Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =

Géomatique Suisse : géoinformation et gestion du territoire = Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband für Geomatik und

Landmanagement

Band: 115 (2017)

Heft: 11

Artikel: Utilisation des orthophotos dans le cadre du renouvellement des SAU

Autor: Jung, Corentin

DOI: https://doi.org/10.5169/seals-736839

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Systèmes d'information du territoire

de. Die ermittelten Waldgrenzen wurden mit denen der Datenbank der amtlichen Vermessung verglichen: Die mittels der beschriebenen Methoden berechneten Flächen waren bei den insgesamt 200 000 m² um ungefähr 10 000 m² grösser (+5%). Ausserdem lag die mittlere Abweichung je nach geprüfter Methode zwischen 4,5 m und 5,5 m. Dieser Unterschied überrascht nicht, denn der Rand des Schirms, der auf den Orthofotos oder im DHM sichtbar ist, bildet die Waldgrenzen und nicht die zwei Meter Entfernung vom Stamm, die normalerweise in der Vermessung üblich sind. Die Waldflächen sind also gezwungenermassen grösser.

Schlussfolgerungen

Die drei geprüften Methoden halten sich mehr oder weniger die Waage: Jede von ihnen hat ihre Vor- und Nachteile und die erzielten Ergebnisse sind mehr oder weniger ähnlich. Die finanziellen Auswirkungen der grösser gewordenen Waldfläche und des damit verbundenen Verlusts von LNW auf die Direktzahlungen sind für die betroffenen Landwirte mit Grundstücken an der Waldgrenze vergleichsweise unbe-

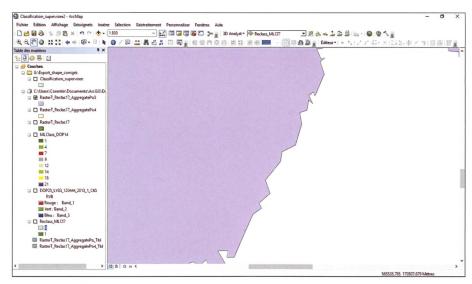


Abb. 1d: Schlussresultat aus dem Klassifikationssupervisor.

Fig. 1d: Résultat final issu de la classification supervisée.

Fig. 1d: Risultato finale ottenuto dalla classificazione supervisionata.

deutend. Die erzielten Ergebnisse könnten jedoch noch verbessert werden, um den Kriterien im Bereich Aufnahmen für die amtliche Vermessung noch besser zu entsprechen. Mit einem negativen «Puffer» könnte z.B. die Flächen- und Abstandsabweichung verringert werden. Die Verwendung von Orthofotos (oder eines DHM) im Rahmen der Erneuerung

der LWN scheint jedoch durchaus möglich und praktikabel zu sein.

Corentin Jung Route du Plattiez 3 CH-1670 Ursy corentin.jung@hotmail.com

Quelle: FGS Redaktion

Utilisation des orthophotos dans le cadre du renouvellement des SAU

A cause de leur influence dans les SAU (surfaces agricoles utiles) et les paiements directs qui en découlent perçus par les agriculteurs, les limites de forêts ont plus d'importance que ce qu'il pourrait y paraître. Ces limites pouvant évoluer de manière plus ou moins significative selon l'entretien qui leur est consacré, elles se doivent donc d'être mises à jour relativement régulièrement. Lors d'une nouvelle mensuration, les limites de forêts sont relevées la plupart du temps par mesures trigonométriques, à deux mètres du tronc. Evidemment, lorsque toutes ces limites doivent être mises à jour à l'échelle d'une commune et à un cycle régulier, cette méthode de mesures prendrait énormément de temps. D'autres méthodes utilisant les orthophotos en couleurs vraies ou en fausses couleurs infrarouge, les modèles numériques de terrain ou encore les nuages de points LIDAR ont alors été envisagées pour l'acquisition des limites de forêts. Mon travail de diplôme s'est donc concentré sur les tests de ces données et les possibilités de les utiliser pour remplacer les mesures trigonométriques dans le cadre du renouvellement des SAU.

