Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =

Géomatique Suisse : géoinformation et gestion du territoire = Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband für Geomatik und

Landmanagement

Band: 103 (2005)

Heft: 11

Artikel: Zur Messunsicherheit im Vermessungswesen (I)

Autor: Heister, H.

DOI: https://doi.org/10.5169/seals-236267

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Messunsicherheit im Vermessungswesen (I)

Die «Messunsicherheit» ist bereits in den meisten messtechnischen Disziplinen sowohl für die qualitative Genauigkeitsbezeichnung als auch für die quantitative Genauigkeitsangabe fest eingeführt. Lediglich im Bereich des Vermessungswesens ist die Akzeptanz von Begriff und Prozedur zur Beschreibung der Messgenauigkeit sehr verhalten. Deshalb wird im ersten Teil dieses Beitrags das international eingeführte Verfahren (GUM) zur Bestimmung der Messunsicherheit aber auch die Begründung hierzu – ohne die Theorie zu sehr auszubreiten – kurz dargestellt. Im zweiten Teil folgen dann anwendungsorientierte Beispiele.

L'«insécurité du mesurage» est une notion bien connue dans la plupart des disciplines de mensuration technique aussi bien en ce qui concerne la notion de précision qualitative qu'en ce qui concerne l'indication de la précision quantitative. Cependant, dans le domaine de la mensuration la notion et la procédure de description de la précision du mesurage sont mal acceptés. Pour cette raison, on présentera brièvement dans cet article la procédure introduite sur le plan international (GUM), de la détermination de l'insécurité du mesurage ainsi que son argumentaire – sans pour autant en approfondir la théorie. Dans la deuxième partie, des exemples pratiques seront expliqués.

L'«insicurezza di misurazione» è ormai stata integrata nella maggior parte delle discipline relative alle tecniche di misurazione – sia per la descrizione qualitativa che per l'indicazione quantitativa della precisione. Solo nel campo delle misurazioni si denota un'accettazione molto contenuta del concetto e della procedura di descrizione della precisione di misurazione. Per questo motivo, nella prima parte di questo contributo si effettua un rapido spaccato della procedura introdotta a livello internazionale (GUM) per determinare l'insicurezza di misurazione nonché della sua motivazione – senza addentrarsi troppo nella teoria. La seconda parte è invece dedicata a illustrare degli esempi pratici.

H. Heister

Was ist Messunsicherheit?

Seit einigen Jahren kann auch in der geodätischen Fachliteratur zunehmend die Diskussion um ein neues Genauigkeitsmass, nämlich die *Messunsicherheit*, beobachtet werden (Schmitt, 1997 und 2003, Heister, 2001 und 2002, Kutterer und Schön, 2004). Im üblichen Sprachgebrauch vermittelt der Begriff *Unsicherheit* nicht gerade das Gefühl des Vertrauens. Anders hingegen ist die Verwendung im technisch wissenschaftlichen Bereich zu interpretieren. Dort wird der Begriff *Unsicherheit eines Messergebnisses* als eine zusätzliche, positive Information gewertet, die quantitativ einen gewissen

Grad des Vertrauens über das Messergebnis beschreibt. Nun unterliegt die Prozedur dieser quantitativen Beschreibung keinem subjektiven Vorgehen, sondern einer international und interdisziplinär akzeptierten Vorschrift, dem Guide to the Expression of Uncertainty in Measurement (GUM), die 1995 als ISO/BIPM Veröffentlichung erschien und ebenfalls als DIN Leitfaden zur Angabe der Unsicherheit beim Messen in deutscher Sprache verfügbar ist. Dort wird der Begriff Messunsicherheit als ein «dem Messergebnis zugeordneter Parameter» definiert, «der die Streuung der Werte kennzeichnet, die vernünftigerweise der Messgrösse zugeordnet werden könnte». Eine etwas umfassendere, qualitative Charakterisierung ist in Weise, K. und Wöger, W., 1999 gegeben:

Die Messunsicherheit ist ein Mass für die durch unvollständige Information hervorgerufene Unvollständigkeit der Kenntnis der Messgrösse.

Diese Definition besagt, dass das Messergebnis nach Korrektur aller bekannten systematischen Einflüsse immer nur ein Schätzwert der Messgrösse ist, die mit einer Unsicherheit behaftet ist, die sich aus zufälligen Messabweichungen und unvollkommener Berichtigung des Ergebnisses bezüglich der systematischen Einflussparameter ableitet.

