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Symposium IAG

Automatische Vektorisierung
von flächenhaften Objekten
mit robuster Schätzung
Zweidimensionale Objekte (z.B. Grundflächen von Häusern) können aus topographischen

oder allgemeinen Karten automatisch strukturiert werden. Dazu dienen
insbesondere robuste Schätzer. Die Konversion von Raster- auf Vektordarstellung erfolgt in

drei Schritten: Näherung des extrahierten Randes, Ausgleichung und Anwendung
alternativer Modelle. Die erzielten Resultate zeigen, dass robuste Schätzer sehr effizient
eingesetzt werden können in der Datenerfassung für verschiedene GIS-Anwendungen.

A partir de cartes topographiques ou générales, des objets bi-dimensionnels (par
exemple la surface de base d'immeubles) peuvent être structurés automatiquement. A
cet effet, on se sert notamment de méthodes d'estimation robustes. La conversion de
données raster ou vectorielles a lieu en trois pas: approximation du bord extrait,
compensation et application de modèles alternatifs. Les résultats obtenus montrent que
des méthodes d'estimation robustes peuvent être appliquées avec beaucoup
d'efficience dans la saisie de données pour plusieurs applications de SIT

Gli oggetti bidimensionali (per es., superfici di case) possono essere automaticamente

strutturati partendo da carte topografiche o normali. A riguardo servono, in

particolare, solidi valutatori. La conversione della rappresentazione da raster a vettore avviene

in tre fasi: avvicinamento del margine estratto, compensazione e impiego di
modelli alternativi. I risultati ottenuti mostrano che i solidi valutatori sono utilizzabili molto
efficientemente nel rilevamento dei dati per diverse applicazioni SIG.

ebene Objekt ungefähr. Um eine realistische

Abstraktion der Form eines Objektes
durch die Randlinie zu erhalten, muss die

Anzahl der Ecken drastisch reduziert werden

3. Vereinfachung des
Randes

Um überflüssige Ecken der «groben»
Randlinie zu entfernen, haben wir den

Douglas-Peucker Algorithmus angepasst
für geschlossene Ränder, Douglas and

Peucker(1973), Kanani (2000). Zunächst

wird als Startpunkt (Anker) diejenige Ecke

definiert, die am weitesten entfernt ist

vom Schwerpunkt des groben Randes.

Dann wird als Endpunkt (bewegter Punkt)

diejenige Ecke mit der grössten Distanz

zum Startpunkt bestimmt. Diese beiden

Punkte bilden die Enden einer Strecke

(Basisstrecke), die den groben Rand in zwei

Polygone unterteilt (Abb. 2). Werden

Start- und Endpunkt so festgelegt, können

sie gerade als zwei Ecken des flächenhaften

Objektes aufgefasst werden, da

dessen Rand eine wohldefinierte Form hat

(die Form eines Gebäudegrundrisses). In

den nächsten Schritten des Algorithmus

E. Kanani, A. Carosio

1. Einleitung

Das im Folgenden gezeigte Verfahren zur
automatischen Vektorisierung stützt sich

auf gescannte topographische und
allgemeine Karten der Schweiz. Die kartographischen

Symbole (z.B. für Gebäude)
können extrahiert werden mit Techniken

der Mustererkennung gemäss Stengele
(1995) und Frischknecht (1999). Die

extrahierten Daten eines Rasterbildes werden

in einer Informationsebene abgelegt.
Dort werden die interessierenden Daten

geholt, um mit Hilfe von Vektorisierung
strukturiert zu werden.
Die automatische Vektorisierung erfolgt
in verschiedenen Schritten:
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2. Extraktion des Randes
Die Methode zur Herleitung der Randlinie

wurde von Nebiker und Carosio(1994)
entwickelt. Die resultierende Linie ist für
jeden inneren und äusseren Rand ein ge-
schlossenenes Polygon, welches die

äusseren Ecken der Randpixel verbindet (Abb.
1). Diese (grobe) Randlinie begrenzt das

_ Randlinie

Disiali/ zwischen Start- undjede anderer Punkt

Distanz zwischen Start-und Endpunkt
__ 1 Polygon

|Endpunkt

Startpunkt

2 Polygon

Abb. 2: Bestimmung des ersten
bewegten Punktes, Unterteilung der

groben Randlinie in zwei Polygone.

