Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =

Géomatique Suisse : géoinformation et gestion du territoire = Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband für Geomatik und

Landmanagement

Band: 112 (2014)

Heft: 11

Artikel: Bauherrenvermessung Projekt Linthal 2015

Autor: Fretz, R. / Schönenberger, M. / Federer, U.

DOI: https://doi.org/10.5169/seals-389522

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bauherrenvermessung Projekt Linthal 2015

Die Kraftwerke Linth-Limmern AG baut ein neues Pumpspeicherwerk mit einer Leistung von 1000 MW und leistet somit einen Beitrag zur Versorgungssicherheit in der Schweiz. Das Projekt stellt auch an die Vermessung grosse Anforderungen.

La centrale électrique de Linth-Limmern SA est entrain de construire une nouvelle centrale de pompage-turbinage d'une puissance 1000 MW et contribue ainsi à la sécurité d'approvisionnement de la Suisse. Le projet pose également de grosses exigeances en mensuration.

La centrale idroelettrica Linth-Limmern AG costruisce un nuovo impianto di pompaggio-turbinaggio con una potenza di 1000 MW, garantendo così la sicurezza di approvvigionamento in Svizzera. Il progetto presuppone esigenze elevate anche a livello di misurazione.

R. Fretz, M. Schönenberger, U. Federer

Die Kraftwerke Linth-Limmern (KLL) wurden 1957 durch die Nordostschweizerischen Kraftwerke AG (NOK), heute Axpo AG, und dem Kanton Glarus gegründet. Sie nutzen die Wasserkraft im Quellgebiet der Linth mit einem Einzugsgebiet von 97 km². Das Kernstück der ganzen Anlage bildet der Stausee Limmernboden, auf einer Höhe von 1850 m ü.M., mit 90 Mio. m³ Nutzinhalt. Ein zusätzlicher Speicherraum von 6 Mio. m³ konnte durch das Anzapfen des Muttsees auf einer Höhe von 2440m ü.M. gewonnen werden. Die Bauarbeiten begannen 1957 und schlossen mit der Inbetriebnahme der ganzen Anlage 1964 ab. 2009 wurde die Anlage durch das Pumpspeicherwerk Tierfehd, welches das bestehende Drucksystem Limmern benutzt, erweitert. Die heutige installierte Leistung beträgt 480 MW.

Projekt Linthal 2015

Ein neues, unterirdisch angelegtes Pumpspeicherwerk wird das Wasser aus dem Limmernsee in den 600m höher gelegenen Muttsee zurückpumpen und bei Bedarf wieder für die Stromproduktion nutzen. Das neue Werk soll eine Pumpund Turbinenleistung von je 1000 MW

aufweisen. Damit die erzeugte Energie bzw. die benötigte Energie für den Pumpbetrieb transportiert werden kann, muss eine 17 km lange Hochspannungsleitung zwischen dem Kraftwerk und der bestehenden Leitung gebaut werden, welche vom Bündnerland über den Vorab durch das Glarnerland führt.

Die erste der vier Maschinengruppen sollte Ende 2015 den Betrieb aufnehmen und zur Stromversorgungssicherheit in der Schweiz beitragen. Damit die Investitionskosten von über 2 Mia. Franken amortisiert werden können, wurde mit dem Kanton Glarus eine vorzeitige Neukonzessionierung ausgehandelt.

Die Bauherrenvermessung wurde während der Ausführungsphase in enger Zusammenarbeit der Vermessungsabteilungen der beiden Firmen Axpo AG und Pöyry Schweiz AG ausgeführt.

Grundlagenbeschaffung für die Projektierung und Ausführung

Für die Planung der Stromleitung, der Erschliessung der Baustellen durch Seilbahnen, der Staumauer, der Stollenportale, für geologische Kartierungen, Überflutungsberechnungen und für die Planung der Umweltmassnahmen wurde ein Perimeter von 62 km² mittels Laserscanning und Echolotmessungen aufgenommen.