C. Jung

La classification supervisée (méthode 1)

La première méthode testée permettant l'acquisition des limites de forêts est la classification supervisée à partir des orthophotos en couleurs vraies (fig. 1a). Cette méthode consiste à identifier différentes classes d'objets grâce à des échantillons d'apprentissage. Le programme est ensuite alors capable d'étendre la classification à l'entier du raster en analysant la structure des pixels (fig. 1b). Plusieurs tests de classification ont été effectués et les meilleurs résultats ont été obtenus avec la classification suivante: forêts, cultures labourées, cultures fauchées, cultures semées, pâturages, bâtiments,

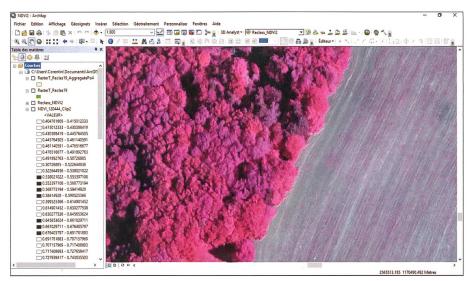


Fig. 2a: Orthophoto FCIR utilisée pour le calcul du NDVI. Abb. 2a: Orthophoto FCIR für die Berechnung des NDVI. Fig. 2a: Ortofoto FCIR utilizzata per il calcolo del NDVI.

surfaces revêtues, zones d'ombres et autres revêtements (eaux, neige, etc...). Pour de bons résultats, les surfaces agricoles ont nécessité une classification plus précise car leur apparence diffère énormément selon la culture qui en est faite. Une classe pour les zones d'ombres a également dû être créée car le programme utilisé (ArcGIS) classe l'ombre portée par la forêt en tant que forêt si celle-ci n'est pas créée. La classification obtenue a ensuite été reclassifiée pour ne conserver que deux classes (forêts et autres), convertie ensuite en polygones (fig. 1c), triée pour conserver uniquement les polygones de forêts et agrégée, puis finalement simplifiée. Le résultat final ainsi obtenu (fig. 1d) se présente sous la forme de polygones de forêts. Cette méthode a l'avantage de créer un fichier de signature pouvant être réutilisé indéfiniment. En revanche, la classification des ombres peut nécessiter quelques corrections à effectuer manuellement.

Le calcul du NDVI (méthode 2)

La deuxième méthode testée consiste à identifier la forêt grâce à l'indice NDVI. L'indice NDVI, «Normalised Difference Vegetation Index» ou indice de végétation différentiel normalisé, peut être

calculé avec les orthophotos en infrarouge fausses couleurs (fig. 2a). Cet indice a pour but d'évaluer l'importance de la biomasse végétale et l'intensité de la photosynthèse, il permet donc de constater la bonne ou mauvaise santé de la végétation. Il utilise la particularité de la végétation, soit un creux dans le rouge absorbé par la photosynthèse et un pic dans l'infrarouge. En théorie, les valeurs peuvent varier entre –1 et +1, mais elles se situent plutôt entre –0.5 et +0.8 en pratique. Parmi les valeurs typiques, on

trouve une faible activité de la végétation lorsque la valeur se situe entre 0 et +0.2, une activité moyenne entre +0.2 et +0.4 et une forte activité lorsqu'elle est supérieure à +0.4. Une fois le calcul effectué (fig. 2b), les pixels dont la valeur était inférieure à +0.4 ont été écartés. Le reste des pixels a été reclassifié selon la méthode des seuils naturels (Jenks). Le but mais également la difficulté de cette méthode était de cibler les valeurs NDVI caractéristiques de la forêt, tout en ayant un minimum de «pollution» de pixels venus d'autres végétaux (herbes, cultures, etc...). Les pixels de forêt mis en évidence (fig. 2c), ces derniers ont ensuite subi les mêmes traitements que lors de la classification supervisée pour arriver au résultat final sous forme de polygones (fig. 2d). Cette méthode fonctionne également, elle demande cependant plus de travail pour cibler les valeurs caractéristiques des forêts. De plus, des secteurs de forêts différents n'ont pas forcément les mêmes indices NDVI. Cela implique que le travail de recherche des valeurs caractéristiques doit être effectué chaque fois et qu'il vaut mieux limiter l'opération sur un petit territoire. Le principal avantage de cette méthode est l'utilisation de la bande proche-infrarouge de l'orthophoto, qui est étroitement liée à la végétation.

