Zeitschrift: Geomatik Schweiz : Geoinformation und Landmanagement =

Géomatique Suisse : géoinformation et gestion du territoire = Geomatica Svizzera : geoinformazione e gestione del territorio

Herausgeber: geosuisse : Schweizerischer Verband für Geomatik und

Landmanagement

Band: 101 (2003)

Heft: 8

Artikel: Der Schalenstein von Tschuppina (GR) und die babylonische Definition

des Winkels

Autor: Kerner, M.

DOI: https://doi.org/10.5169/seals-236046

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der Schalenstein von Tschuppina (GR) und die babylonische Definition des Winkels

Ein megalithischer Schalenstein aus Granit wurde 1986 in Tschuppina (GR) von Ulrich und Greti Büchi entdeckt und in ihrem Buch [1] «Die Megalithe der Surselva» beschrieben. Es ist ein sehr aufwändig bearbeiteter Felsblock mit über 300 Schalen in ausserordentlich komplexer Anordnung. Das auffälligste Merkmal sind zwei eingeschliffene Bögen auf der Westseite des Steins. Die Form dieser Bögen hat grosse Ähnlichkeit mit der Bahnkurve des Planeten Venus als Abend- bzw. Morgenstern, wie sie Schultz in [2] «Rhythmen der Sterne» abbildet (Abb. 1).

Une pierre creuse mégalithique en granit a été découverte en 1986 à Tschuppina (GR) par Ulrich et Greti Büchi et décrite dans leur livre [1] «Le mégalithe de Surselva». Il s'agit d'un bloc de rocher travaillé astucieusement et comportant plus de 300 creux disposés de façon extrêmement complexe. L'aspect le plus significatif sont deux courbes appliquées sur le côté ouest de la pierre. La forme de ces courbes a une grande similitude avec la trajectoire de la planète Vénus comme étoile du matin et du soir, telle que l'a illustrée Schultz dans [2] «Rythme des étoiles» (image 1).

Nel 1986 Ulrich e Greti Büchi hanno scoperto a Tschuppina (GR) una pietra incavata megalitica in granito che hanno poi descritto nel loro libro «Il megalite della Surselva». Si tratta di un blocco di roccia molto elaborato con 300 incavi, disposti in un allineamento estremamente complesso. La caratteristica che più colpisce sono i due archi intagliati sulla parte occidentale del sasso. La forma di questo arco ha una forte somiglianza con la traiettoria del pianeta Venere, nella veste di stella serale e mattutina, come rappresentato da Schultz [2] sul «Ritmo delle stelle» (fig. 1).

M. Kerner

Diese Vermutung ist nicht unberechtigt, hat man doch auf der Mutta bei Falera die bekannte Scheibennadel aus der Zeit von –1600 C. gefunden, die heute als hervorragender Fund im Rätischen Museum in Chur aufbewahrt wird. Zu Beginn der 80er Jahre hat W. Brunner [3] diese Nadel als einen Venuskalender decodiert. Der Kalender der Venussynoden ist eine recht aufwändige Darstellung, die schon aufgrund ihrer Komplexität kaum zu bezweifeln ist. Die archäologische Tatsache dieses Fundes stützt die Wahrscheinlichkeit für das Vorhandensein eines Venuskultes oder einer astralen Religion.

Es stellt sich die Frage, ob die frühen Astronomen den zeitlichen Bewegungsablauf des Planeten Venus am Himmel vermessen und auf den Stein übertragen konnten. Welches waren die einfachsten Mittel zur Durchführung dieser Aufgabe? Die erste Voraussetzung für eine solche Messreihe ist die Festlegung einer Referenz gegenüber der der Planet vermessen werden soll. Diese müsste in der Nähe des zu beobachtenden Objektes liegen. Dazu wählt man zweckmässig den Ort des Sonnenaufganges für den Morgen- und den des Sonnenunterganges für den Abendstern als Marke am Horizont. Eine Visiereinrichtung müsste dafür erstellt werden, die auf das jeweilige Azimut und die Höhe eingestellt werden kann. Ausgehend vom Azimut der auf- bzw. untergehenden Sonne, das als Landschaftsmarke erhalten blieb, wird nunmehr der horizontale und vertikale Abstand zum Planeten vermessen. Der Gebrauch eines Mondhorns als Messgerät wäre ebenfalls denkbar [4]. Eine recht einfache Messung ermöglicht die Breite des Daumens am ausgestreckten Arm (ca. 2°5), der für die azimutale Messung senkrecht und waagrecht für die Höhenmessung gehalten werden muss. Für diese Messmethode gilt das Verhältnis 1/57 = 1°. Das entspricht etwa der Breite des kleinen Fingers zur ausgestreckten Länge des Armes. Da insbesondere die Höhe des Planeten über dem Horizont von der jahreszeitlichen Lage der Ekliptik abhängig und die Messung nur relativ ist, spielt die Genauigkeit keine Rolle. Auf diese Weise könnte jeder Schafhirte die Bahnkurven des Planeten Venus registrieren. Auf der Westseite des Schalensteins sind zwei Bahnkurven eingeschliffen. Das lässt