1 Randlime

Disiali/ /.wischen B.isisslrecke und Punkte der

neue bewegter Punkt

Abb. 1: Bestimmung der «groben» Abb. 3: Bestimmung des neuen be-
Randlinie. wegten Punktes.

i Mensuration, Photogrammetrie, Génie rural 3/2001
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Distanz zwischen Strecke Anker-neue

bewegter Punkt und Punkte der Randlime

- Grösste Distanz /wischen Strecke Ankerneue

bewegter Punkt (1) und Punkte der
Randhme

¦7

neue bewegter Punkt 11

.«¦«««•«t m r<

Abb. 4: Wiederholung des Schrittes

von Abb. 3, bis keine weiteren
bewegten Punkte mehr gefunden werden.

vereinfachte Randlime

Randlime

Objekt-Ecke

Abb. 5: Vereinfachter Rand - Verbindung

der gefundenen Ankerpunkte
beider Polygone durch Strecken.

^m vereinfachte Rändln

— kimJlinii'

9 Objekt-Ecke j _^oj- Yoj

2 ^o2- Y0; r^

1 >A^
tXoi. Yo,

Abb. 6: Vereinfachte Randlinie und
Beobachtungen.

geht es darum, je die weiteren Objekt-
Ecken zu finden in den beiden Teilpolygonen

des groben Randes. Für jedes
Teilpolygon wird die Ecke mit der grössten
Distanz von der Basislinie bestimmt. Ist

diese grösste Distanz kleiner als eine vorher

festgelegte Toleranz, dann erklären

wir die Basisstrecke als beste Verbesserung

des betrachteten Teilpolygons.
Andernfallswird dieTeilpolygon-Eckemitder
grössten Distanz zum neuen bewegten
Punkt (Abb. 3). Dieser Schritt wird
wiederholt (Abb. 4), bis kein neuer bewegter
Punkt mehr gefunden werden kann. Der

letzte gefundene bewegte Punkt wird

neuer Anker und der Endpunkt der ersten

Basisstrecke wird wieder bewegter Punkt.

Das Ende des Algorithmus ist erreicht,

wenn der Endpunkt der ersten
Basisstrecke neuer Anker werden soll. Schliesslich

erhält man den vereinfachten Rand,

indem man alle gefundenen Ankerpunkte
der beiden ersten Teilpolygone durch

Strecken verbindet (Abb. 5).

4. Rand Ausgleichung
Wenn ein Operateur flächenhafte Objekte

vektorisiert durch Digitalisierung, dann

versucht er, die resultierende Randlinie

durch möglichst viele Pixel zu führen und

dabei geometrische Bedingungen wie
Parallelität und Orthogonalität zu

berücksichtigen. Wir werden diese Bedingungen
einhalten durch Einsatz eines

Ausgleichungs-Modells.

4.1 Mathematisches Modell für die

Ausgleichung flächenhafter Objekte
4.1.1 Beobachtungen und
unbekannte Parameter
Um die unbekannten Parameter und die

Beobachtungen des Ausgleichs-Modells

zu bestimmen, betrachten wir Abb. 6, wo
ein Gebäudegrundriss samt vereinfachtem

Rand und Ankerecken dargestellt ist.

Wir notieren mit

n die Gesamtzahl der Beobach¬

tungen;
n, die Anzahl der Punkte (Pixel) in

einem Segment j, j+1;
p die Anzahl der Objektecken (An¬

kerpunkte), die Anzahl der
unbekannten Parameter ist 2p;

nd die Summe aller Pixel in der

Randlinie (nd p n,);
i=i

x',, y, Koordinaten der Ecken der ro¬
hen Randlinie, für i=1 bis n, (für
j i P);

Xo,, Yo, Koordinaten der Ankerpunkte
des vereinfachten Randes,

Näherungskoordinaten der Objekt-
Ecken, für j 1,..., p;

Xa,, Ya, ausgeglichene Koordinaten (un¬

bekannte Parameter) der

Objekt-Ecken, für j 1, p;

Vermessung, Photogrammetrie. Kulturtechnik 3/2001 i

4.1.2 Gleichungen des Modells
Abb. 7 zeigt einen Gebäudegrundriss mit
seinem vereinfachten und seinem

ausgeglichenen Rand. Um mathematische

Gleichungen zu erhalten, die eine Korrektur
desvereinfachten Randes bringen, sodass

er besser zu den Beobachtungen passt,

überlegen wir folgendes:
(a) Vorausgesetzt, dass der vereinfachte

Rand und damit die Näherungskoordinaten

der Objekt-Ecken bestimmt durch den

Douglas-Peucker Algorithmus sehr nahe

bei den gesuchten effektiven Positionen

sind, ist eine Gleichung sinnvoll, welche

die ausgeglichenen Objekt-Ecken nahe

den Anker-Ecken des vereinfachten Randes

annimmt:

Xaj-Xoj-rf
Yaj-Xoj-rf

für7= 1, •••,/>•

(1)

(b) Die Winkel eines Objektes können an

90 Grad Winkel angepasst werden. Diese

Annahme entspricht der Situation auf
schweizerischen topographischen Karten,

wo 80% der Gebäudegrundrisse
Rechtecke oder rechtwinklige Polygone

sind.

