Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =

Géomatique Suisse : géoinformation et gestion du territoire = Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband für Geomatik und

Landmanagement

Band: 115 (2017)

Heft: 11

Artikel: Utilizzo delle ortofoto nell'ambito del rinnovo delle SAU

Autor: Jung, Corentin

DOI: https://doi.org/10.5169/seals-736840

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Utilizzo delle ortofoto nell'ambito del rinnovo delle SAU

A causa del loro impatto sulle SAU (superfici agricole utili) e sui pagamenti diretti risultanti per gli agricoltori, i limiti della foresta rivestono più importanza rispetto a quanto si potrebbe supporre. Questi limiti possono evolvere in modo più o meno significativo, a dipendenza della manutenzione effettuata e devono quindi essere aggiornati con una cerca regolarità. Quando si effettua una nuova misurazione, i limiti della foresta sono rilevati, nella maggior parte dei casi, con misurazioni trigonometriche a due metri dal tronco. Se invece i limiti devono essere aggiornati per tutto un comune e con una cadenza regolare, questo metodo di misura prenderebbe tantissimo tempo. A questo scopo si sono allora presi in considerazione altri metodi che utilizzano le ortofoto a colori veri o a infrarosso falso colore, i modelli digitali del terreno oppure le nuvole di punti LIDAR. Il mio lavoro di diploma è incentrato sui test di questi dati e sulle possibilità di utilizzarli per sostituire le misure trigonometriche nell'ambito del rinnovamento delle SAU.

C. Jung

La classificazione supervisionata (metodo 1)

Il primo metodo testato per il rilevamento dei limiti delle foreste sta nella classificazione supervisionata partendo da ortofotografie a colori veri (fig. 1a). Questo metodo risiede nell'identificazione di diverse classi di oggetti, grazie a campioni di apprendimento. Il programma è successivamente in grado di estendere la classificazione a tutto il raster, analizzando la struttura dei pixel (fig. 1b). Si è provveduto a realizzare diversi test di classificazione e i risultati migliori sono

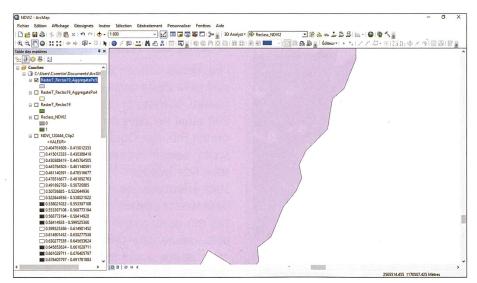


Fig. 2d: Risultato finale ottenuto dal calcolo del NDVI. *Abb. 2d: Schlussresultat aus der Berechnung des NDVI.* Fig. 2d: Résultat final issu du calcul du NDVI.

stati ottenuti con la classificazione seguente : foreste, superfici coltive, superfici falciate, superfici seminate, pascoli, edifici, superfici pavimentate, zone ombreggiate e altre superfici (acqua, neve, ecc.). Per l'ottenimento di buoni risultati, le superfici agricole devono essere classificate con maggiore precisione dato che il loro aspetto differisce notevolmente a dipendenza del loro utilizzo. Si è anche provveduto a creare una classe per le zone ombreggiate poiché in assenza di questa classe, il programma (ArcGIS) classifica l'ombra del bosco come foresta. La classificazione ottenuta è stata dapprima riclassificata per avere solo due classi (foreste e altro) e poi, in un secondo tempo, la si è convertita in poligoni (fig. 1c), la si è selezionata per conservare unicamente i poligoni delle foreste, la si è aggregata e infine semplificata. Il risultato finale così raggiunto (fig. 1d) si presenta sotto forma di poligoni di foreste. Questo metodo ha il vantaggio di creare un file con la firma utilizzabileall'infinito. Per contro, la classificazione delle ombreggiature può richiedere qualche correzione realizzabile manualmente.

Il calcolo del NDVI (metodo 2)

Il secondo metodo testato consiste nell'identificazione della foresta grazie all'indice NDVI. L'indice NDVI («Normalised Difference Vegetation Index» o indice di vegetazione differenziale normalizzato) può essere calcolato con le ortofoto a infrarosso falso colore (fig. 2a). Quest'indice consente di valutare la rilevanza della biomassa vegetale e l'intensità della fotosintesi. In altre parole, permette di verificare il buono o cattivo stato di salute della vegetazione. L'indice sfrutta le specificità della vegetazione, cioè bassi valori nel rosso assorbito dalla fotosintesi e alti valori nell'infrarosso. In teoria, questi valori possono variare tra -1 e +1, ma in pratica si muovono prevalentemente tra -0.5 e +0.8. I valori tipici riflettono una debole attività della vegetazione quando il valore si colloca tra 0 e +0.2,

Systèmes d'information du territoire

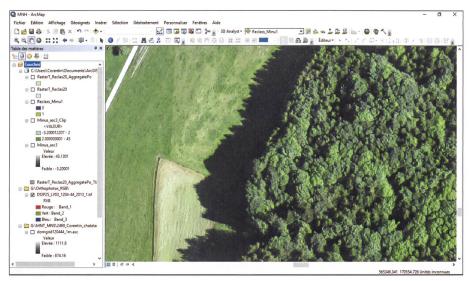


Fig. 3a: Ortofoto RGB corrispondente al MNH (vedi fig. 3b). *Abb. 3a: Orthophoto RGB entsprechend dem MNH (vgl. fig. 3b).* Fig. 3a: Orthophoto RGB correspondent au MNH (voir fig. 3b).

