb. 15 schraffiert) seiQ), die Lingederinner- i  pfeeo.o
halb der Profilfliche verlaufenden Parallelen zurx- K .-°
Achse mit der Kote g sei L (g). Dann ist das Volu- |[REsssssssssssssss

men des Gelindekérpers IV'= 0T und man erhilt nach to
den Gleichungen (1) und (3) fir die mittlere Kote ~ Abb. 15
' Lo
19 . =,
(19) =TI

Fiir die Kotenstreuung erhilt man nach Gleichung (7)
. z'
2 _ 2 *
(20) ri=— | 2L (3)dR— 2
L,
0

Man sieht, daB bei der Berechnung der Kotenstreuung und damit des Relieffaktors die
Tiefe T des Gelindekorpers herausfillt, d. h. diese GréBen sind von 7 unabhingig.
(Bemerkung: Nimmt man z. B. 7 sehr klein, so unterscheidet sich der zylindrische
Gelindekorper nicht mehr merklich vom Gelindekorper, den man erhialt, wenn man aus
einem beliebigen Gelinde durch zwei parallele vertikale Ebenen mit dem kleinen
Abstand T eine schmale Platte herausschneidet. Man ist daher in allen Fillen berechtigt,
von Kotenstreuung und Relieffaktor eines Profiles zu sprechen und zu ihrer Berech-
nung die Formeln (19) und (20) zu beniitzen.) Hat man die Kotenstreuung und den
Relieffaktor fiir eine horizontale Zylinderfliche mit gegebenem Profil O berechnet, so
gelten, wie man sich an Hand der Formeln sofort iiberzeugen kann, die gleichen Werte
auch fir ein Gelinde, das man durch Repetition nach Abb. 16 oder 17 daraus erhilt.
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Abb. 16

" Abb. 17 : "

g) Horizontale Zylinderflichen mit speziellen Profilformen: Es
sollen nun die Werte fiir »,, und & angegeben werden fiir die Profilformen, die definiert
sind durch die Kurven in den Abschnitten b) bis €). Man hat bei der Berechnung nur
die Bezeichnungen #(g) und #, zu ersetzen durch L (3) und L, und die #Achse als

- x-Achse aufzufassen.

Man erhilt:
Bezeichnung des Falles Profilform . k
b' nach Abb. 11 V—; = 0,577
¢ nach Abb. 12 2n
(n+1))2n+1
nach Abb. 12 fiir n = 2 2)/'5 = 0,596
d' nach Abb, 13 27
( +1) )25 +1
nach Abb. 13 fiit » = 2 %Vg = 0,596
2
e - nach Abb. 14
. (n+1)2r+1)
nach Abb. 14 fiirn =2 2 V56 — 0,730

Aus vorstehenden Ergebnissen fiir den Relieffaktor £ folgt nach Gleichung (9) durch

Multiplikation mit g sofort auch die Kotenstreuung 7.

§ 10. ABHANGIGKEIT DER KOTENSTREUUNG
"UND DES RELIEFFAKTORS VON DER GRUNDFLACHE

Wihlt man zur Berechnung der Kotenstreuung und des Relieffaktors in der Um-
gebung eines Gelindepunktes P z. B. Quadrate mit dem Mittelpunkt P und parallelen
Seiten, so ist die Kotenstreuung » abhingig von der Linge a der Quadratseite. Das
Verhalten der Kotenstreuung ist in dieser Beziehung analog dem Verhalten der maxi-
malen Niveaudifferenz innerhalb des Quadrates?, d. h. der Charakter des Reliefs kommt
in der Funktion 7 (4) zum Ausdruck, wihrenddem, einheitlicher Charakter des Reliefs

. - S o 2 .
innerhalb der gewihlten Grundfliche vorausgesetzt, der Relieffaktor £ = — mit der
Verinderurrg von # nur wenig um einen Mittelwert schwanken wird,

® Gurersoun, H.: a.2. O, S. 1422,
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Beispielsweise wird in einer Landschaft mit regelmidBigem Wechsel von parallelen
Bergketten und Tilern von ungefihr gleichen Hohendifferenzen die Kotenstreuung
zunichst mit « von Null an proportional wachsen, um dann von dem kritischen Wert
a = a; an um einen konstanten Wert kleine Schwankungen auszufiihren. , gibt dann die