Cj (XaH, Yctj_x ,Xdj, Yüj XaJ+x, YaJ+l

0 + r (*)
(2)

für j 1,..., p. Wenn j p ist, hat man

j + 1 1 zu setzen (nächste Ecke ist die

erste Ecke).

Die Funktion c, ist gegeben durch

Gleichung (3): Orthogonalität von zwei

Strecken ist definiert durch das

Verschwinden des Skalarproduktes der beiden

Trägervektoren (Abb. 7).

(Xa -Xa,)-(Xa -Xa
/ \ J-' J J+3 J+1 icos (a +

dis, ¦

(Yaii-Ya)-(YaJ,2-YaJ+,)_c
dis.

wobei für disi und dis2 gilt

157

(3)



Symposium IAG

-Ä3Ö

fr

ZA

Abb. 7: Vereinfachte und ausgeglichene
Randlinie.

dis pa^-Xa])y(Ya^-Ya]?
dis-, pa Xa f+(Ya -Ya f.

,42 1*1 ' V
1*1 ,4\

(c) Jede Ecke der rohen Randlinie (d.h.
jedes Randpixel) soll möglichst nahe der

entsprechenden Kante des ausgeglichenen

Randpolygons liegen.

dj (Xaj,Yüj ,XaJ+],YaJ+i ,xf ,y{) 0 + rj
(4)

für j 1, p und i 1, n,,, Wenn

j p ist, hat man j + 1 1 zu setzen

(nächste Ecke ist die erste Ecke).

Die Funktion d', stellt die Distanz dar vom
i-ten Pixel zur ausgeglichenen Strecke

(Abb. 7) und ist gegeben durch

d{ Xa/a^+Ya^+Xa^y,
^Xaj-Xa^f+iYaj-Ya^)2

x,Yaj+i + yMj + YcijXaJ+]

i(Xaj-XaJ+l)2 + (Yaj-Yaj+l)2

(5)

für j 1, p und i 1, n,

Idealerweise wären alle diese Distanzen

gleich Null, falls alle Pixel auf dem
ausgeglichenen Randpolygon liegen würden.
Da dies im allgemeinen nicht der Fall ist,

werden die Distanzen d', als Residuen für
die Einpassung der Punkte in das

ausgeglichene Randpolygon betrachtet.
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TB Im

(a) (b)

Abb. 8 (a,b): Echte Kanten und Ecken, welche zu berücksichtigen sind (a) und
fehlerhafte Stücke, welche wegzulassen sind (b).

4.1.3 Ausreisser-und Modell-
Eigenschaften
Unser Ziel ist, einen automatischen
Prozess zu liefern für die Vektorisierung von
flächenhaften Objekten (Gebäudegrundrissen),

was heisst, dass Folgendes zu

berücksichtigen ist:

• Die Anzahl der Beobachtungen ist sehr

gross (je grösser die Scanner Auflösung,
desto grösser die Zahl der Beobachtungen).

• Die Zahl der unbekannten Parameter

(Ecken-Koordinaten) ist gross (mindestens

sechs)

• Die vereinfachte Randlinie nach

Douglas-Peucker gibt bereits eine sehr

gute Darstellung der Gebäudegrundrisse.

Die folgenden Typen von Ausreissern sind

in unserem Modell möglich:
1. Bei den Gleichungen vom Typ (a) sind

keine Ausreisser zu erwarten, da die

Näherungskoordinaten sehr nahe an

den gesuchten Koordinaten sind.

2. Die Gleichungen mit den rechten Winkeln

können grobe Fehler enthalten,
denn diese Bedingung ist nicht immer
erfüllt. Eine Analyse von schweizerischen

topographischen Karten zeigt,
dass 80% der Gebäudegrundrisse
Rechtecke oder rechtwinklige Polygone

sind. Daher ist die Zahl der Ausreisser

dieses Typs beschränkt, aber wenn
sie vorkommen, stellen sie grobe Fehler

dar.

3. Pixel, welche fälschlicherweise als

Bestandteil von Flächenobjekten definiert
werden, bilden eine weitere Art von
Ausreissern (siehe Fehler in Abb. 8b).