Was sind die Ursachen der Messunsicherheit?

Die Problematik der Bestimmung der Messunsicherheit ist demnach eng damit verbunden, dass die unvollständige Kenntnis des Wertes einer Messgrösse heute nicht mehr ausschliesslich daraus resultiert, dass bei einer Messung zufällig streuende Messwerte beobachtet werden. Wäre dies der Fall, dann lieferten uns die bekannten, statistisch begründeten Verfahren ausreichend zuverlässige Genauigkeitsmasse. Vielmehr treten zusätzliche Einflüsse auf, die bei der Ermittlung des Wertes der gewünschten Messgrösse berücksichtigt werden müssten. Da solche Einflüsse oft unbekannt oder aber auch unzureichend modelliert werden können, tragen sie in einem nicht unerheblichen Masse zur Vergrösserung der Messunsicherheit bei. Wegen des Fehlens von statistischen Informationen über diese Einflüsse kann ihr quantitativer Beitrag mit Hilfe der konventionellen Statistik nicht erfasst werden. Die Kombination und einheitliche Behandlung der unterschiedlichen Komponenten zur Messunsicherheit - hervorgerufen durch zufällige und systematische Messabweichungen – sind somit vorrangiges Ziel in allen messtechnisch orientierten Fachrichtungen

Hat sich der GUM bereits in den anderen Disziplinen weitgehend durchsetzen können, so ist im Bereich des Vermessungswesens und der Geodäsie seine Akzep-

tanz und Einführung zur Angabe von Genauigkeiten nur ansatzweise zu beobachten (DIN 18710, 1998, DIN 1319). Wenn auch im Vermessungsalltag die Anforderungen an ein zuverlässiges und umfassendes Genauigkeitsmass nicht immer von vorrangiger Bedeutung sind, so steigen sie doch mit der Komplexität, Grösse und fachübergreifenden Stellung eines Ingenieurprojektes. Hier sind zur Festlegung von Genauigkeitsmassen möglichst allgemein definierte und akzeptierte Verfahren einzuhalten, die keine unterschiedlichen Interpretationen zulassen und zu einem repräsentativen und umfassenden quantitativen Qualitätsmass führen sollten.

Die Verbesserung der Sensoren einerseits und die Unüberschaubarkeit der internen Messprozesse andererseits (Black Box) haben auch bei geodätischen Instrumenten und Messverfahren das Verhältnis zufälliger und systematischer Einflüsse entscheidend verändert; letztere bestimmen heutzutage die Qualität des Messergebnisses wesentlich stärker als noch vor ca. zehn Jahren. Mit dem GUM wurde nun erstmals ein international anerkannter Leitfaden erstellt, der es ermöglicht, diesen technischen Entwicklungen – auch in der Geodäsie – bei der Ermittlung und Angabe von Messunsicherheiten Rechnung zu tragen. Da dieser Leitfaden hierfür nur allgemeine Regeln bereitstellt, die sowohl auf verschiedenen Genauigkeitsniveaus als auch in verschiedenen Messdisziplinen bis hin zur Grundlagenforschung Anwendung finden können, wird im Folgenden versucht, das grundlegende Gedankenmodell auf die geodätische Messpraxis zu übertragen.

Wie wird die Messunsicherheit bestimmt?

Die *quantitative* Ermittlung der *Messunsicherheit* setzt sich grundsätzlich aus mehreren Komponenten zusammen. Dabei unterscheidet der GUM zwei Kategorien:

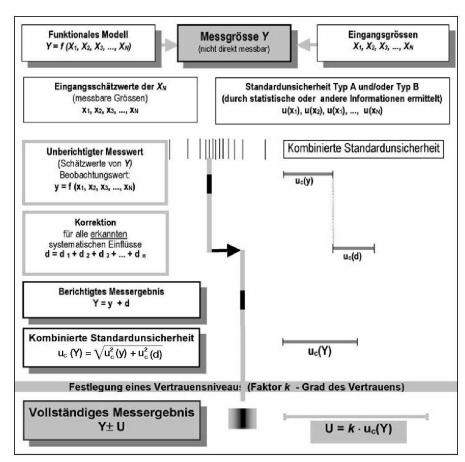


Abb. 1: Vollständiges Messergebnis und erweiterte Messunsicherheit.

- A: Komponenten, die mit statistischen Methoden berechnet werden.
- B: Komponenten, die auf andere Weise ermittelt werden.