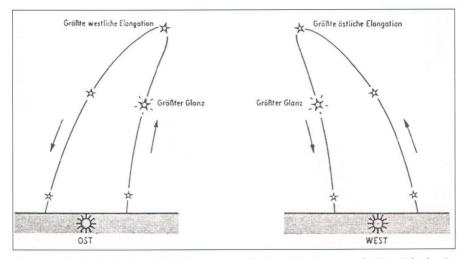


Abb. 1: Die Bahnkurven des Morgen- und Abendsternes nach @ J. Schultz in [2] «Rhythmen der Sterne».

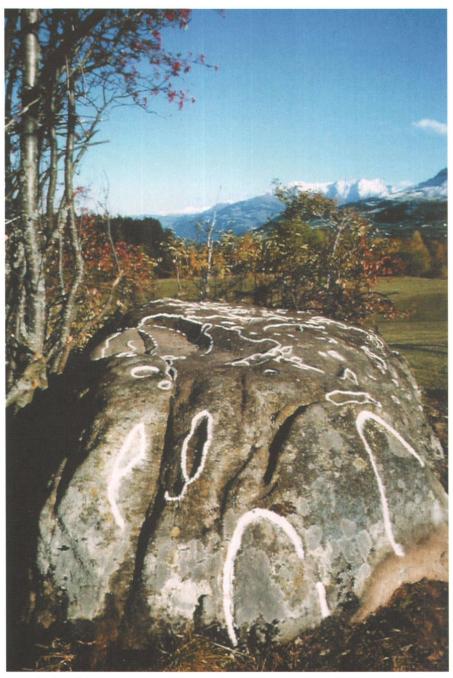


Abb. 2: Der Schalenstein von Tschuppina (GR) nach einer Aufnahme © von U. und G. Büchi in [1].

eine Zuordnung zum Morgenstern vermuten. Die zweite Bahnkurve kann durch die Wahl eines anderen örtlichen Beobachtungspunktes entstanden sein (Abb. 2).

Der registrierte und sichtbare Kurventeil lässt eine schräg gestellte Ellipse vermuten. Dies entspräche einer Variante der Bahnkurve, eine andere wäre die schiefe 8. Da die Venusbahn durch ihre Nähe zur Erde von dieser stark beeinflusst wird und demzufolge unregelmässigen Schwankungen unterliegt, kann sie nicht exakt voraus berechnet werden. Die in den Stein eingeschliffenen Kurventeile sind der zu erwartenden Bahn des Morgensterns jedoch so ähnlich, dass sie als solche gewertet werden können.

Die Messung des Winkels mit dem Daumen am ausgestreckten Arm entspricht der babylonischen Definition des Winkels. Diese wird in unüblicher Weise durch zwei Längenmasse dargestellt.

Die Einheit <kus> (Elle) entspricht 2° und wird als 10 <si> (Finger) in einer Entfernung von 12 <kus> definiert.

Die Länge von 1 kus = 444 mm wird auch als cubitus bezeichnet.

1 kus = 24 si

1 si = 1/24 kus = 18,5 mm wird auch als digitus bezeichnet. Somit ergibt sich für die Winkeleinheit das Verhältnis:

10 si/12 kus = 2° oder $10/288 = 2^{\circ}$ ($1^{\circ}9886$) oder 1 si/1,2 kus = 18,5/532,8 =tg 0,03472.

Nun sind 1,2 kus = 53,28 cm und diese Länge entspricht der des ausgestreckten Armes.

Die schriftliche Überlieferung dieser Definition wurde im siebten vorchristlichen Jahrhundert aufgezeichnet, war vermutlich schon früher in Gebrauch, so dass die Messmethode als bekannt vorausgesetzt werden kann.

Acknowledgement

Frau Greti Büchi sei für die Zurverfügungstellung der Abbildung und Herrn Dr. A. Elmiger für seine Hinweise und Diskussion vielmals gedankt.

Bibliographie:

- [1] Büchi Ulrich und Greti: Die Megalithe der Surselva, Bd. 5 und 6. 1987.
- [2] Schultz J.: Rhythmen der Sterne. 1985.
- [3] Kerner M.: Das Zepter der Venus. Die Kalenderscheiben von Falera und Nebra. 2002.
- [4] Kerner M.: Mondhörner Urgeschichtliche Messgeräte helvetia archaeologica # 127/128, 32/2001.

Martin Kerner Steg 81 CH-3116 Kirchdorf