Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =
Géomatique Suisse : géoinformation et gestion du territoire =
Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband fur Geomatik und

Landmanagement
Band: 111 (2013)
Heft: 5
Artikel: Ingenieurgeodasie und Mathematik : eine wechselseitige Beziehung
Autor: Fischer, Beat / Sievers, Beat
DOl: https://doi.org/10.5169/seals-323399

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-323399
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Anwendungsorientierte Forschung am IVGI aktuell

Ingenieurgeodasie
und Mathematik —
eine wechselseitige Beziehung

Beat Fischer, Beat Sievers

Das Vermessungswesen und die Geome-
trie entstanden urspriinglich in Mesopo-
tamien, Agypten und Griechenland. Ma-
thematiker, wie z.B. Hilbert, waren sich
dieser Tatsache immer bewusst, Zitat aus
[1]1, 5. 58: «Unter den Erscheinungen oder
Erfahrungstatsachen, die sich bei uns bei
der Betrachtung der Natur bieten, gibt es
...die Gruppe derjenigen Tatsachen,
welche die dussere Gestalt der Dinge be-
stimmen. Mit diesen Tatsachen beschaf-
tigt sich die Geometrie. ... ist sie mit
Rucksicht auf ihren Ursprung eine Natur-
wissenschaft, ... .» Im griechischen Kul-
turkreis entstand mit den Elementen von
Euklid [2] ein axiomatischer Aufbau der
Theorie. Von den Romern ist mit [3] ein
Lehrbuch der Vermessungspraxis Gberlie-
fert. Im Mittelalter gehdrten Arithmetik,
Geometrie (euklidische Geometrie, Geo-
grafie, Agrimensur) und Astronomie zu
den sieben freien Kinsten und galten als
Vorbereitung auf die spateren Studienfa-

cher [4]. Am Institut fir Vermessung und
Geoinformation (IVGI) der FHNW ist der
Dozent fur Mathematik und Statistik (B.
Fischer) Mitglied des Instituts, was Ver-
messung und Mathematik zusammen-
bringt und in einer fruchtbaren Zusam-
menarbeit mit dem Dozenten fir Geoda-
sie (B. Sievers) resultiert. Im Folgenden
stellen wir ein paar Themen aus dem
Wechselfeld Ingenieurgeodasie und Ma-
thematik dar, welche uns in den letzten
15 Jahren begegneten. Didaktische Fra-
gen sind fir uns naturgemass wichtig.

Geodatisches und
mathematisches
Koordinatensystem

C. F Gauss wird von den Mathematikern
als Mathematiker und von den Geodéaten
als Geodat wahrgenommen, so dass sei-
ne fundamentalen Beitrage zu Statistik
und Ausgleichungsrechnung von beiden
Fachkreisen aufgenommen wurden. Un-
terschiedlich sind die Orientierungen der
ebenen geodatischen und mathemati-

)' i :
; O é ; A P "
g
g 2 1
7 A
&8 &5
> < > =
mathematisches
Koordinatengyetem geoddtisches
Keordinatengystem

Abb. 1: Links das mathematische, rechts das geodatische Koordinatensystem
der gedrehten Folie. Der Polarwinkel ¢ geht bei der Drehung um die Gerade

Y = Xin das Azimut « Gber.
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schen Koordinatensysteme. Das geodati-
sche System entsteht durch Spiegelung an
der Achse Y= Xaus dem mathematischen
System und umgekehrt. Da eine ebene
Spiegelung eine raumliche Drehung ist,
liegt das jeweils andere System vor, wenn
man das Blatt von hinten anschaut. Am
besten kann dies mit einer Folie auf dem
Hellraumprojektor demonstriert werden,
vgl. Abb. 1.

Da die Gultigkeit von Formeln nicht da-
von abhangen kann, ob man ein Figu-
renblatt von vorne oder hinten betrach-
tet, gelten alle Formeln der ebenen Geo-
metrie fir beide Koardinatensysteme.