Deren Anzahl ist aber klein.

i

4.2 Berechnungsablauf
Der Ausgleichungsprozess besteht aus

folgenden Schritten:

4.2.1 Linearisierung der
Beobachtungsgleichungen
Die Funktionen d1,, c, enthalten nicht-lineare

Terme (siehe die Gleichungen vom
Typ (b) und (c) in 4.1.2). Wir verwenden
in unserem Ausgleichsmodell die
nummerische Linearisierung.

4.2.2 Schätzung der unbekannten
Parameter
Für die Bestimmung der unbekannten
Parameter brauchen wir einen statistischen

Schätzer. Nach der Berücksichtigung der

Modelleigenschaften und den möglichen
Ausreissern (siehe 4.1.3) haben wir einen

Schätzer mit beschränktem Einfluss der

Verbesserungen (BIBER-Schätzer)

gewählt. Er behält die guten Eigenschaften
des Kleinste-Quadrate-Schätzers und

kommt auch zurecht mit einer kleinen

Zahl von Ausreissern.

4.2.3 Mathematische Definition des

BIBER-Schätzers

Dieser Schätzer ist vewandt mit dem M-
Schätzer, genauer mit dem Schweppe-
Schätzer. Er ist definiert als Lösung des

folgenden Gleichungssystems:

IT
i=l Wv" z

pta0 =0 (6)

a.,

w.

Einfluss Funktion (¥ ¥')
Elemente der Beobachtungs-Matrix A
Gewicht der Beobachtung Nr i.

Mensuration, Photogrammetrie, Génie rural 3/2001
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Die Standardabweichungen der Residuen

werden als zusätzliche Gewichte verwendet

p„ Wicki (1999),

ßi=^r, =<70>/(O„ ' (7)

wobei

Co die Standardabweichung ist, wenn
das Gewicht gleich 1 ist und

(qrr)ii das i-te Diagonalelement der Ko-

faktorenmatrix der Residuen ist

Die Funktionen p und *F dieses Schätzers

sind definiert durch

r \r,

vCTw

1

2a. '

V
r \

r.

vCTW

\r\ cffj" 2

sign(r,)c

r,
für

°-r,

r,
für

°r,

r,
für

<*r,

r.
für

°r,

< c

>c

(8)

< c

>c

(9)

Die Funktion *? kann formuliert werden
als Funktion der standardisierten Residuen

(r*,) wie folgt

"F.

C \
r,

vffw
-*.w-r für \r. < c

sign(r') für \r'\>c

Weil On mer positiv ist, gilt sign(r*,)
sign(n).

Der Grenzwert c definiert drei verschiedene

Fälle für die standardisierten
Residuen r*,, nämlich r*, < c und -c < r*, <

c und r*, > c. Wenn die standardisierten
Residuen ins Intervall -c<r*,< c fallen,
werden die unbekannten Parameter
durch den Kleinste-Quadrate-Schätzer
bestimmt, andernfalls wird der Einfluss

der Beobachtung(en) eingeschränkt.
Abb. 9 zeigt die Beobachtungs-Matrix A
mit ihren Koeffizienten, die angewendet
wird zur Ausgleichung von Objekträn-

Unknown parameters

1

f
1

Xa, Ya, Xa, Ya, Xa, Ya3 | XV2 f Ya^ j Xa^, | Ya^, Xa, Y«p

Xo, 1 0 0 0 00000000 0

Yo, 0 1 0 0 00000000 0

Xo,, 0 0 0 0 0 0 0 0 0 0 0 1 0

Yo, 0 0 0 0 00000000 1

a. Ki au au H4 00 0 0 0 0 Oa^, Kp

az «u «U au K> ay a« 0 0 0 0 0 0 0

a 0 0 0 0 0 0 0 \f.5 aiH a^p.3 a^p.2 a^, «i*
a

p a,,. «u 0 0 0 0 0 0 0 a^j a^p.2 a^. ai.p

rf, «li au au a.,4 00000000 0

rf* 0 0 ay ai4 ¦u|%t|o|o!oooo 0

rf»M 0 0 0 0 o 0 0 a,j,,.5 ajjuj ag,,j atni-2 0 0

<J'„, 0 0 0 0 0 0 0 0 0 au,« ainl-2 aùii-i au,i

rf, K\ au au H* o 0 0 0 0 0 0 0 0

rf. 0 0 au Kt aw ai« 0 0 0 0 0 0 0

rf« 0 0 0 0 0 0 0 a». amw »1112-3 Kia-t 0 «

rfntl 0 0 0 0 0 0 0 0 0 K^an ain2-2 aûi2-i a„,2

<r\ au au au Kt oooo 0 0 0 0 0

<r\ 0 0 au Kt au ¦ au
¦ 0 0 0 0 0 0 0

** a<p-lH 0 0 0 0 0 0 0 aiji(p-ì>5 K**p-i>t a%ntp-iyi

0 0 lùmn»

aui(p-l)-2 0 0

«*V> 0 0 0 0 0 0 0 atn(p.,)-2 Kjtp-m
0 0

aUl(p-l)