Die Komponenten der Kategorie A werden durch die empirische Standardabweichung s_i sowie ihren Freiheitsgrad v_i angegeben. Berechnungsmethoden (Fehlerfortpflanzungsgesetz, Methode der kleinsten Quadrate) einschliesslich ihrer Zusammenfassung sowie die Berücksichtigung von Korrelationen sind dem Geodäten wohlbekannt. Die auf dieser Basis ermittelte Unsicherheit $u_{Ai} = s_i$ wird auch Standardunsicherheit genannt.

Die Komponenten der Kategorie B werden als Näherungen der entsprechenden Standardabweichungen betrachtet. Sie sind durch Grössen uBi zu charakterisieren. Dieses Vorgehen ist bisher bei geodätischen Messverfahren kaum angewendet worden. Hier besteht aber erstmals die Möglichkeit, eine Messunsicherheit abzuschätzen. Dabei sollen alle ver-

fügbaren Informationen – also auch die in langjähriger Messerfahrung erworbenen – über die Streuung einfliessen.

Alle Messunsicherheiten, die auf dieser Weise einer Messgrösse zuzuordnen sind, können nach dem Unsicherheitenfortpflanzungsgesetz wie Standardabweichungen quadratisch zur kombinierten Messunsicherheit uc zusammengefasst werden:

$$u_c = \sqrt{u_{\Delta 1}^2 + u_{\Delta 2}^2 + ... + u_{\Delta p}^2 + u_{B1}^2 + u_{B2}^2 + ... + u_{Bm}^2}$$
 (1)

Die Messunsicherheit u bzw. uc wird dabei als Mass einer Streuung immer als positiver Wert (ohne Vorzeichen) zusammen mit dem Messergebnis angegeben. In der Regel wird diese Genauigkeitsangabe ausreichen. Dort aber, wo eine höhere Sicherheitswahrscheinlichkeit gefordert ist oder auch die Beziehungen zu Toleranzen herzustellen sind, z.B. bei industriellen Anwendungen, ist es vorzuziehen, einen Bereich für die Messunsicherheit festzu-

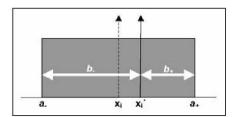


Abb. 2: Asymmetrische Grenzen für die Eingangsgrösse X_i.

legen. Somit gelangt man über die Festlegung eines Erweiterungsfaktors k zur erweiterten Messunsicherheit.

$$U = k \cdot u_c . \tag{2}$$

Häufig wird dabei k = 2 gewählt, was zu einem Intervall \pm U (Angabe immer mit Vorzeichen) führt und in statistischer Analogie einen Vertrauensbereich von ~ 95% Sicherheitswahrscheinlichkeit festlegt. Beim Messen mit geodätischen Instrumenten werden vorrangig die Messgrössen (Y) Länge und Winkel ermittelt; aber auch Koordinaten können als «nicht direkt» beobachtete Messgrössen betrachtet werden. Sie sind dabei aus einer endlichen Menge an Eingangsgrössen X., un-

$$Y = f(X_1, X_2, X_3, ..., X_N).$$
 (3)

ter Anwendung eines funktionalen

Modells als abgeleitete Grössen zu be-

stimmen (s. auch Abb. 1):

Aber der im Instrument realisierte Messprozess kann nur die Schätzwerte x_N der Eingangsgrössen ermitteln, um dann über den funktionalen Zusammenhang f den unberichtigten Messwert yzu berechnen. Seine kombinierte Messunsicherheit u_c(y) sollte entweder als empirische Standardabweichung aus Wiederholungsmessungen abgeleitet (Standardunsicherheit vom Typ A) oder aus den abgeschätzten Messunsicherheiten u(x_N) der Eingangsschätzwerte x_N über eine Unsicherheitenfortpflanzung berechnet (kombinierte Messunsicherheit vom Typ B) werden. Die Beschreibung aller Einflussgrössen erfordert umfassende Kenntnisse über den Messprozess im Instrument, die Konzeption des Messverfahrens und schliesslich

die Auswirkungen des Messumfeldes. Da die klassischen, statistischen Verfahren hierbei weitgehend keine Lösungsansätze zur Quantifizierung der Genauigkeitsaussage ermöglichen, sind Verfahren zur realistischen *Abschätzung* der Messunsicherheit (vom Typ B) gefordert. Diese kann auch dann notwendig werden, wenn die Überbestimmung der Messgrösse gering ist und somit die empirische Standardabweichung mit einer grossen Varianz behaftet ist.