Helmert-Transformation
der Ebene als komplexe
lineare Funktion

1799, d.h. vor Gauss und unabhangigvon
diesem, publizierte Caspar Wessel, in Nor-
wegen geboren und Landesvermesser in
Danemark, die erste geometrische Theo-
rie der komplexen Zahlen. Die in Danisch
geschriebene Arbeit wurde aber nicht be-
achtet und erst 1895 «entdeckt» ([5]).
Wessel stellte diekomplexen Zahlenin der
Zahlenebene dar, definierte als Erster ei-
ne Vektoraddition und stellte fest, dass
die Multiplikation mit einer komplexen
Zahl eine Drehstreckung bedeutet. Die
Multiplikation einer Zahl z = x + i - y mit
der Zahl

d=se" = s-(cosqo+i~sin(p) M

bedeutet eine Drehstreckung von zum 0
mit Streckungsfaktor sund Drehwinkel ¢,
vgl. Abb. 2.

Eine lineare Funktion

M’(Z)Zd-z+f=S€i(’l)-Z+f (2)

von zsetzt sich zusammen aus einer Trans-
lation t und einer Drehstreckung mit Ska-
lierungsfaktor s und Drehwinkel ¢. (2)
stellt eine Helmert-Transformation der
Ebene dar. Damit kann die Bestimmung
der Parameter einer Helmert-Transforma-
tion durch Ausgleichung als Geradenfit
mit komplexen Daten, komplexer Stei-
gung d und komplexem Ordinatenab-
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schnitt taufgefasst werden. Mit den Pass-
punktkoordinaten z. = x¢ + ¥ - 7 (Start-
systern) bzw. we = Ur + vie - [ (Zielsystem)
sowie den Verbesserungen wi = & + 1 -/
lauten die Beobachtungsgleichungen

wrtop=d-zp+t, k=1...,n (3)
und die Ausgleichungsforderung (Mini-

mumsfunktion) mit der konjugiert kom-
plexen Verbesserung w ', =& -n,.;

n n

* .
Z(uk(uk = E (&f +0f )= min _ (4)
k=1 1

k=

Damit weist die Helmert-Transformation
der linearen Regression entsprechende
Eigenschaften auf, insbesandere resultie-
ren bei Bestimmung der Transformati-
onsparameter durch Ausgleichung zwei
verschiedene Transformationen analog zu
den zwei Regressionsgeraden (Abb. 3), je
nach Festlequng der Start- und Zielkoor-
dinatensysteme. Dabei werden die Ver-
besserungen immer am Zielsystem ange-
bracht. Die «Regressionsschere», d.h. die
Offnung zwischen den zwei Regressions-
geraden, ist bei grosser Beobachtungs-
genauigkeit klein, was fir die meisten
Helmert-Transformationen in der Geoda-
sie zutrifft. Die Umkehrabbildungen un-
terscheiden sich dann nur wenig von der
jeweils andern geschatzten Transforma-
tion.

Die Helmert-Transformation wird auch als
«Prokrustes-Transformation» bezeichnet,
vgl. [6], S. 39 ff., wo Ubrigens auch un-
sere Auffassung (3), (4) vertreten wird.

3D-Helmert-Transformation
mittels Quaternionen

Die unbekannten Parameter (Translatio-
nen Xo, Yo, Zo, Rotationen «, f, y um die
Achsen des Startsystems (x, v, z), Skalie-
rung des Startsystems um einen Massstab
m) kénnen in der Ublichen vermittelnden
3D Ausgleichung {Abb. 4) aus Passpunk-
ten nur bestimmt werden, wenn fir sie
Naherungswerte vorliegen. Solche liegen
nicht immer vor. [7] beschreibt fr diesen
Fall einen maglichen Losungsweg.
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Die Drehwinkel und der Massstab kénnen
aber auch elegant und in geschlossener
Form mittels Quaternionen bestimmt
werden. Quaternionen sind doppelt kom-
plexe Zahlen a + bi + ¢ + dk mit nicht-
kommutativer Multiplikation. Die nicht-
kommutative Hintereinanderausfihrung
von Drehungen im Raum kann durch
Multiplikationen von Quaternionen be-
schrieben werden. Die Quaternionen
wurden von W. R. Hamilton 1886 einge-
fihrt und sind in der madernen Bildori-
entierung (Photogrammetrie, Laser Scan-
ning, Computeranimation) beliebt, wo
sich folgende Aufnahmen gegenseitig
stark und unbekannt verdreht sein kén-
nen. Die Quaternionen Algebra und
Geometrie ist beispielsweise in [8] gut be-
schrieben, sie wurde in einer Master Pro-
jektarbeit am IVGI lernfreundlich aufbe-
reitet.