— l——b—‘-'r'—'b—“‘ —C—

Abb. 18 | a

MinimalgroBe der Quadratseite an, die notwendig ist, um die Landschaft durch ihre
Kotenstreuung zu charakterisieren. Zur Illustration sei der Verlauf der Funktion r(z)
und £(a) angegeben fiir eine Landschaft von parallelen Bergketten, deren Profile
kongruente gleichschenklige Dreiecke sind. Der Gelindepunkt P befinde sich auf einem
Grate, und die Quadratseiten seien parallel zu den Bergketten. Aus Abb. 18 und den
nachstehenden Gleichungen geht die Bedeutung der verwendeten GréBen hervor:

2

-;——ﬂb—}—c——b(n—{—z‘) = -
#=10,152,.: VErs1s

Nach §9, g), Fall #’, haben der Relieffaktor £ und die Kotenstreuung rfiir eine vollstin-
dige Bergkette, d. h. fiir die Linge 2 = 2 & der Quadratseite, folgende speziellen Werte:

k=ky= V3 —ro=¥bo.

Fir Quadrate von beliebiger Seitenlinge # erhilt man folgende Ausdriicke:

o(n) =]/1 iy 13—r4nt2—(6n+1)t+2ﬂ
(t+n)?
k= k, ~ fir » =0,
k=ry @(nt) firn=12...,
r=ry-@(nt) fir n=0,1,2,....

In Abb. 19 sind £ und r als Funktionen von z graphisch dargestellt.

§11. BEISPIELE

Bei der praktischen Bestimmung von Kotenstreuung und Relieffaktor gilt es zu-
nichst, die hypsographische Kurve des zu untersuchenden Landschaftsausschnittes
aufzuzeichnen. Wieviel Héhenschichten hiefiir auszumessen sind, mu83 von Fall zu Fall
abgewogen werden. Empfehlenswert ist es, vorerst durch eine Auswahl von etwa
6 Schichten den allgemeinen Verlauf der Kurve festzustellen und dann im Bereich
stirkerer Kriimmungen fiir Nachbarkoten noch weitere Messungen auszufiihren. In
den folgenden Beispielen haben wir bis zu 20 Schichten planimetriert. Diese Auswahl
bleibt natiirlich stets dem subjektiven Ermessen des Bearbeiters anheimgestellt. Die
Genauigkeit der Kurve wird sich bei gréBerer Punktzahl bald nicht mehr steigern
lassen; Aequidistanz und Genauigkeit der Karte stellen Grenzen auf, die nicht mehr
iiberschritten werden kénnen.

135



Masstab for k Mosstab fir r Alle Beispiele sind in der Ta-
belle zusammengestellt. Die Ge-
P bietsumgrenzung geschah zweck-
] S S i SR 7 mifig mit Hilfe des Koordinaten-

: netzes der offiziellen Karten der
Schweiz. Neben der maximalen
Niveaudifferenz der untersuchten
Landschaftsind als Ergebnis Koten-
streuung u. Relieffaktoraufgefiihrt.

a) Kotenstreuung und Ni-
7 veaudifferenz: Die Kotenstreu-
: . ung ist ein Wert, der Auskunft iiber
die vertikale Gliederung des Reliefs
gibt. Weil ihre Berechnung auf der
0 % % Gesamtheit der durch Isohypsen
Abb. 19 festgelegten Gelindepunkte basiert,
erfait sie die orographischen For-
men mit groBtmoglicher Schirfe und ist deshalb der Reliefeniergie (nach PARTSCH) vorzu-
ziehen. Fiir eine erste Anwendung eignet sich das Napfgebiet als reifes, fluviatil zertaltes
Bergland mit seinen einfachen V-Tilern und Kimmen sehr gut. Es ist denn auch bisher
immer wieder fiir morphometrische Untersuchungen bentitzt worden. Vom Napf-
zentrum aus streben die Biche in ihren Griben radiir nach allen Seiten, und ihre Ein-
tiefung ist in den verschiedenen Richtungen verschieden weit fortgeschritten. Um diese
Unterschiede zu erfassen, sei deshalb ein Ausschnitt angenommen, der durch die Koor-
dinaten 204/08—634/41 begrenzt ist, in dessen Zentrum sich der Gipfel befindet. Nun
wird dieses Quadrat von 28 km? in vier gleich groBe Rechtecke von je 7 km? aufgeteilt,
die in der Mitte einen gemeinsamen Eckpunkt (206—637.5) haben. Es sind die Beispiele
Nr. 7—10 der Tabelle. AuBerdem ist diese Reihe noch durch ein Gebiet erginzt, das
weiter nordwestlich, bei Eriswil, gelegen und deshalb bedeutend weniger tief durchtalt
ist (Nr. 11), Alle diese Beispiele sind in der Tabelle entsprechend ihren maximalen
Niveaudifferenzen geordnet. Diese fallen von 571 m (Nr. 7) auf 230 m (Nt. 11), und in
gleichem Sinne sinkt die Kotenstreuung von 117 auf 47 m.