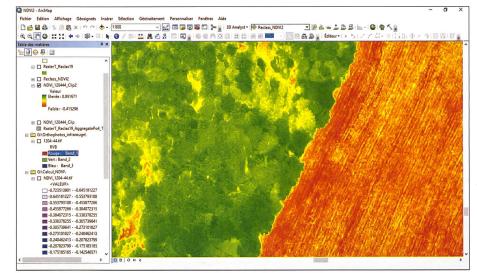


Fig. 2b: Résultat du calcul du NDVI.

Abb. 2b: Resultat der Berechnung des NDVI.

Fig. 2b: Risultato del calcolo del NDVI.

Systèmes d'information du territoire

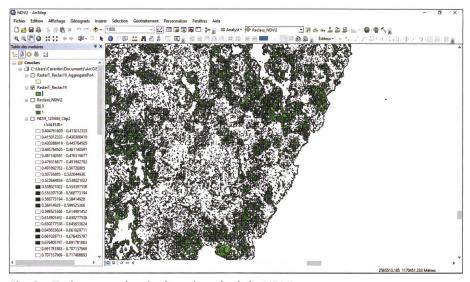


Fig. 2c: Traitement du résultat du calcul du NDVI. *Abb. 2c: Bearbeitung des Resultats des NDVI.*

Fig. 2c: Elaborazione del risultato del calcolo del NDVI.

Le calcul d'un MNH (méthode 3)

La dernière méthode testée (fig. 3a) est l'utilisation d'un modèle numérique de hauteur (MNH), simplement obtenu en faisant la soustraction d'un modèle numérique de surface (MNS) avec un modèle numérique de terrain (MNT). Dans un MNH (fig. 3b), les objets qui y sont représentés sont principalement les forêts et les bâtiments, là où il y a une différence effective entre le MNS et le MNT. Une reclassification a ensuite été effectuée avec un seuil de deux mètres de hauteur minimale, ceci afin de prendre en compte les arbres de petite taille. Les mêmes opérations de conversion en polygones, agrégation, simplification, etc, ont également été effectuées pour obtenir des polygones de forêts (fig. 3c). Cette méthode est la plus simple parmi les trois testées. Cependant, il peut être nécessaire de devoir effectuer quelques corrections manuellement car, comme dit précédemment, le MNH met en évidence les forêts mais également les bâtiments. Cela a pour conséquence que certains bâtiments de grande taille (supérieure à 800 m² selon les paramètres utilisés) peuvent subsister malgré l'agrégation et doivent donc être effacés à la main. De plus, les MNS et MNT étant issus d'un vol LIDAR, les coûts d'acquisition sont tout de même supérieurs.

Analyse des résultats

Les trois méthodes décrites ci-dessus ont été testées sur le même secteur afin de pouvoir comparer les résultats. Il s'agit d'une forêt d'environ 200 hectares située sur la commune du Châtelard dans le canton de Fribourg. Cette commune a été choisie car elle possède une surface boisée importante et une mensuration récente. Les limites de forêts obtenues ont été comparées avec celles contenues dans la base de données de la mensuration officielle et les surfaces obtenues issues de ces tests étaient supérieures d'environ 10 000 m² sur 200 000 m², soit +5%. De plus, l'écart moyen se situait entre 4.5 m et 5.5 m selon la méthode testée. Cette différence est logique car les limites de forêts ont été déterminées par le bord de la canopée visible sur les orthophotos ou le MNH, au lieu des deux mètres du tronc utilisés habituellement en mensuration. Les surfaces de forêts sont donc inévitablement agrandies.

Conclusion

On constate que les trois méthodes testées se valent plus ou moins car chacune possède des avantages et des inconvénients et les résultats sont plus ou moins similaires. D'un point de vue financier, l'augmentation constatée de la surface de forêts et la perte de SAU qu'elle implique, représente un montant relativement négligeable sur les paiements directs, une fois ceux-ci répartis entre les différents propriétaires agricoles adjacents. Il n'empêche que les résultats obtenus pourraient toutefois encore être améliorés pour mieux correspondre aux critères de levés de la mensuration officielle. Par exemple avec l'utilisation d'un «buffer» négatif qui permettrait de diminuer l'écart de surface et de distance. Cependant, l'utilisation des orthophotos (ou d'un MNH) dans le cadre du renouvellement des SAU semblerait tout à fait possible et réalisable.

Corentin Jung Route du Plattiez 3 CH-1670 Ursy corentin.jung@hotmail.com

Source: Rédaction PGS

www.geomatik.ch