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Symposium IAG

Automatische Vektorisierung
von flachenhaften Objekten
mit robuster Schatzung

Zweidimensionale Objekte (z.B. Grundflachen von Hausern) kénnen aus topographi-
schen oder allgemeinen Karten automatisch strukturiert werden. Dazu dienen insbe-
sondere robuste Schatzer. Die Konversion von Raster- auf Vektordarstellung erfolgt in
drei Schritten: Naherung des extrahierten Randes, Ausgleichung und Anwendung al-
ternativer Modelle. Die erzielten Resultate zeigen, dass robuste Schatzer sehr effizient
eingesetzt werden kénnen in der Datenerfassung fur verschiedene GIS-Anwendun-
gen.

A partir de cartes topographiques ou générales, des objets bi-dimensionnels (par ex-
emple la surface de base d'immeubles) peuvent étre structurés automatiquement. A
cet effet, on se sert notamment de méthodes d'estimation robustes. La conversion de
données raster ou vectorielles a lieu en trois pas: approximation du bord extrait, com-
pensation et application de modéles alternatifs. Les résultats obtenus montrent que
des méthodes d'estimation robustes peuvent étre appliquées avec beaucoup d'effi-
cience dans la saisie de données pour plusieurs applications de SIT.

Gli oggetti bidimensionali (per es., superfici di case) possono essere automaticamen-
te strutturati partendo da carte topografiche o normali. A riguardo servono, in parti-
colare, solidi valutatori. La conversione della rappresentazione da raster a vettore avvie-
ne in tre fasi: awicinamento del margine estratto, compensazione e impiego di mo-
delli alternativi. | risultati ottenuti mostrano che i solidi valutatori sono utilizzabili molto
efficientemente nel rilevamento dei dati per diverse applicazioni SIG.

2. Extraktion des Randes

Die Methode zur Herleitung der Randli-
nie wurde von Nebiker und Carosio (1994)
entwickelt. Die resultierende Linie ist fir
jeden inneren und dusseren Rand ein ge-
schlossenenes Polygon, welches die dus-
seren Ecken der Randpixel verbindet (Abb.
1). Diese (grobe) Randlinie begrenzt das

E. Kanani, A. Carosio

1. Einleitung

Das im Folgenden gezeigte Verfahren zur
automatischen Vektorisierung stiitzt sich
auf gescannte topographische und allge-
meine Karten der Schweiz. Die kartogra-
phischen Symbole (z.B. fur Gebaude)
kénnen extrahiert werden mit Techniken
der Mustererkennung gemadss Stengele
(1995) und Frischknecht (1999). Die ex-
trahierten Daten eines Rasterbildes wer-
den in einer Informationsebene abgelegt.
Dort werden die interessierenden Daten
geholt, um mit Hilfe von Vektorisierung
strukturiert zu werden.

"‘"q

aussere Rand

innere Rand

ebene Objekt ungefahr. Um eine realisti-
sche Abstraktion der Form eines Objektes
durch die Randlinie zu erhalten, muss die
Anzahl der Ecken drastisch reduziert wer-
den

3. Vereinfachung des
Randes

Um Uberflussige Ecken der «groben»
Randlinie zu entfernen, haben wir den
Douglas-Peucker Algorithmus angepasst
fur geschlossene Rander, Douglas and
Peucker (1973), Kanani (2000). Zunachst
wird als Startpunkt (Anker) diejenige Ecke
definiert, die am weitesten entfernt ist
vom Schwerpunkt des groben Randes.
Dann wird als Endpunkt (bewegter Punkt)
diejenige Ecke mit der gréssten Distanz
zum Startpunkt bestimmt. Diese beiden
Punkte bilden die Enden einer Strecke (Ba-
sisstrecke), die den groben Rand in zwei
Polygone unterteilt (Abb. 2). Werden
Start- und Endpunkt so festgelegt, kon-
nen sie gerade als zwei Ecken des flachen-
haften Objektes aufgefasst werden, da
dessen Rand eine wohldefinierte Form hat
(die Form eines Gebaudegrundrisses). In
den ndachsten Schritten des Algorithmus

= Randlinie
Distanz zwischen Start- und jede anderer Punkt
=== Distanz zwischen Start- und Endpunkt

2. Polygon

Startpunkt

Abb. 2: Bestimmung des ersten be-
wegten Punktes, Unterteilung der
groben Randlinie in zwei Polygone.