Azimutberechnung

Eine Aufgabe des vermessungstechni-
schen Rechnens lautet: Gegeben sei ein
Punkt P(X,Y), berechne den Richtungs-
winkel oder das Azimut von {0,0) zu P. In
gangigen Fachblchern, z.B. [9] S. 184
oder [10] S. 156, wird arctan YY berech-
net und dann je nach Quadrant, in dem
(X, Y) liegt, das azi(X, Y) ermittelt. Die fol-
gende in Vermesserkreisen offenbar we-
nig bekannte Formel

2-arctan
azi(X,Y) =

200gon

ermittelt —200 gon < azi < 200 gon ohne
eine Quadranten Unterscheidung. Die
Punkte der negativen X - Achsebilden den
einzigen Spezialfall. Die Herleitung geht
Uber das halbe Azimut, vgl. [11], S. 82.

Minimumsfunktion in der
Ausgleichung korrelierter
Beobachtungen

Positiv definite symmetrische Streu- und

Gewichtsmatrizen P sollen die Bedingung
erfullen:
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Abb. 2: Komplexe Multiplikation w =
d-z,d=s5s-e¥mits=1.7 ¢=3a/4
Die Zahlen z des blauen Dreiecks wer-
den um @um 0 gedreht und aus O her-
aus um den Faktor s gestreckt. Es re-
sultieren die Zahlen w des roten Drei-
ecks.

Abb. 3: Lineare Regression: ¢ Daten-
punkte, Rot: 1. Regressionsgerade,
Ausgleichung nach y, * verbesserte
Werte. Blau: 2. Regressionsgerade,
Ausgleichung nach x, o verbesserte
Werte.

,(X=0)oder (Y =0)

Y
X +4fx2 472 )

(X <0)und (¥ =0)

b

Abb. 4. Raumliche Helmerttransfor-
mation.
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Themen in Projekt- und Diplomarbeiten.
Die Bestimmung einer Dreiecksverma-
schung wie CHENyx2006 setzt die Kennt-
nis der lokalen Verzerrungen der LVO3-
Koordinaten varaus, welche durch die Ge-
schichte der lokalen Vermessung bedingt
sind. Solche systematischen Verzerrungen
konnen nicht durch einen bestimmten
Funktionstyp beschrieben werden. In den
neueren Methoden der Kollokation und
Filterung bzw. der nichtparametrischen

Abb. 5: Flachen der Funktion v Pv, senkrechte Ebene Uber der Geraden v =
Ax - [ und Schnittkurve von Flache und Ebene.
Links P positiv definit, die Ldsung von (7) ist durch den tiefsten Punkt der

Schnittkurve gegeben.

Rechts: Pindefinit, d.h. v/ Pvkann beide Vorzeichen annehmen und stellt eine
Sattelflache dar. Dann hat (7) keine Lésung, da das Minimum - ist.

viPy>0 furv+#0. {6)

Die Matrizen P sind immer positiv definit,
ebenso die Matrizen der Normalglei-
chungen der Ausgleichung. Bei nicht-dia-
gonalen vollbesetzten Gewichtsmatrizen
stellt sich das Problem der Uberpriifung
von (6). Probleme ergeben sich, wenn die
Schatzung einer Streumatrix nicht positiv
definit ausfallt. Gleichungssysteme mit
symmetrisch positiv definiten Matrizen
werden mit Vorteil mit dem numerisch
stabilen Cholesky-Verfahren gelést {([12]
S. 89). Auch in sehr guten Lehrblichern
wird der Begriff «pasitiv definit» haufig
nur gestreift, vgl. [13]1 5. 225. Die Eigen-
schaft positiv definit sorgt dafar, dass der
Graph der Funktion +7 Pv nach oben ge-
offnet ist und die Ausgleichungsaufgabe
Uberhaupt eine Losung hat. Dies ist in
Abb. 5 anhand einer kleinsten Ausglei-
chungsaufgabe (7) illustriert.

