Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =

Géomatique Suisse : géoinformation et gestion du territoire = Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband für Geomatik und

Landmanagement

Band: 101 (2003)

Heft: 9: 75 Jahre SGPBF = 75 ans SSPIT

Artikel: Développement de la photogrammétrie en Suisse

Autor: Chapuis, A. / Fricker, P. / Hughes, D. DOI: https://doi.org/10.5169/seals-236048

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Développement de la Photogrammétrie en Suisse

L'exposé illustre les trois étapes importantes du développement des systèmes analogiques, analytiques et numériques pour la photogrammétrie terrestre et aérienne. En premier lieu, les produits des sociétés Kern Aarau et Wild Heerbrugg seront mentionnés selon leur arrivée sur le marché et complétés par des données importantes. Vu la place restreinte, les auteurs se limitent à la présentation des moments importants et des périodes de transition.

Der Beitrag schildert die drei wichtigen Etappen der Entwicklung analoger, analytischer und digitaler Systeme für die terrestrische und Luftphotogrammetrie. In erster Linie werden die Erzeugnisse der Firmen Kern, Aarau und Wild, Heerbrugg in der Reihenfolge ihres Erscheinens auf dem Markt erwähnt und durch wichtige Daten ergänzt. Angesichts des Platzmangels beschränken sich die Autoren auf wichtige Momente und Übergangsperioden.

Quest'articolo illustra le tre tappe più significative nello sviluppo dei sistemi analogici, analitici e numerici della fotogrammetria terrestre ed aerea. Inoltre, indica quando sono apparsi sul mercato i prodotti delle società Kern di Aarau e Wild di Heerbrugg. Per mancanza di spazio gli autori si sono limitati a tracciare i momenti di spicco e quelli di transizione.

A. Chapuis, P. Fricker, D. Hughes, E. Traversari

Introduction

Si l'on recherche les premières traces de la photogrammétrie en Suisse, le livre intitulé «Geschichte der Photogrammetrie in der Schweiz» est la meilleure référence. L'histoire de la SSPIT, société relativement jeune, et celle des deux entreprises Kern et Wild Heerbrugg, par la suite Leica, est très étroitement liée. Cet exposé a pour but de montrer clairement l'interaction entre les étapes du développement technologique, les demandes du marché et l'infrastructure afin de comprendre ce qui a engendré un terrain de développement propice dans un petit pays comme la Suisse.

La période des systèmes analogiques

Voir tabelle 1.

Celle-ci est caractérisée par la grande longévité des instruments. Le développement couvre la période de 1922 à 1990, date de la production du dernier AG1. Comme beaucoup d'instruments ont été équipés de codeurs avec logiciel pour PC, il existe aujourd'hui encore des centaines d'instruments en opération.

Faits marquants du développement des instruments analogiques de photogrammétrie

Le développement des instruments photogrammétriques en Suisse serait impensable sans la présence et la combinaison des facteurs suivants:

- Le développement de la photographie en France et en Allemagne au 19^{ème} siècle
- Le développement des bases de la photogrammétrie au 19^{ème} et 20^{ème} siècle
- La demande de cartes militaires pour les terrains à topographie difficile. La Suisse a réalisé ces documents entre les deux guerres mondiales
- La mise à disposition par l'industrie Zeiss-Jena et Kern, de spécialistes en mécanique de précision et en construction
- L'engagement financier et l'esprit d'entreprise de quelques rares industriels

Fig. 1: A8. Fig. 2: PG2-GP1.

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
A1	1922		3 prototypes	
A2	1926	1941	28	
A4	1933	1963	33	Photogrammétrie terrestre avec C12
Ordovás- Kern	1930		1 prototype	
A5	1937	1953	90	Premier appareil universel de Wilc cheval de bataille des années de guerre
A6	1940	1953	115	A5 simplifié
PG0	1946		1 prototype	Concept très avancé, prix trop élevé
A7	1952	1972	412	Deuxième appareil universel de Wild
A8	1952	1980	1035	L'appareil de référence pendant trois décennies
PUG3	1959	1973	310	Marquage et report des points pour la triangulation aérienne
B8	1961	1972	721	Avec le B8S, l'appareil Wild de précision moyenne le plus produi
PG1	1960		3 prototypes	
PG2, PG21	1960	1985	>700	Instrument le plus important de Kern de la classe de précision du A8
A9	1959	1974	71	Troisième appareil universel de Wild à format réduit
PUG4	1968	1985	449	Amélioration du PUG3 avec zoor
A10	1969	1984	308	Quatrième appareil universel de Wild
B9	1969	1971	31	Demi-format comme complémendu A9
B8S	1971	1982	808	Appareil Wild de précision moyenne, le plus important
PG3	1971	1981	30	Appareil universel de Kern
PMG2	1977	1994	>60	Marquage des points avec qualit d'un comparateur
AM/AMH	1977	1983	173	
AMU	1979	1981	21	Cinquième appareil universel de Wild
AG1	1981	1990	230	Appareil universel léger de prix abordable de la classe de précision du A8

Tab. 1: La période des systèmes analogiques.