Anforderungen für die Planungsgrundlagen waren:

- Aufnahme der Situation
- Orthophotos
- Digitales Terrain- und Oberflächenmodell
- Aufnahme der bestehenden Leitungen und Seilbahnen, Höhe der Seile und der Masten
- Seegrundaufnahmen des Mutt- und Limmernsees

Grundlagennetz für das Kraftwerkprojekt

Für die Planung des Grundlagenetzes waren folgende Fragestellungen wichtig: Sind Fixpunkte aus einem alten Koordinatensystem vorhanden und welche Genauigkeiten haben sie? Wie wurde das alte Netz gemessen und berechnet? Gibt es Schnittstellen zu bestehenden Bauwerken? Welche Genauigkeitsanforderung wird an das Grundlagennetz aufgrund der verlangten Baugenauigkeiten gestellt? Wie gross sind die Einflüsse aus Geoidundulation, Lotabweichung, orthometrische Korrekturen etc. auf die Messungen über einen Höhenbereich zwischen 800 und 2500 m ü.M.

Von der amtlichen Vermessung waren Triangulationspunkte vierter Ordnung vorhanden. Bei der bestehenden Staumauer Limmern ist ein geodätisches Überwachungsnetz mit Messpfeilern in einem lokalen Staumauerkoordinatensystem vorhanden.

Da die vorliegenden Vermessungsunterlagen den heutigen Anforderungen nicht genügten, wurde beschlossen, in der Nähe der Angriffspunkte mindestens je drei Fixpunkte ausserhalb des Bauperimeters in geologisch stabilen Zonen mittels Bolzen im Fels zu versichern. Die Bestimmung der Koordinaten erfolgte mittels einer mehrtägigen GPS-Messkampagne im Jahr 2006 und nach dem definitiven Baubeschluss mit einer zweiten Kampagne im Jahr 2009. Es wurden total 14 Fixpunkte durch die swisstopo eingemessen und ausgewertet. Die Koordinatendifferenzen zwischen beiden Messungen waren kleiner als 4 mm.

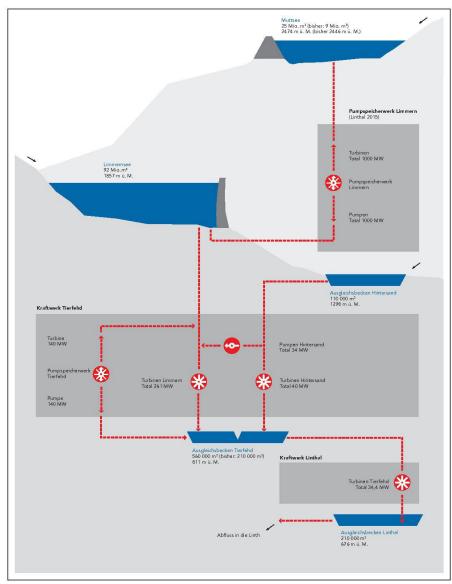


Abb. 1: Schema KLL nach der Erweiterung.

Die einzige Schnittstelle zum bestehenden Kraftwerk war die Meereshöhe der Staumauer Limmern, welche eine Differenz von -14.6 cm zwischen der GPS-und der Ist-Höhe aufwies. Die aus den GPS-Messungen resultierenden Höhen wurden um diesen Betrag korrigiert. Somit konnten von diesem verzugsfreien Fixpunktnetz aus alle weiteren Netzverdichtungen, Absteckungen und Detailaufnahmen erfolgen.

Vortriebsmessungen

Das Stollensystem von Linthal 2015 besteht aus insgesamt 13km Stollen. Da-

bei waren insbesondere die drei Schrägschächte nicht nur für die Mineure, sondern auch für die Vermesser eine spezielle Herausforderung. Dies lag zum einen an der Steilheit der Vortriebe und zum anderen an den geforderten Durchschlagsgenauigkeiten. Die Durchschlagsgenauigkeit wurde vom Planer definiert mit 50mm + 10mm/km.

Anhand der Projektdaten wurden vom Bundesamt für Landestopographie (swisstopo) vorgängig in regelmässigem Abstand orthometrische Korrekturen sowie die Lotabweichungen auf den Stollenachsen berechnet. Eine Nichtberücksichtigung der orthometrischen Korrekturen hätte beim ZS1 eine Höhenabweichung von 91 mm zur Folge gehabt.