Regression stehen leistungsfahige statis-
tische Methoden zur Verfigung, vgl.[14],
[15]. Im eindimensionalen Kurvenfit-Bei-
spiel von Abb. 6 ist das Problem solcher
Schatzungen erlautert. Aus den Daten ist

a-x=A0; +v
1 T = { 2 plz} ; pﬂ),z +2p5V 0 +p2v§ =min 7)
- x=4,+v, P P2
die schwarze Kurve mit Ecken zu schat-
Bezugsrahmenwechsel zen, ihr Funktionstyp ist unbekannt. Es

und Entzerrung

Seit der Einfihrung von GNSS-Systemen
stellt sich das Problem, wie die alten, her-
kémmlich bestimmten Punktkoordinaten
weiter verwendet werden konnen. Zur
Umrechnung hat sich ein dreistufiges Vor-
gehen etabliert: Bezugsrahmenwechsel
V03 — V95 mit den finiten Affintrans-
formationen in der Dreiecksvermaschung
CHENyx06 {im swisstopo Programm Geo-
Suite/REFRAME realisiert), dann sind die
mit REFRAME gerechneten Lv95-Koordi-
naten in die neu gemessenen GNSS-Ko-
ordinaten zu transformieren und ab-
schliessend die Restklaffungen zu inter-
polieren. Am IVGI bildeten und bilden die
Methoden zur Ermittlung einer Dreiecks-
vermaschung und Interpolation wichtige

handelt sich um ein schlecht gestelltes
Problem, welches durch Regularisierung
zu lésen ist. D.h. esist eine geeignete Ba-
lance (Mitte) zwischen Fit {links) und Gl&t-
tung {rechts) zu finden, wasin [16] S. 249
erlautert wird. Mit Regularisierung durch
verallgemeinerte Kreuzvalidierung (Ge-
neralized Cross Validation GCV, [14]5. 30,
[15] S. 45, 117) erhielten wir bei unseren
Auswertungen die besten Ergebnisse. De-
tails der Rechnungen finden sich in [17],
zur effizienten Berechnung siehe [18].

Abb. 7 zeigt die Anderungen der mit
nichtparametrischer  Regression — mit
Kreuzvalidierung geschatzten systermati-
schen Verzerrungen der Transformation
V03 — V95 fir den Kanton Baselland.
Die markantesten Teilflachen («Schollen»)
gleicher systematischer Verzerrungen las-
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25

o fit

alphaGCV = 0.707

-05

38

alpha = 20

-05

o 2 4 6 -2 10

Abb. 6: Die simulierten Daten streuen um die stlickweise geradlinige Funktion. «alpha» ist ein Parameter, welcher die
Balance zwischen Fit und Glattung steuert. In der Mitte die mit Kreuzvalidierung bestimmte Lésung.
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Abb. 7: Kanton Baselland, «Héhe» = Anderungen der systematischen Verzer-
rungen der Transformation LV03 — LV95.

sen sich haufig von Auge erkennen. Mit
einer am Institut entwickelten Software
«Schollendetektierung» ergibt sich ein
objektives Bild, und es kénnen auch dif-
ferenziertere Feinheiten detektiert und
schwierige Zonen analysiert werden [19].

Interpolation der
Restklaffungen

In den letzten Jahren wurden am IVGlver-
schiedene neuere Interpolationsverfahren
implementiert und auf reale Datensétze
angewandt [20]: Inverse Distance
Weighting (TRANSINT, CDL usw.), Natu-
ral Neighbour sowie Multiquadratische
Interpolation. Letztere ist eine radiale Ba-
sisfunktions-Methode [21]. Diese emp-
fehlen Spezialisten der numerischen Ma-
thematik nach neusten Erkenntnissen,
um die Restklaffungskomponenten (in E
und N Richtung) zu interpolieren [22]. Die
Interpolation riesiger Datensatze (tausen-
de von StUtzpunkten, zehntausende von
zu interpolierenden Punkten) erfordert
leistungsfahige numerische Algorithmen
und Rechenprozesse, eine neue Heraus-
forderung, die «Ingenieurgeodasie und
Mathematik» meistern wollen.

Zeitreihenanalyse

Eine weitere fruchtbare Wechselbezie-
hung zwischen den beiden Disziplinen
ergibt sich bei der Analyse luckenloser
und langzeitlicher geodatischer Uberwa-
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chungsmessungen von Veranderungs-
prozessen. Erste operationelle Erkennt-
nisse haben die beiden Dozenturen aus
Anwendungen und Bachelor Theses ge-
schopft [23].
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