Fig. 3: RC30.

C'est sans doute la demande de cartes militaires qui assurait l'écoulement des appareils. Ainsi, il fut possible de poser les bases pour le développement d'instruments pour le marché civil.

Aujourd'hui, le client militaire est toujours un utilisateur important de systèmes photogrammétriques et reste un support majeur du développement. Au bout de près d'un siècle, les clients civils sont devenus les utilisateurs les plus importants des systèmes photogrammétriques.

La période des systèmes analytiques

Voir tabelle 2.

Faits marquants du développement des appareils de photogrammétrie analytique

Les sociétés Wild Heerbrugg et Kern Aarau ont débuté relativement tard leurs plans à l'origine des instruments de photogrammétrie analytique. Si l'on considère que U. Helava a inventé le principe des appareils analytiques dans les années soixante, il a démontré avec l'US1 qu'il était possible de remplacer les tiges spatiales et les règles par des formules mathématiques traitées par ordinateur. Le

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
B8 Stereomat			1 prototype	Corrélation automatique en collaboration avec Raytheon USA
A2000			1 prototype	Appareil automatique pour orthophotos
OR1	1975	1991	88	Appareil pour orthophotos à commande numérique
AC1	1980	1987	45	Appareil Wild de très grande précision
DSR1	1980	1984	30	Appareil très compact. Commande basée sur plusieurs microprocesseurs
DSR11	1984	1989	100	Version simplifiée du DSR1
BC1	1982	1984	82	
BC2	1984	1989	184	
DSR12 DSR14 DSR15	1988 1988 1988	1991 1991 1991	130	Plate-forme PDP Plate-forme PC Plate-forme VAX
BC3	1989	1990	65	Plate-forme PC UNIX
SD2000	1991	aujourd'hui	>400	
SD3000	1992	aujourd'hui	>100	

Tab. 2: La période des systèmes analytiques.

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
GeoMap	1981	1984	117	CAD pour données géodésiques
Informap	1979	1983	>20	Produit de Synercom, USA
Wildmap	1980	1983	>20	Extension photogrammétrique d'Informap
System9-AP	1987	1990	30	Restituteur analytique du S9. A partir de 1989 Prime Wild GIS AG
System9-E/D	1987	1990	>40	Poste de travail SIG, à partir de 1989 Prime Wild GIS AG
Infocam	1985	2000	>70	SIT pour applications cadastrale

Tab. 3: La période des systèmes interactifs graphiques.

sommet de la précision obtenue dans le domaine des instruments analytiques fut certainement l'AC1. Un prix trop élevé a limité sa durée sur le marché. Le SD2000, un produit de synthèse entre les expériences Wild et Kern, a marqué la culmination d'une période de développement. Un prix de fabrication très bas et sa haute fiabilité a favorisé sa longévité. De nos jours, il est toujours produit en série et il

Fig. 4: SD3000.

a de loin surpassé la concurrence dans ce domaine.

La période des systèmes interactifs graphiques Voir tabelle 3.

Faits marquants du développement des systèmes interactifs graphiques

Au début des années quatre-vingts, les données générées par les appareils analytiques et les tachéomètres électroniques demandent un produit complémentaire: les systèmes interactifs graphiques.

Les débuts dans ce nouveau marché furent réalisés en 1979 en collaboration avec la société américaine Synercom. En parallèle, le GeoMap fut développé pour le marché géodésique. Ces expériences ont mené, au milieu des années quatrevingts, au développement du System9 à Toronto et Heerbrugg.

Basée sur calculateur SUN, l'architecture du System9 était très complète. Le début des ventes fut très lent. On peut affirmer aujourd'hui que ce produit fut lancé trop tôt sur le marché. En 1989, ce département fut cédé à la société Prime Wild GIS AG qui plus tard a été reprise intégralement par Prime. Une grande majorité de l'équipe de développement de cette époque a participé à la création du SIG MapInfo. En parallèle, le système Infocam fut développé à Aarau. On peut le positionner entre les systèmes Geomap et System9. Malheureusement aucun de ces systèmes n'a survécu sur le marché

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
DSP1	1988		1 prototype	Première station numérique de Kern
DSW100	1989	1994	30	Scanner film de précision HAI-100
DSW200	1994	1997	60	
DSW300	1997	1999	60	Avec système automatique pour rouleau de film
DSW500	1999	2002	70	
DSW600	2002	aujourd'hui	>50	
DPW	1992	2003	>1000	Leica est partenaire de vente exclusif des «Digital Photogram- metric Workstations» basées sur un matériel standard
Orthobase	1999	aujourd'hui	>2000	Partie de ERDAS Imagine, dès 2001 propriété de Leica Geosystems
LPS	Sept. 2003			Leica Photogrammetric Suite

Tab. 4: La période numérique.

La période numérique

Voir tabelle 4.