= Randlinie
- Distanz zwischen Basisstrecke und Punkte der

Randlinie neue bewegter Punkt

Endpunkt

Startpunkt

Die automatische Vektorisierung erfolgt
in verschiedenen Schritten:

Abb. 1: Bestimmung der «groben»
Randlinie.
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Abb. 3: Bestimmung des neuen be-
wegten Punktes.
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== Randlinie
Distanz zwischen Strecke Anker-neue

bewegter Punkt und Punkte der Randlinie neue bewegter Punkt (1)

-=- Grosste Distanz zwischen Strecke Anker- >
neue bewegter Punkt (1) und Punkte der .
Randlinie 3

neue bewegter Punkt (2)

Anker

Abb. 4: Wiederholung des Schrittes
von Abb. 3, bis keine weiteren be-
wegten Punkte mehr gefunden wer-
den.

== yereinfachte Randlinie

= Randlinie

@ Objekt-Ecke

Abb. 5: Vereinfachter Rand - Verbin-
dung der gefundenen Ankerpunkte
beider Polygone durch Strecken.

== yereinfachte Randlinie
= Randlinie
@ Objekt-Ecke i i Yoj

Abb. 6: Vereinfachte Randlinie und
Beobachtungen.

geht es darum, je die weiteren Objekt-
Ecken zu finden in den beiden Teilpoly-
gonen des groben Randes. Fiir jedes Teil-
polygon wird die Ecke mit der gréssten
Distanz von der Basislinie bestimmt. Ist
diese grosste Distanz kleiner als eine vor-
her festgelegte Toleranz, dann erklaren
wir die Basisstrecke als beste Verbesse-
rung des betrachteten Teilpolygons. An-
dernfalls wird die Teilpolygon-Ecke mitder
grossten Distanz zum neuen bewegten
Punkt (Abb. 3). Dieser Schritt wird wie-
derholt (Abb. 4), bis kein neuer bewegter
Punkt mehr gefunden werden kann. Der
letzte gefundene bewegte Punkt wird

neuer Anker und der Endpunkt der ersten
Basisstrecke wird wieder bewegter Punkt.
Das Ende des Algorithmus ist erreicht,
wenn der Endpunkt der ersten Basis-
strecke neuer Anker werden soll. Schliess-
lich erhalt man den vereinfachten Rand,
indem man alle gefundenen Ankerpunk-
te der beiden ersten Teilpolygone durch
Strecken verbindet (Abb. 5).

4. Rand Ausgleichung

Wenn ein Operateur flachenhafte Objek-
te vektorisiert durch Digitalisierung, dann
versucht er, die resultierende Randlinie
durch moglichst viele Pixel zu fihren und
dabei geometrische Bedingungen wie
Parallelitat und Orthogonalitat zu berick-
sichtigen. Wir werden diese Bedingungen
einhalten durch Einsatz eines Ausglei-
chungs-Modells.