Topo- ” Maximale Koten- o, ..
Nr. graph[;scher Gebiet Umgtrenzung Fia;l:e Niveau- streu- If:j;]:gi-
Atlas differenz  ung
Blatt b r &
1 200 Napf 206/6,5— 638/8,5 0,25 251 67 0,53
2 200 Napf 206/07 — 638/39 1 - 399 100 0,50
3 200 Napf 206/08 — 638/40 4 509 120 0,47
4 200 Napf 206/09 — 638/41 . 609 122 0,40
5 200 Napf 206/10 — 638/42 16 659 125 0,38
6 - 200 Napf ' 206/11 — 638/43 25 689 121 0,35
7 200 Napf 206/08 — 637,5/41 7 571 117 0,41
8 372 Napf 204/06 — 637,5/41 7 521 104 0,40
9 197 Napf 206/08 — 634/37,5 7 461 97 0,42
10 369 Napf 204/06 — 634/37,5 7 393 83 0,42
11 195 Napf 213/15 — 629/36 14 230 47 041
12 312 Mont Vuilly 200/02 — 572/75 6 224 66 0,59
13 515 Pizzo di Vogorno 115/22 — 709/13 28 2246 492 0,44
14 63  Thurgauisches Hiigelland  269/72 — 738/42 12 65 14 0,43
15 31 Tafeljura ) 254/58 — 634/7,5 14 223 55 0,49
16 121 Faltenjura 218/22 — 576,25/79 11 606 182 0,60
17 535 Dufourspitze 86/92 — 630/34 24 1758 413 0,47
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Steil erhebt sich aus der Magadinoebene und aus dem Verzascatal der Pizzo di
Vogorno. Seine Umgebung zeichnet sich ebenfalls durch V-Tiler und Kammformen
aus; doch sind die maximalen Niveaudifferenzen und dementsprechend auch die Koten-
streuung betrichtlich gréBer, nimlich 2246 bzw. 492 m (Nr. 13).

Diese und auch alle anderen Beispiele unserer Tabelle zeigen, daB sich erwartungs-
gemil den relativen Hohen der Landschaftsausschnitte entsprechend auch die Hohen-
streuung dndert. Diese Aenderung ist indessen nicht proportional, sondern stark von
den Oberflichenformen abhingig.

b) Kotenstreuung auf wachsender Basis: Nach § 10 und Abb. 19 wichst
mit gréBer werdendem Landschaftsausschnitt entsprechend den maximalen Niveau-
differenzen auch die Kotenstreuung zunichst rasch an, um dann von einem kritischen
Wert an nur noch kleine Schwankungen auszufiihren, unter der Bedingung allerdings,
daB die Ausschnitte einer Landschaft mit durchwegs gleichen Formen angehoren.

Zur Ueberpriifung dieses Verlaufes sei nochmals das Gebiet des Napfs gewibhlt,
wobei nun die Grundfliche F, von 0,25 km? bis 25 km? wichst (Beispiel 1—6). Die
verwendeten Ausschnitte sind quadratisch; simtliche Quadrate haben ihre Stidwest-
ecke im Napfgipfel, Koordinaten 206—638. Erwartungsgemil wird die Kotenstreuung
mit zunehmender Grundfliche groBer, bis ungefihr die Quadratseite von 2 km (Nr. 3)
erreicht ist. Nachher schwankt sie zwischen 120 und 125 m. Die maximalen relativen
Héhen nehmen noch etwas zu, die Hohenstreuung dagegen bleibt, von den nach Abb. 19
erwarteten Schwankungen abgesehen, konstant.