Bei vielen Abschätzungen wird sich eine obere Grenze a₊ und eine untere Grenze a₋ für die Eingangsgrösse X_i festlegen lassen:

$$a_{\scriptscriptstyle -} < X_{\scriptscriptstyle 1} < a_{\scriptscriptstyle +} \,. \tag{4}$$

Bei symmetrischen Grenzen gilt dann mit

$$a = \frac{1}{2} (a_{+} - a_{-}). \tag{5}$$

für den Schätzwert von Xi

$$x_{i} = \frac{1}{2} (a_{+} + a_{-}) . {(6)}$$

Für die Berechnung der Messunsicherheit können nun verschiedene Fälle unterschieden werden:

a) Die Wahrscheinlichkeit, dass die Eingangsgrösse X_i in den abgeschätzten Grenzen liegt ist p=50%. Die Verteilung der möglichen Werte von X_i entspricht annähernd einer Normalverteilung. Dann gilt für die Messunsicherheit

$$u(x_i) = 1,48 a$$
 . (7)

b) Gestützt auf verfügbare Informationen wird die Chance, dass X_i im Bereich von a_ bis a_+ liegt mit zwei Drittel abgeschätzt; mit anderen Worten beträgt die Wahrscheinlichkeit ungefähr p=67%. Wieder eine Normalverteilung angenommen, ergibt sich nun für

$$u(x_i) = a . (8)$$

c) Es kann nur die Aussage gemacht werden, dass die Eingangsgrösse X_i in den abgeschätzten Grenzen liegt und die *Wahrscheinlichkeit* hierfür p=100% beträgt. Es wird also hiermit ausgeschlossen, dass sich X_i ausserhalb des festgelegten Bereichs befindet. Es liegt somit eine *Gleichoder Rechteckverteilung* vor. Dann kann die Eingangsgrösse ebenfalls gemäss Formel (6) geschätzt werden; für die zugehörige Messunsicherheit ergibt sich

$$u(x_i) = \frac{1}{\sqrt{12}} (a_+ - a_-). \tag{9}$$

Beziehungsweise gilt wieder für symmetrische Grenzen, s. Formel (5),

$$u(x_i) = \frac{1}{\sqrt{3}} a = 0.58 a.$$
 (10)

Durch diese Ansätze werden in der Messpraxis viele Messunsicherheiten quantifizierbar, um sie dann in einem komplexeren Genauigkeitsbudget zu berücksichtigen, z.B.:

- Zentrierfehler bei der Aufstellung des Messgerätes,
- Refraktion bei verschiedenen Messverfahren.
- Ausdehnungskoeffizient bei unterschiedlichen Messmitteln, Materialien, wie Invar-Nivellierlatten,
- Unsicherheit in der Erfassung meteorologischer Daten,
- Rechenschärfe von Korrekturformeln,
- Spezifikationen von Sensoren.

Die oben angegebenen Formeln setzen jedoch alle voraus, dass die abgeschätzten Grenzen symmetrisch zum besten Schätzwert x_i liegen. In manchen Fällen wird dies jedoch nicht zutreffen. Kann die *Asymmetrie* durch

Einfluss- grösse X _i	Schätzwert x _i [dim]	Mess- unsicherheit u(x _i) [dim]	Vertei- lung	Sensitivitäts- Koeffizient $c_i = \partial f / \partial x_i$	$u(\widetilde{x}_i) = c_i \cdot u(x_i)$ [dim]	Unsicherheitsquelle
u(l _i)	12,345	0,001	normal	1	0,0015	Zufällige Einflüsse
7.0	10.3	***		603	11.7	
Mess- ergebnis	12,354				0,0028	

Tab. 1: Tabellarische Zusammenstellung zur Berechnung der Messunsicherheit.

$$a_{-} = x'_{1} - b_{-} \text{ und } a_{+} = x'_{1} - b_{+}$$
 (11)

beschrieben werden (s. Abb. 2), so ergibt sich durch Addition dieser beiden Gleichungen und weiterer Umformung das Asymmetrieglied

$$\triangle = \frac{1}{2} (b_{-} - b_{+}). \tag{12}$$

oder

$$\triangle = \mathbf{x}_i' - \mathbf{x}_i \ . \tag{13}$$

Hierin bedeutet x_i der nicht korrigierte, asymmetrische Eingangsschätzwert und x_j der fiktive symmetrische (s. Formel [6]). Somit berechnet sich die Messunsicherheit für diesen Fall aus $u(x_i)$ für die fiktive Grösse x_i gemäss Formel (10) und der Beaufschlagung um die Asymmetriegrösse \wedge :

$$u(x_i') = \sqrt{u(x_i)^2 + \triangle^2} = \sqrt{\frac{1}{3}a^2 + \triangle^2}$$
 (14)

Je nach Annahme der Verteilung kann natürlich dieser Ansatz variieren.