4.1 Mathematisches Modell fur die
Ausgleichung flachenhafter Objekte
4.1.1 Beobachtungen und
unbekannte Parameter

Um die unbekannten Parameter und die
Beobachtungen des Ausgleichs-Modells
zu bestimmen, betrachten wir Abb. 6, wo
ein Gebdudegrundriss samt vereinfach-
tem Rand und Ankerecken dargestellt ist.
Wir notieren mit

n die Gesamtzahl der Beobach-
tungen;

n; die Anzahl der Punkte (Pixel) in
einem Segment |, j+1;

p die Anzahl der Objektecken (An-

kerpunkte), die Anzahl der un-
bekannten Parameter ist 2p;
nd die Summe aller Pixel in der

Randlinie (nd = n);
=1

Koordinaten der Ecken der ro-
hen Randlinie, fir i=1 bis n; (far
j=1..p)

Koordinaten der Ankerpunkte
des vereinfachten Randes, Na-
herungskoordinaten der Objekt-
Ecken, furj=1,..., p;
ausgeglichene Koordinaten (un-
bekannte Parameter) der Ob-
jekt-Ecken, fur j=1, ..., p;

inr yJ|

Xo;, Yo;

Xa; Ya
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4.1.2 Gleichungen des Modells

Abb. 7 zeigt einen Gebdudegrundriss mit
seinem vereinfachten und seinem ausge-
glichenen Rand. Um mathematische Glei-
chungen zu erhalten, die eine Korrektur
desvereinfachten Randes bringen, so dass
er besser zu den Beobachtungen passt,
Uberlegen wir folgendes:

(a) Vorausgesetzt, dass der vereinfachte
Rand und damit die Naherungskoordina-
ten der Objekt-Ecken bestimmt durch den
Douglas-Peucker Algorithmus sehr nahe
bei den gesuchten effektiven Positionen
sind, ist eine Gleichung sinnvoll, welche
die ausgeglichenen Objekt-Ecken nahe
den Anker-Ecken des vereinfachten Ran-
des annimmt:

_ — 5(a)
Xaj Xoj-rj

Yaj—Xoj-=rJ(-a) (1)

fUr j= 15 ey 2

(b) Die Winkel eines Objektes kénnen an
90 Grad Winkel angepasst werden. Die-
se Annahme entspricht der Situation auf
schweizerischen topographischen Kar-
ten, wo 80% der Gebaudegrundrisse
Rechtecke oder rechtwinklige Polygone
sind.

c;,(Xa,,Ya; ,Xa;,Ya;, Xa;, ,Ya,,)

=0+r" Q)

furj=1,..., p. Wenn j=p ist, hat man
j+ 1=1 zu setzen (ndchste Ecke ist die
erste Ecke).

Die Funktion ¢ ist gegeben durch Glei-
chung (3): Orthogonalitdt von zwei
Strecken ist definiert durch das Ver-
schwinden des Skalarproduktes der bei-
den Tragervektoren (Abb. 7).

(Xa -Xa)(Xa -Xa )
Jel J42 el =R
dis, -
(Ya _Ya).(yaj+2_Ya]+l)
4 2 4 =0
dis, -

cos(aﬁ,) =

3)

wobei fir dis; und dis; gilt
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Abb. 7: Vereinfachte und ausgegliche-
ne Randlinie.

dis, = ‘/(Xa/+l —Xaj)z +(Ya, - Yaj)2§

: 2 2
dis) = \/(Xa/*2 ——Xam) +(Yaj+2 —YaM) ;

(c) Jede Ecke der rohen Randlinie (d.h. je-
des Randpixel) soll moglichst nahe der
entsprechenden Kante des ausgegliche-
nen Randpolygons liegen.

d!(Xa;Ya;, Xa;,,Ya %!,y )=0+r/.

@)

fur j=1,..,pund i=1,.., n, Wenn
j=p ist,hat man j+ 1 =1 zu setzen
(néchste Ecke ist die erste Ecke).
Die Funktion dj stellt die Distanz dar vom
i-ten Pixel zur ausgeglichenen Strecke
(Abb. 7) und ist gegeben durch

2 = Xa;Ya;, +Yax; + Xa,y; _
JXa, - Xa,1)? + (Ya, - Ya,,)?
x;Ya;, +yXa; +Ya; Xa;,

J(Xa, - Xa,,)* +(Ya, - Yay,)?