Isoliert erhebt sich aus den Niederungen von Murten- und Neuenburgersee der
Mont Vuilly, ein flach gerundeter Hohenzug mit ziemlich steilen Flanken (Nr. 12).
Seine Kotenstreuung betrigt 66,2 m. Wird indessen der Nordrand des gewihlten Aus-
schnittes um 1 km weiter nordwirts ins GroBe Moos, d. h. auf Koordinate 203 ver-
schoben, so bleibt auf dieser groBeren Basis die relative Hohe wohl gleich, die Streuung
~ aber sinkt leicht (66,1). Bei sukzessivem Weiterschieben der nérdlichen Begrenzungs-
linie auf die Koordinaten 204 und 205 wird = 63 und 57 m. Und denkt man sich schlie3-
lich die Ebene groBer als in Wirklichkeit, die Nordgrenze so weit verschoben, daB3 das
Areal 100 km? umfaBlt, so wird » = 25 m.

Auch diese Aenderung stand zu erwarten. Es wird damit am praktischen Beispiel
erwiesen, daB es sinnlos ist, die Kotenstreuung fiir einen auf einer weiten Ebene sich
erhebenden isolierten Berg zu berechnen; mit wachsender Basis muB » kleiner werden. -
Auch die Berechnung der Kotenstreuung hat, wie die der Reliefenergie, nur dann einen
Sinn, wenn sie fiir einen Landschaftsausschnitt geschicht, in welchem die oro-
graphischen Formen gleichartig bleiben. Man wihlt also morphologisch homogene
Landschaften aus. Sofern verschiedenartige Landschaften zusammenstoBen, ist die
Kotenstreuung fiir jede gesondert zu bestimmen.

c) Relieffaktor: Der Relieffaktor bietet die Moglichkeit, die Verschiedenheiten
morphologischer Formen zahlenmiBig zu erfassen (§ 8b).

In den Beispielen Nr. 4, 5 und 7—11 betrigt der Relieffaktor 0,38—0,42. Dieses
Resultat vergleichen wir mit dem des Rotationskérpers mit parabolisch-konkaven
‘Seiten (Beispiel c), dessen Relieffaktor £ = 0,394 ist. Radiire Anordnung und insbe-
sondere die fiederartige Aufteilung der Napfgriben bringen es mit sich, daf} die Kimme
stets wieder seitlich angeschnitten und ausgeriumt werden, so daB sich dieser Korper
gut zum Vergleich eignet; werden nimlich alle seine Koten im selben Verhiltnis ver-
- kleinert, wobei £ nach § 8c gleichbleibt, so nihert er sich wohl der im Napf vorherr-
schenden Reliefform. Auch das Resultat des Beispiels Nr. 6, bei welchem & = 0,35 ist,
kann mit der zunehmenden allseitigen Zerschneidung der urspriinglichen Kimme ver-
standen werden; denn je stirker die Hangzergliederung, desto kleiner die Kotenstreuung
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~und damit auch der zu ihr proportionale Relieffaktor. DaB andere Formen auch andere
Ergebnisse zeitigen, soll an einigen weiteren Beispielen dargelegt werden.,

Schon bei Nr. 1 ist der Relieffaktor wesentlich héher. Es handelt sich dort um einen
innersten Ausschnitt des Napfs, wo die Hinge besonders steil sind. Er entspricht etwa
der Bergkette mit Dreieckprofil und & = 0,577 (4’). Die kleine Gipfelpultfliche und
die Aufgliederung der Hinge durch die Quellbiche der Enziwigger machen die Dif-
ferenz zwischen jenem Wert des geometrischen Korpers und dem Ergebnis 0,53 gut
verstindlich. Die folgenden Nr. 2 und 3 nehmen in bezug auf ihre Formen eine Mittel-
stellung zwischen den Nr. 1 und 7—11 ein; ihr Relieffaktor belduft sich auf 0,50 und
0,47. SchlieBlich diirfte der steile Pizzo di Vogorno (Nr. 13), bei welchem £ = 0,44
betrigt, am ehesten der Pyramide (%) entsprechen. Auch in diesem Falle ist das Minus
von 3 9, gegeniiber dem geometrischen Korper auf die Hangzergliederung zuriickzu-
fithren.