Faits marquants du développement des systèmes numériques

Le développement de la photogrammétrie numérique est marqué par une étroite collaboration avec Helava Associates Inc, à partir de 1992. La création de LH Systems en 1997, Joint Venture à part égale entre Leica Geosystems et BAE Systems, couronne le succès des relations avec la compagnie de San Diego. Les constantes améliorations du logiciel Socet Set pour les applications commerciales en font la plate-forme la plus performante du domaine de la photogrammétrie de haute gamme. BAE Systems a toujours possédé les droits d'auteur de Socet Set. Après la reprise d'ERDAS, Leica Geosystems a décidé d'introduire un nouveau paquet similaire basé sur le logiciel de télédétection de renommée mondiale ERDAS Imagine.

Les caméras terrestres

Voir tabelle 5.

Faits marquants du développement des caméras terrestres

La photogrammétrie pour le relevé des accidents s'est développée à l'aide de caméras stéréoscopiques sur la base du photothéodolite. Malgré l'arrêt de la production des caméras P31 et P32 en 1987, la caméra stéréoscopique existe toujours

Fig. 5: C2.

sous la forme d'une construction sous licence par la société Pentax. Cette construction robuste «Police-Stereometer» utilisée par n'importe quel temps est vendue au Japon et en Suisse.

Les caméras aériennes

Voir tabelle 6.

Faits marquants du développement des caméras aériennes

Le développement des cameras aériennes de Wild et par la suite de Leica a une histoire intéressante. Comme le marché suisse était limité, Wild et plus tard Leica, durent s'adapter, pour survivre, aux demandes et développements à l'étranger, en particulier en Amérique et au Japon. Les étapes importantes se sont produites après la 2^{ème} guerre mondiale où l'on est passé des plaques en verre de 18 cm au

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
P3	1926	1946	inconnu	Premier photothéodolite
C12	1933	1963	150	Caméra stéréo terrestre
P30	1946	1970	>280	Perfectionnement de la P3
C40	1968	1983	35	Caméra stéréo
C120	1968	1984	142	Successeur de la C12
P32	1972	1987	312	Caméra fixée sur théodolite
P31	1974	1987	122	Caméra terrestre universelle

Tab. 5: Les caméras terrestres.

Fig. 6: DPW.

Fig. 7: ADS40.

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
C1	1925			F=165 mm
C2	1927	1944	50	F=165 mm, 10x15 cm, 13x13 cm plaques en verre, caméra tenue à la main, support pour fixer deux caméras convergentes
C3	1929		1 prototype	F=165 mm
RC3	1937	1941		F=210 mm, f/4.5, 18x18 cm
RC5/RC5a	1944	1956	130	F=120/210 cm, 18X18 cm
RC7/RC7a	1949	1972	15	F=170 cm, 14x14 cm, caméra automatique à plaques
RC6	1951	1955		F=165 mm, 12.8x12.8 mm
RC8	1956	1972	382	F=115/152/210 mm, 18x18 cm (plaques) et 23x23 cm (film). Cheval de bataille
RC9	1958	1972	100	F=88 mm, f/5.6
RC10	1969	1984	380	F=88/153/210/303 mm
RC10a	1982	1988	64	Comme RC10 mais commandée par microprocesseur
RC20	1987	1993	138	Comme RC10a mais avec compensation du filé, FMC
RC30	1993	aujourd'hui	>400	Comme RC20 mais avec support stabilisé par gyroscopes
ADS40	2001	aujourd'hui	>15	Premier capteur numérique commercial aéroporté avec 10 canaux

Tab. 6: Les caméras aériennes.

film, et un peu plus tard, au film d'une largeur de 23 cm. Le développement des années quatre-vingts des caméras analogiques débute par l'arrivée sur le marché des objectifs super grand-angulaire, par la compensation du filé et par l'introduc-

tion de plates-formes gyro-stabilisées. Les premiers signes annonçant l'époque tout numérique furent reconnus assez rapidement, car Leica fut à même de livrer en 2001, pour le secteur commercial, le premier capteur numérique aéroporté.

Conclusions

L'énumération des instruments conçus et développés en Suisse pendant une période de seulement 80 années montre que de grands efforts de créativité et de travail du marché ont été nécessaires pour assurer la livraison des produits dans le monde entier pendant cette période. Cet exposé se limite à poser les bases qui permettront de poursuivre l'histoire de la photogrammétrie, dont le premier livre s'arrête en 1980.

Bibliographie:

[1] Photogrammetrie in der Schweiz – Geschichte – Entwicklung, Dümmlerbuch 7872, 1996, Auteur: SSPIT Société suisse de photogrammétrie, analyse d'images et de télédétection.

Alain Chapuis Leica Geosystems GIS & Mapping Heinrich-Wild-Strasse CH-9435 Heerbrugg alain.chapuis@gis.leica-geosystems.com

Peter Fricker peter.fricker@gis.leica-geosystems.com

David Hughes david.hughes@gis.leica-geosystems.com

Emanuele Traversari emanuele.traversari@ gis.leica-geosystems.com