(5)
O j= Toean b UNA. =1, 50 By
Idealerweise waren alle diese Distanzen
gleich Null, falls alle Pixel auf dem ausge-
glichenen Randpolygon liegen wiirden.
Da dies im allgemeinen nicht der Fall ist,
werden die Distanzen dj als Residuen fiir
die Einpassung der Punkte in das ausge-
glichene Randpolygon betrachtet.
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(a)

b ®

Abb. 8 (a,b): Echte Kanten und Ecken, welche zu bertcksichtigen sind (a) und
fehlerhafte Sticke, welche wegzulassen sind (b).

4.1.3 Ausreisser- und Modell-

Eigenschaften

Unser Ziel ist, einen automatischen Pro-

zess zu liefern fur die Vektorisierung von

flachenhaften Objekten (Gebaudegrund-
rissen), was heisst, dass Folgendes zu
berticksichtigen ist:

® Die Anzahl der Beobachtungen ist sehr
gross (je grosser die Scanner Auflésung,
desto grosser die Zahl der Beobach-
tungen).

® Die Zahl der unbekannten Parameter
(Ecken-Koordinaten) ist gross (mindes-
tens sechs)

® Die vereinfachte Randlinie nach
Douglas-Peucker gibt bereits eine sehr
gute Darstellung der Gebaudegrund-
risse.

Die folgenden Typen von Ausreissern sind

in unserem Modell moglich:

1. Bei den Gleichungen vom Typ (a) sind
keine Ausreisser zu erwarten, da die
Naherungskoordinaten sehr nahe an
den gesuchten Koordinaten sind.

2. Die Gleichungen mit den rechten Win-
keln kénnen grobe Fehler enthalten,
denn diese Bedingung ist nicht immer
erfullt. Eine Analyse von schweizeri-
schen topographischen Karten zeigt,
dass 80% der Gebdudegrundrisse
Rechtecke oder rechtwinklige Polygo-
ne sind. Daher ist die Zahl der Ausreis-
ser dieses Typs beschrankt, aber wenn
sie vorkommen, stellen sie grobe Feh-
ler dar.

3. Pixel, welche féalschlicherweise als Be-
standteil von Flachenobjekten definiert
werden, bilden eine weitere Art von
Ausreissern (siehe Fehler in Abb. 8b).
Deren Anzahl ist aber klein.

4.2 Berechnungsablauf
Der Ausgleichungsprozess besteht aus
folgenden Schritten:

4.2.1 Linearisierung der
Beobachtungsgleichungen

Die Funktionen di, ¢; enthalten nicht-li-
neare Terme (siehe die Gleichungen vom
Typ (b) und (c) in 4.1.2). Wir verwenden
in unserem Ausgleichsmodell die num-
merische Linearisierung.

4.2.2 Schatzung der unbekannten
Parameter

Fur die Bestimmung der unbekannten Pa-
rameter brauchen wir einen statistischen
Schatzer. Nach der Berlcksichtigung der
Modelleigenschaften und den mdéglichen
Ausreissern (siehe 4.1.3) haben wir einen
Schatzer mit beschranktem Einfluss der
Verbesserungen  (BIBER-Schatzer) ge-
wahlt. Er behalt die guten Eigenschaften
des Kleinste-Quadrate-Schatzers und
kommt auch zurecht mit einer kleinen
Zahl von Ausreissern.