Um weitere Vergleichsmoglichkeiten zu erhalten, wurden Kotenstrewung und
Relieffaktor noch bestimmt fiir Ausschnitte aus dem thurgauischen Higelland (Amris-
wil, Nr. 14), aus dem Tafeljura (Gelterkinden, Nr. 15), aus dem Faltenjura (Mont Sujet,
Nr. 16) und aus dem Hochgebirge (Dufourspitze, Nr. 17).

Im Ausschnitt aus dem Hiigelland (Nr. 14) belduft sich der maximale Héhenunter-
schied auf 65 m, der Relieffaktor auf 0,43. Angesichts der geringen Hohenunterschiede
ist es sehr unsicher, welchem unserer geometrischen Korper diese Landschaft zu ver-
gleichen wire. Da die Kurven 10 m Aequidistanz innehalten, ist mit 7 Schichten das
Bestimmen der hypsographischen Kurve wohl noch zulissig. Fir kleinere Relief-
schwankungen kénnte der Topographische Atlas nicht mehr geniligen; man miiite auf
die Grundbuchpline greifen. Aber auch dort wiirde bei zunehmender Verflachung bald
eine untere Grenze erreicht, unter der dann die hypsographische Kurve mangels einer
geniligenden Zahl von Isohypsen nicht mehr ermittelt werden konnte.

Im Beispiel aus dem Tafeljura (Nr. 15) betrigt der Relieffaktor 0,49, und bei den
gerundeten und mit steilen Flanken versehenen Formen des Mont Vuilly (Nr. 12) und
des Faltenjuras (Nr. 16) steigt £ auf 0,59 und 0,60. DaB tatsiachlich derartige Berge auch
groBere Relieffaktoren aufweisen miissen, zeigt der Vergleich mit den Korpern 4 und 4’
(£ = 0,577 und 0,596). Jurassische Formen, libermiBig generalisiert, wiirden schlieBlich
zum Korper ¢’ (£ = 0,73) iiberleiten.

Dufourspitze und der nordwirts sich anschlieBende WeiBgrat (Nr. 17) erheben sich
" innerhalb der angegebenen Basis {iber dem relativ flachen Fuf3 der Gorner-Firnmulden.
Gestalt und Relieffaktor 0,47 diirften am ehesten einem Dach mit konkaven Flanken
entsprechen (¢’), wobei indessen eine Kurve hoheten Grades vorauszusetzen wire.
Bei # = 6 wird niamlich & = 0,48; doch bleibt dieser Vergleich angesichts der starken
Gliederung des Gebietes unsicher. _

Der Relieffaktor belduft sich in unseren Beispielen auf 0,35 bis 0,6. Er bleibt fiir
morphologisch einheitliche Gebiete gleich, schwankt indessen von Formengruppe zu
Formengruppe. Dies wird noch deutlicher, wenn einige unserer Beispiele untereinander
verglichen werden, die in den maximalen Niveaudifferenzen tibereinstimmen. In Nr. 11
(fluviatil zertaltes Bergland) Nr. 15 (Tafeljura) und Nr. 12 (Tafelberg des Mittellandes)
messen die Héhen 230, 223 und 224 m, sind also praktisch gleich; die Relieffaktoren
dagegen sind 0,41, 0,49 und 0,59. Diese Werte belegen also zweifellos Unterschiede, die
den Formenunterschieden entsprechen, und ihre GréBenordnung liBt sich, wie wir
sahen, auch im Vergleich zu einfachen geometrischen Kdrpern abschitzen. Mit mehr
Beispielen lieBen sich noch weitere derartige Gleichheiten und Unterschiede bestimmen.
Der Relieffaktor reagiert also auf Formenunterschiede, die in Angaben iiber maximale
relative Hohen nicht zum Ausdruck kommen (Abb. 1).