Je komplexer also der Messvorgang ist, desto detaillierter und aufwändiger wird es sein, alle Nachweise und Informationen zur Bestimmung der Messunsicherheit bereitzustellen. Um das gesamte Genauigkeitsbudget aufzustellen, empfiehlt sich für die Praxis dann ein tabellarisches Vorgehen gemäss Tabelle 1. Die Sensitivitätsgrösse ci entspricht i.d.R. den partiellen Ableitungen der Funktion der Messgrösse Y (s. Formel [3]) nach den Einflussgrössen Xi. Hiermit berechnet sich

dann der *Unsicherheitenbeitrag* $u(\widetilde{x}_i)$ zum Gesamtfehlerbudget bzw. zur kombinierten Messunsicherheit des Messergebnisses.

Dieser kurze Abriss über die Angabe und Bestimmung der Messunsicherheit sollte ohne Ausbreitung des theoretischen Hintergrundes – der Bayes Statistik – die Übertragung des Konzeptes der Messunsicherheit, so wie sie im GUM definiert wurde, auf geodätische Genauigkeitsaussagen verständlich ermöglichen. Dabei sollte nochmals deutlich herausgestellt werden, wie unbekannte, nur durch die Messerfahrung quantifizierbare systematische Abweichungen in das Genauigkeitsmass Messunsicherheit einzubringen sind.

Abschliessend muss noch erwähnt werden, dass absichtlich auf die Berücksichtigung von Korrelationen zwischen den Eingangsgrössen – auch bei den unten angeführten Beispielen – verzichtet wurde, im GUM jedoch auch für diese Fälle die entsprechenden Formeln bereitgestellt werden.

Literatur:

Heister, H. (2001): Zur Angabe der Messunsicherheit in der geodätischen Messtechnik. In: Heister, H. und Staiger, R. (Hrsg.): Qualitätsmanagement in der geodätischen Messtechnik. Schriftenreihe des DVW, Bd. 42, Verlag Konrad Wittwer, Stuttgart, S. 108–119.

Heister, H. (2002): Zur Genauigkeitsangabe bei geodätischen Instrumenten. In: Binnenbruck, Fuhlbrügge, H.-J., Schauerte, W. (Hrsg.): Festschrift Univ.-Prof. Dr.-Ing. Bertold Witte zur

Emeritierung. Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-Wilhelms-Universität Bonn, S. 73–82.

Kutterer, Hansjörg, Schön, Steffen (2004): Alternativen bei der Modellierung der Unsicherheit beim Messen. Zeitschrift für Vermessungswesen (ZfV), 129. Jg., S. 389–398.

Schmidt, H. (1997): Was ist Genauigkeit? Zum Einfluss systematischer Abweichungen auf Mess- und Ausgleichungsergebnisse. Vermessungswesen und Raumordnung (VR) 59.

Schmidt, H. (2003): Warum GUM? – Kritische Anmerkungen zur Normdefinition der «Messunsicherheit» und verzerrten «Elementarfehlermodellen». Zeitschrift für Vermessungswesen (ZfV), 128. Jg., S. 303–312.

Weise, Klaus, Wöger, Wolfgang (1999): Messunsicherheit und Messdatenauswertung. Wiley-VCH, Weinheim.

Technische Monographien:

DIN (1995): Leitfaden zur Angabe der Unsicherheit beim Messen. Beuth Verlag, Berlin.

ISO (1995): Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, Genève.

DIN 1319: Grundbegriffe der Messtechnik, Teil 2 – Teil 4, Beuth Verlag, Berlin.

DIN 18710: Ingenieurvermessung Teil 1 – Teil 4, Beuth Verlag, Berlin.

Internet:

www.gum.dk www. metrodata.de

Prof. H. Heister Institut für Geodäsie der UniBwM DE-85577 Neubiberg h.heister@unibw.de

D/A/T/E/N/H/A/L/T/U/N/G/ ?