Zugangsstollen 1 (ZS1)

Der 4.1km lange Zugangsstollen wurde im steigenden TBM-Vortrieb mit einem Querschnitt von 8m aufgefahren. Es fanden insgesamt sieben Vortriebsmessungen durch die Bauherren-Vermessung und drei durch die Unternehmer-Vermessung statt. Bei je zwei Vortriebsmessungen wurden zusätzlich Kreiselmessungen durchgeführt. Am 20. März 2012 erfolgte nach rund 17.5 Monaten Vortrieb der Durchstich der Tunnelbohrmaschine in die Maschinenkaverne. Die vorgegebenen maximalen Durchschlagsgenauigkeiten konnten mit 17 mm in Querrichtung und 18 mm in der Höhe deutlich unterschritten werden.

Druckstollen

Die zwei je rund 1 km langen Druckstollen im Oberwasserbereich wurden ebenfalls im steigenden TBM Vortrieb mit einem Querschnitt vom 5.2 m aufgefahren. Die Steilheit von 84% hatte zur Folge, dass die Messungen nur bei Stillstand der TBM durchgeführt werden durften. Jegliches Material musste absturzsicher platziert oder festgebunden werden. Das Vermessungspersonal war vollständig gegen Absturz gesichert. Die Netzmessung erfolgte ab fix montierten Wandkonsolen alle 100 m mit Zwischenpunkten im linken und rechten Parament. Zur unabhängigen Überprüfung der Vortriebsrichtung wurden je eine Kreiselmessung pro Druckstollen durchgeführt.

Infolge der Druck- und Luftfeuchtigkeitsunterschiede zwischen der Start- und Zielkaverne bildete sich kurz nach dem Durchstich eine Nebelschicht im Stollen, die erst durch den Einbau einer Wand in der Startröhre eliminiert werden konnte. Die Bestandesaufnahme wurde mit einer Laserscannerfahrt ab Standseilbahn durchgeführt.

Aufgrund der maximalen Stollenlängen bis zum Durchschlagspunkt von mehr als 2 km, der ungünstigen topographischen Verhältnisse im Portalbereich des Limmerentobels und der grossen zu

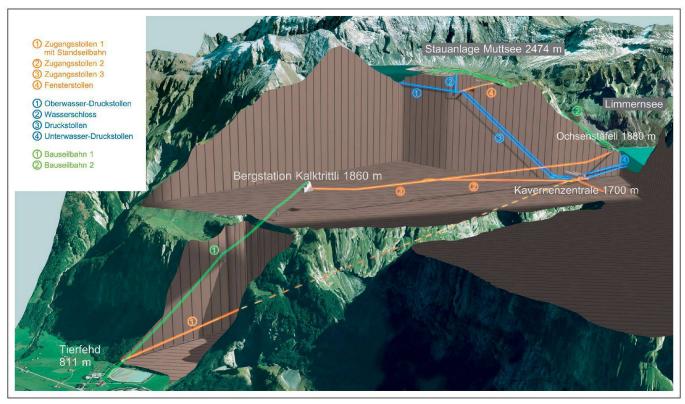


Abb. 2: Projektübersicht.

überwindenden Höhendifferenz waren auch diese beiden Stollen eine spezielle Herausforderung. Die verlangten Durchschlagsgenauigkeiten konnten eingehalten werden und waren wie folgt:

Druckstollen 12: 20 mm in Querrichtung, 3 mm in der Höhe

Druckstollen 34: 20 mm in Querrichtung, 4 mm in der Höhe

Kontrollmessungen

Eine Hauptaufgabe der Bauherrenvermessung bestand in der Kontrolle von wichtigen Bauteilen (z.B. Maschinenteile, Einlagenteile, Druckleitungen, Betonwände usw.) für die Bau- und Montageleitung des Bauherrn. Oft ging es dabei um eine unabhängige Kontrolle der unternehmerseitigen Vermessung oder um die Erstellung eines Messprotokolls für die Übergabe von Bauteilen an ein nachfolgendes Baulos. Zusätzlich wurden zahlreiche Messungen für die Ausmasskontrolle gemacht. Unter anderem wurden Materialdeponien regelmässig mittels Airborne Laserscanning ab Helikop-

ter aufgenommen und deren Volumina aus der Überlagerung mit den Grundlagedaten berechnet. Im Untertagbereich kam terrestrisches Laserscanning für die Profilkontrolle und Volumenberechnung zum Einsatz.