Wohl ist einzurdumen, daB Landschaften mit verschiedenartiger Oberflichengestalt
gleiche Relieffaktoren oder gleiche Kotenstreuung haben kénnen, und man wird deshalb
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dem erhaltenen Zahlenwert immer noch eine knappe morphologische Charakterisierung
beizufiigen haben. Mit ihr zusammen aber sind sie morphometrische Werte, welche die -
Landschaft sehr gut zu charakterisieren helfen.

SCHLUSS

Es lieBen sich nun weitere Vergleiche anstellen mit der «typischen Reliefenergie».
Wir verzichten darauf, da keine neuen Ergebnisse zu erwarten wiren. AuBBerdem konnte
in allen Fillen, in denen Kotenstreuung und Relieffaktor bestimmt wurden, auch die
nach Gleichung (8) zu errechnende «spezifische Reliefenergie» aufgefuhrt werden. Sie steht
indessen, wie gezeigt wurde, in einfacher Beziehung zu jenen (S. 127). Fiir Vergleichs-
zwecke, wie sie die Geographie benétigt, ist offenbar die Verwendung des Relieffaktors
zweckmiBiger.

Kotenstreuung und Relieffaktor haben gegeniiber dhnlichen Zwecken dienenden
morphometrischen Werten die folgenden Vorteile:

a) Interpretation und Bestimmung decken sich mit entsprechenden in Mathematik
und Mechanik verwendeten Begriffen.

b) Die Bestimmung ist vollig frei vom subjektiven Ermessen des Bearbeiters. Fiir
die hypsographische Kurve kann man sich allerdings mit einer Auswahl von Isohypsen
und deshalb mit einer bloBen Anniherung begniigen.

c) Die Reliefformen konnen mit der groBtmoglichen Genauigkeit ausgewertet
werden, indem simtliche durch Hohenkurven festgelegten Gelindepunkte Berticksich-
tigung finden. ‘ :

d) Ueberlegungen iiber die zweckmiBige Maschenweite fallen dahin ; Kotenstreuung
und Relieffaktor behalten Sinn und Wert fiir jeden Landschaftsausschnitt.

e) Statt einer Vielzahl von Werten, die dann in Form eines Kartogramms oder einer
Karte darzustellen sind, ergibt sich nur je eine Zahl, ein Umstand, der fiir Vergleiche
oft giinstigere Voraussetzungen bietet.

f) Die Kotenstreuung gibt Auskunft {iber die vertikale Gliederung des Reliefs.

g) Der Relieffaktor vermag iberdies Reliefformen weitgehend zu charakterisieren.

«DISPERSION DE LA COTEn» _
ET «COEFFICIENT DE DISPERSION DE LA COTE»

La hauteur relative (Reliefenergie) calculée en se servant de deux points extrémes d™un paysage
quelconque n’est pas satisfaisante pour en déterminer la surface. Mieux qu’avec elle celle-ci peut-étre
déterminée avec la «dispersion de la cote» et le «coefficient de dispersion de la cote» (Kotenstreuung,
Relieffaktor). On les trouve 4 la base de la courbe hypsométrique et en employant les formules (15)
et (17). Tout subjectivisme reste exclu. Les exemples démontrent que la variété des cotes détermine
les différences. en verticale du relief, le «coefficient de dispersion de la cote» surtout les inégalités de
la surface.

«DISPERSIONE DELLE QUOTEn» .
E «COEFFICIENTE DI DISPERSIONE DELLE QUOTE»

Il concetto «energia di rilievo» come fu usato finora non ha significato univoco, si basa su due
punti distinti nel rilievo e non corrisponde al concetto di energia usato nella meccanica. Le forme delle
" superfici vengono meglio caratterizzate dai nuovi concetti: «energia di rilievo», «dispersione delle
quote» e «coefficiente di dispersione delle quote» (Kotenstreuung, Relieffaktor), di cui i primi due
sono reciprocamente legati da una semplice relazione matematica, I valori numerici sono ottenibili
dalle curve ipsografiche con ’aiuto delle formule (15) e (17). Essi hanno inoltre il vantaggio di eliminare
la soggettivita dell’elaboratore e di caratterizzare le forme nel loro complesso. Come appare dagli esempi,
la dispersione delle quote di relazione sulla disposizione verticale del rilievo ed il «coefficiente di dis-
persione delle quote» permette inoltre la caratterizzazione delle forme.
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