0#, K\ au au a.,4 0 0 0 0 0 0

*i 0 0 au Kt aïs Ke 0 0 0 0 0 0 0

i i

& np-1 0 0 0 0 0 0 0 a»,^5 an-ljqM an-ljip-3 an-lJip-2 0 0

<*V. 0 0 0 0 0 0 0 0 0 aiuip-3 anjip-2 a,yç^i atUîP

Abb. 9: Beobachtungs-Matrix A mit ihren Koeffizienten.

dem. Die Bezeichnungen sind gleich wie

10) in Abb. 8.

5. Alternative Modelle
Nach dem Ausgleichungsprozess werden
die ausgeglichenen Ränder analysiert, um

herauszufinden, ob gewisse Formen von

Gebäudegrundrissen dargestellt werden
können durch sog. «alternative Modelle»,
d.h. durch vordefinierte ähnliche Formen.

Wie bereits erwähnt, zeigt eine Analyse

von schweizerischen topographischen
Karten, dass fast 80% der
Gebäudegrundrisse entweder Rechtecke oder

rechteckige Polygone sind. Die 20% der

Gebäudegrundrisse mit komplizierterer
Form können meist in Stadtzentren ge¬

funden werden (z.B. Bahnhöfe oder
Altstadtbezirke oder andere spezielle Objekte).

Die Methode «alternative Modelle»

kommt zum Einsatz für Gebäudegrundrisse,

bei denen die Wahrscheinlichkeit

sehr klein ist, dass ein etwas grösserer
Gebäudegrundriss ohne Genauigkeitsver-

*V## J c
*y% #

**»
EM I »

Vermessung, Photogrammetrie, Kulturtechnik 3/2001 i
Abb. 10: Vektorisierte
Gebäudegrundrisse.
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lust durch ein Rechteck angenähert werden

kann. Der Entscheid, ob ein
einfacheres Modell angenommen werden soll

stützt sich auf den statistischen Test der

Standardabweichung zwischen dem
einfachen und dem komplizierten Modell.

6. Aktuelle Projekte
Die dargestellte Methode für die Vektorisierung

von flächenhaften Objekten
(Software RobVec, Robust Vectorisation)
ist Operationen und wird eingesetzt in der
schweizerischen Landestopographie und
in privaten Firmen. Hiereine Übersichtvon
konkreten Anwendungsgebieten:
• Vektor25 und Vektor200: Die Daten

von Vektor25 und Vektor 200 stammen

aus der Vektorisierung der Landeskarten

1:25 000 und 1:200 000. Dabei

kam die Software KAMU (Kartographische

Mustererkennung) sowie RobVec

zum Einsatz für die Extraktion und die

Vektorisierung der Gebäudegrundrisse.
Diese Vektordaten sind topologisch
strukturiert. Einige Ergebnisse zeigt
Abb. 10.

• Vektordaten von allgemeinen Karten:

Auch für allgemeine Karten werden
KAMU und RobVec benützt zur Extraktion

und Vektorisierung von
Gebäudegrundrissen.

• 3D-Visualisierung: Ein anderes

Forschungsprojekt an der ETH Zürich

untersucht, wie Rarsterdaten und digitale
Geländemodelle verwendet werden

können zum Erstellen und Visualisieren

3-dimensionaler Landschaftsansichten,

Zanini (1999)

7. Schlussfolgerungen
Wir haben gezeigt, wie zweidimensionale

Information (Gebäudegrundrisse) aus

topographischen und allgemeinen Karten

identifiziert und strukturiert werden kann

durch einen automatischen Prozess und

wie robuste Schätzer eingesetzt werden
können zu diesem Zweck.

Mit dem Einsatz eines robusten Schätzers

(des BIBER-Schätzers) im entwickelten

Ausgleichungsmodell zur Bestimmung
der Randkurven extrahierter
Gebäudegrundrisse wurde gezeigt, dass es möglich

ist, sehr gute Resultate zu erhalten

durch einen vollautomatischen Prozess.

Das ist ein grosser Vorteil, wenn umfangreiche

Datenmengen (hunderte von
unbekannten Parametern und Beobachtungen)

rasch zu verarbeiten sind, wie das

heute üblich ist. Die entwickelten
Software-Pakete und ihr täglicher Einsatz in

privaten Firmen und Verwaltungen sind

ein überzeugender Beweis für den Erfolg
dieser Arbeit.
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