un'attività mediana tra +0.2 e +0.4, e una forte attività quando il valore è superiore a +0.4. Una volta effettuato il calcolo (fig. 2b), si scartano i pixel con un valore inferiore a +0.4. Il resto dei pixel sono classificati con il metodo degli intervalli naturali (Jenks). Lo scopo e anche la difficoltà di questo metodo stavano nel definire i valori NDVI tipici della foresta dato che si è in presenza di un «inquinamento» di pixel provenienti da altri vegetali (erbe, colture, ecc.). I pixel della foresta evidenziati (fig. 2c) sono stati sottopo-

sti alle stesse procedure di classificazione supervisionata per arrivare al risultato finale sotto forma di poligoni (fig. 2d). Anche questo metodo funziona bene, tuttavia richiede più lavoro per definire i valori caratteristici delle foreste. Inoltre, diversi settori delle foreste non hanno per forza gli stessi indici NDVI. Questo presuppone che si rifacciano ogni volta le operazioni di ricerca dei valori caratteristici e che l'operazione sia limitata a un piccolo territorio. Il principale vantaggio di questo metodo consiste nell'utilizzazio-

© NON-Locklap

Fisher Edition Allichage Geoignats Inster

Fisher Edition Allichage Geoignats Inster

Section Allichage Geoignats Inster

All Section Allichage Geoignats Inster

All Section Reciss Minut

Below to All Sectio

Fig. 3b: Risultato del calcolo del MNH. *Abb. 3b: Resultat der Berechnung des MNH.* Fig. 3b: Résultat du calcul du MNH.

ne della banda infrarosso ravvicinato dell'ortofoto che è strettamente legata alla vegetazione.

Il calcolo di un DEM (metodo 3)

L'ultimo metodo testato (fig. 3a) consiste nell'utilizzazione di un modello digitale di altitudine (DEM), ottenuto attraverso la sottrazione di un modello digitale di superficie (DSM) da un modello digitale del terreno (DTM). In un DEM (fig. 3b), gli oggetti rappresentati sono essenzialmente le foreste e gli edifici, qualora ci fosse una differenza effettiva tra DSM e DTM. Le stesse operazioni (conversione in poligoni, aggregazione, semplificazione, ecc.) sono state effettuate per ottenere i poligoni delle foreste (fig. 3c). Questo è il più semplice dei tre metodi testati. Tuttavia - come detto in precedenza - può rivelarsi necessario apportare manualmente determinate correzioni poiché il DEM mette in evidenza sia le foreste che gli edifici. Questo comporta che alcuni edifici di grandi dimensioni (superiori a 800 m², a dipendenza dei parametri utilizzati) siano ancora visibili, malgrado l'aggregazione e devono essere quindi cancellati a mano. Inoltre, dato che il DSM e il DTM sono stati generati da un volo LIDAR, i costi di acquisizione sono più elevati.

Analisi dei risultati

I tre metodi descritti sopra sono stati testati nella stessa aerea per confrontare i risultati. Si tratta di una foresta di circa 200 ettari nel comune di Châtelard nel canton Friburgo. Questo comune è stato scelto perché presenta un'importante superficie boschiva in cui di recente è stata effettuata una misurazione. I limiti della foresta ottenuti sono stati confrontati con quelli contenuti nella base dati della misurazione ufficiale: le superfici ottenute con questi test erano superiori del +5% (10000 m² su un totale di 200 000 m²). Inoltre, lo scarto minimo si muoveva tra 4.5 m e 5.5 m, a dipendenza del metodo testato. Questa differenza

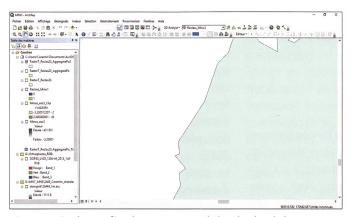
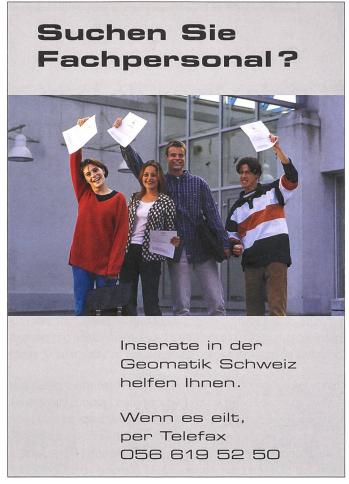


Fig. 3c: Risultato finale ottenuto dal calcolo del MNH. *Abb. 3c: Schlussresultat aus der Berechnung des MNH.* Fig. 3c: Résultat final issu du calcul du MNH.


non è sorprendente perché i limiti delle foreste sono stati definiti dal bordo delle chiome, visibili sulle ortofoto o sul DEM, e non dai due metri di distanza dal tronco ripresi solitamente nella misurazione. Le superfici delle foreste risultano quindi per forza ingrandite.

Conclusione

Si constata che i tre metodi testati hanno più o meno tutti la stessa valenza: ognuno presenta dei vantaggi e degli svantaggi e i risultati sono più o meno simili. Dal punto di vista finanziario, l'aumento rilevato della superficie delle foreste e la relativa perdita di SAU sui pagamenti diretti hanno un impatto irrilevante sui pagamenti diretti, una volta che questi sono ripartiti tra diversi proprietari agricoli adiacenti. Cionondimeno i risultati ottenuti potrebbero essere migliorati per soddisfare meglio i criteri dei rilevamenti della misurazione ufficiale. Questo potrebbe, per esempio, essere effettuato utilizzando un «buffer» negativo che consentirebbe di diminuire la differenza a livello di superficie e distanza. Tuttavia, sembra plausibile e praticabile l'utilizzo delle ortofoto (o di un DEM) nell'ambito del rinnovo delle SAU.

Corentin Jung Route du Plattiez 3 CH-1670 Ursy corentin.jung@hotmail.com

Fonte: Redazione PGS