4.2.3 Mathematische Definition des
BIBER-Schatzers

Dieser Schatzer ist vewandt mit dem M-
Schatzer, genauer mit dem Schweppe-
Schatzer. Erist definiert als Losung des fol-
genden Gleichungssystems:

¥ (r—J pa, =0 6)
=1 w,'

¥ Einfluss Funktion (¥ = ¥’)
a; Elemente der Beobachtungs-Matrix A
w; Gewicht der Beobachtung Nr i.
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Die Standardabweichungen der Residuen
werden als zusatzliche Gewichte verwen-
det i, Wicki (1999),

au'i =o-r, =Go V(qrr)ii ? (7)

wobei

o, die Standardabweichung ist, wenn
das Gewicht gleich 1 ist und

(g das i-te Diagonalelement der Ko-
faktorenmatrix der Residuen ist

Die Funktionen p und ¥ dieses Schat-
zers sind definiert durch

! r} fir Pl < c
, 20, S,
p cr_' -
r 7 1
i|r,.|——cz fiirr—’ZC
Gy n
8)
sk fir £ £l
r, 9 9y
W[_'] —
o, 5
sign(r, )c fir |—|2c
95
©)

Die Funktion ¥ kann formuliert werden
als Funktion der standardisierten Residu-
en (r*) wie folgt

_ . fir |r|<c
EARTEN O
& sign(r, ) fir |r|2¢

(10)

Weil o mer positiv ist, gilt sign(r*) =
sign(ry).

Der Grenzwert c¢ definiert drei verschie-
dene Falle fur die standardisierten Resi-
duen r*;, namlich r*; < cund-c<r* <
cund r* > c. Wenn die standardisierten
Residuen ins Intervall -c < r* < ¢ fallen,
werden die unbekannten Parameter
durch den Kleinste-Quadrate-Schéatzer
bestimmt, andernfalls wird der Einfluss
der Beobachtung(en) eingeschrankt.

Abb. 9 zeigt die Beobachtungs-Matrix A
mit ihren Koeffizienten, die angewendet
wird zur Ausgleichung von Objektran-

Vermessung, Photogrammetrie, Kulturtechnik 3/2001

Unknown parameters

Xo, [ Yo, [ Xw | Yo, [ Xoy [ Yoy [ .. [Xw;[Ya,|Xa, | Ve, | Xa, | Yo

Xo, 1 0 0 0 0 0

0 0 0 0 0 0 0

Yo, 0 1 0 0 0 0 0 0 0 0o 0 0 §
<

Xo, 0 0 0 0 0 0 0 0 0 1 0 ;

Yo, 0 0 0 0 0 0 0 0 0 0 0 0 1

% | ay | ap a3 ay 0 0 0 0 0 0 | O a8

% a) &y &3 84 85 | 8 0 0 0 0 0 0 0 %

2 0 0 0 0 0 0 aps 8y Bp3 8 8 A %

a 8, a2 0 0 0 0 0 0 8ip3  8ipo  8ip aip

d&; a, a, as ay O 0 0 0 0 0 0 0 0

d 0 O | & | a4 | s | mg | O 0 0 0 0 0 0

& 0 0 0 0 0 0 amus  Bua s u2 O 0

dy 0 0 0 0 0 0 0 0 0 ams3  8mu2 8 8im

. | s | a2 s  ay 0l o0l 0o o]0l o0ofo]olo

&, 0 0 a3 | 84 | @5 | Bg | O 0 0 0 0 0 0

& 0 0 0 0 0 0 Bips | B4 Bma  Bim2 O 0

dos | 0 0 10 0 0 0 0 | 0 0 | #mp % 8o 84w

0o 0 o 0o o0 o0 0

| 0 0 0 0 0 0 0 8ia@1)s Bing14 Bing-1)3 Binpn2 O 0
" 'ﬂ y| O 0 0 0 0 0 0 0 iup1y3 Binp)2 Ainp1-1 Bine-1)

& a4  apx a3  ay 0 0 0 0 0 0 0 0

d’, 0 0 a3 | 8y | a5 | 8 0 0 0 0 0 0 0

| @y | O 0 0 0 0 0 0 fuipsdwips daimd fmp2 0 O
__d’_,,k, 0 0 0 0 0 0 0 0 0 | Bnup3 | Basp2 | Bunpt | Bamp

Abb. 9: Beobachtungs-Matrix A mit ihren Koeffizienten.

dern. Die Bezeichnungen sind gleich wie
in Abb. 8.