Absteckungsarbeiten

Grundsätzlich erfolgte die Bauabsteckung durch die unternehmerseitige Vermessung. Einige Absteckungen im erhöhten Genauigkeitsbereich wurden aber auch

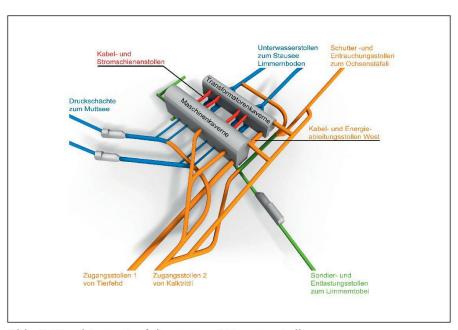


Abb. 3: Maschinen-, Trafokaverne mit Zugangsstollen.

Abb. 4: Netzmessung im Zugangsstollen 1.

Abb. 5: Schalungskontrolle Staumauer Muttsee.

durch die Bauherrenvermessung durchgeführt. Unter anderem wurden sämtliche Absteckarbeiten an der rund 4km langen Standseilbahn im Zugangstollen sowie diverse Absteckungen für den Bauder Pumpturbinen durch Bauherren-Vermessung ausgeführt.

Überwachungsmessungen

Gleich zu Beginn der Ausbrucharbeiten starteten die zeitintensiven Konvergenzmessungen. Für die Messungen war die

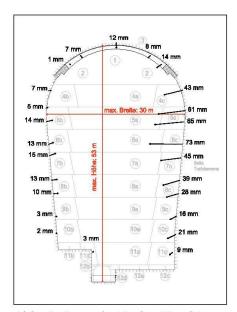


Abb. 6: Querschnitt der Maschinenkaverne mit Verschiebungsvektoren.

Bauherrenvermessung und für die Montage und Reinigung der Messpunkte die Unternehmung zuständig.

Die anspruchsvollsten Konvergenzmessungen fanden in der Maschinenkaverne mit bis zu 200 Messpunkten statt. Insgesamt wurden 120 Folgemessungen während 31 Monaten ausgeführt. Die maximale Verschiebung in der Mitte der 50m hohen Seitenwand der Maschinenkaverne wurde mit 73 mm detektiert.

Für die Darstellung der Verformungsmessung wurde die projektbezogene Tunneldokumentationsplattform «2doc» genutzt. Die Resultate wurden in einer Datenbank abgelegt und waren dort für die entsprechenden Projektbeteiligten jederzeit online sowohl graphisch wie auch tabellarisch abrufbar. In der Datenbank wurden nebst den geodätischen Überwachungsmessungen insbesondere geotechnische und geologische Daten sowie sämtliche Vortriebsdaten verwaltet.

Schlusswort

Aufgrund der schwierigen topographischen und örtlichen Verhältnisse, der aufwendigen Logistik für jeden Messeinsatz sowie der zahlreichen beteiligten Projektmitarbeitenden stellte die Bauherrenvermessung für das Projekt nicht nur im messtechnischen Sinn, sondern auch physisch für jeden einzelnen Ver-

messer eine grosse Herausforderung dar. Die Zusammenarbeit zwischen der Bauund der Bauherrenvermessung wurde durch regelmässige Koordinationssitzungen technisch abgestimmt und funktionierte auch auf der persönlichen Ebene tadellos. Dadurch wurden Doppelspurigkeiten vermieden und es konnte ein hohes Mass an Zuverlässigkeit und Unabhängigkeit für alle messtechnischen Arbeiten sichergestellt werden.

René Fretz Pöyry Schweiz AG Herostrasse 12 CH-8048 Zürich rene.fretz@poyry.com

Matthias Schönenberger Pöyry Schweiz AG Herostrasse 12 CH-8048 Zürich matthias.schoenenberger@poyry.com

Urs Federer Axpo Power AG Parkstrasse 23 CH-5401 Baden urs.federer@axpo.com