5. Alternative Modelle

Nach dem Ausgleichungsprozess werden
die ausgeglichenen Rander analysiert, um
herauszufinden, ob gewisse Formen von
Gebaudegrundrissen dargestellt werden
kdnnen durch sog. «alternative Modelle»,
d.h. durch vordefinierte ahnliche Formen.
Wie bereits erwahnt, zeigt eine Analyse
von schweizerischen topographischen
Karten, dass fast 80% der Gebdude-
grundrisse entweder Rechtecke oder
rechteckige Polygone sind. Die 20% der
Gebaudegrundrisse mit komplizierterer
Form konnen meist in Stadtzentren ge-

funden werden (z.B. Bahnhofe oder Alt-
stadtbezirke oder andere spezielle Objek-
te). Die Methode «alternative Modelle»
kommt zum Einsatz fir Gebaudegrund-
risse, bei denen die Wahrscheinlichkeit
sehrklein ist, dass ein etwas grosserer Ge-
baudegrundriss ohne Genauigkeitsver-

L1

10: Vektorisierte

Gebaude-

Abb.

grundrisse.
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lust durch ein Rechteck angenahert wer-
den kann. Der Entscheid, ob ein einfa-
cheres Modell angenommen werden soll
stutzt sich auf den statistischen Test der
Standardabweichung zwischen dem ein-
fachen und dem komplizierten Modell.

6. Aktuelle Projekte

Die dargestellte Methode fur die Vektori-
sierung von flachenhaften Objekten
(Software RobVec, Robust Vectorisation)
ist operationell und wird eingesetzt in der
schweizerischen Landestopographie und
in privaten Firmen. Hier eine Ubersicht von
konkreten Anwendungsgebieten:
® Vektor25 und Vektor200: Die Daten
von Vektor25 und Vektor 200 stammen
aus der Vektorisierung der Landeskar-
ten 1:25000 und 1:200 000. Dabei
kam die Software KAMU (Kartographi-
sche Mustererkennung) sowie RobVec
zum Einsatz fur die Extraktion und die
Vektorisierung der Gebdudegrundrisse.
Diese Vektordaten sind topologisch
strukturiert. Einige Ergebnisse zeigt
Abb. 10.
Vektordaten von allgemeinen Karten:
Auch fur allgemeine Karten werden
KAMU und RobVec bentzt zur Extrak-
tion und Vektorisierung von Gebaude-
grundrissen.
® 3D-Visualisierung: Ein anderes For-
schungsprojekt an der ETH Zirich un-
tersucht, wie Rarsterdaten und digitale
Geldndemodelle verwendet werden

kénnen zum Erstellen und Visualisieren
3-dimensionaler  Landschaftsansich-
ten, Zanini (1999)

7. Schlussfolgerungen

Wir haben gezeigt, wie zweidimensiona-
le Information (Gebdudegrundrisse) aus
topographischen und allgemeinen Karten
identifiziert und strukturiert werden kann
durch einen automatischen Prozess und
wie robuste Schatzer eingesetzt werden
kénnen zu diesem Zweck.

Mit dem Einsatz eines robusten Schatzers
(des BIBER-Schatzers) im entwickelten
Ausgleichungsmodell zur Bestimmung
der Randkurven extrahierter Gebaude-
grundrisse wurde gezeigt, dass es mog-
lich ist, sehr gute Resultate zu erhalten
durch einen vollautomatischen Prozess.
Das ist ein grosser Vorteil, wenn umfang-
reiche Datenmengen (hunderte von un-
bekannten Parametern und Beobachtun-
gen) rasch zu verarbeiten sind, wie das
heute Ublich ist. Die entwickelten Soft-
ware-Pakete und ihr taglicher Einsatz in
privaten Firmen und Verwaltungen sind
ein Uberzeugender Beweis fur den Erfolg
dieser Arbeit.
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