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Symposium IAG

Plicker-Koordinaten —
ein neues Hilfsmittel zur
Geometrie-Analyse und
Ausreissersuche

Gegenstand unserer Betrachtungen ist das folgende lineare Gauss-Markoff-Modell:
Ax =1+v, D(l) = 6?P-" (1.1). Hierin stellt A eine (n,u)-Matrix (n > u) mit vollem Spal-
tenrang (rg(A) = u) dar, die im Weiteren als Design-Matrix bezeichnet wird. x e RY ist
ein Vektor fester, unbekannter Parameter, | € R" ein (zufélliger) Beobachtungsvektor
und v e R" der Vektor der sogenannten Verbesserungen (Residuen). D(l) ist die Vari-
anz-Kovarianz-Matrix der Beobachtungen, wobei die diagonale Gewichtsmatrix P =
diag(Ps, ..., P,) (unkorrelierte Beobachtungen, P; > 0 ) als bekannt vorausgesetzt wird,
o’ als Varianz der Gewichtseinheit jedoch unbekannt ist.

Le modeéle lineaire de Gauss-Markoff est I'objet des considérations suivantes: Ax = |
+ v, D() = 6?P" (1.1). A représente une matrice (n, u) de type (rg(A) = u) qu'on ap-
pellera par la suite matrice design. x € R“ est un paramétre inconnu a vecteur fixe, 1
€ RY un vecteur d'améliorations (résidues). D(l) est la matrice de variance-covariance
des observations pour lesquelles on admet connaitre la matrice diagonale de pon-
dération P = diag (P;,...P,) (observations non correlées, P> 0) alors que o° est incon-
nu en tant que variance de ['unité de pondération.

Il modello lineare di Gauss-Markoff & oggetto delle seguenti considerazioni: Ax = | +
v, D() = 6?P' (1.1). A rappresenta una matrice (n,u)(n > u) di tipo (rg(A) = u), chia-
mata successivamente matrice design. x € RY & un parametro sconosciuto del vettore
fisso, | € R™ un vettore d'osservazione e v e R" il vettore dei cosiddetti miglioramenti
(residui). D(I) e la matrice di varianza-covarianza delle osservazioni per le quali si am-
mette la matrice diagonale di ponderazione P = diag(Ps, ..., P,) (osservazioni non cor-
relate, Pi> 0) mentre o2 & sconosciuta come varianza dell’unita di ponderazione.

mit der Diagonal-Matrix /P = diag
(VPi, A, VP, ) multipliziert:

APX . lp f Vp

Ap=+VPA, Ip=+Pl

R. Jurisch, G. Kampmann

Eine der bekanntesten und am weitesten
verbreiteten Methoden zur Schéatzung
von X, vund o2 aus (1.1) ist die Gausssche
Kleinste-Quadrate-Methode. Danach sol-

v,,=s/fv

(1.3)

len die Schatzungen derart bestimmt wer-
den, dass die gewichtete Quadratsumme
der Verbesserungen minimal wird:

v'Pv - Min
Im Weiteren wird zunachst der Fall P = |
(gleich genaue, unkorrelierte Beobach-
tungen) betrachtet. Dies stellt jedoch kei-
ne Beschrankung der Allgemeinheit dar,
denn durch die sogenannte Homogeni-
sierung kann man das Modell (1.1/1.2)

stets in ein Modell mit P = | Gberfihren.
Dazu wird zunachst die Gleichungin (1.1)

(1.2)
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Nach dem Fehlerfortpflanzungsgesetz
gilt:

D(lp) = 6’1 (1.4)

Die Schatzungen erfolgen jetzt durch:

vp vp — Min (1.5)

Die hieraus erhaltenen Schatzungen kon-
nen nun durch (1.3) in die Schatzungen
aus dem Modell (1.1/1.2) tberfthrt wer-
den, wobei die Schatzungen der unbe-

kannten Parameter in beiden Modellen
Ubereinstimmen.
Geometrisch betrachtet ergeben sich die
Schatzungen 1 (ausgeglichene Beobach-
tungen) im Fall P = | als orthogonale Pro-
jektion auf denjenigen u-dimensionalen
Unterraum U des R", der von den Spalten
der Design-Matrix A aufgespannt wird.
Diese orthogonale Projektion kann durch
eine symmetrische, idempotente Matrix H
(Hat-Matrix) erzeugt werden:
1 =HI, H=AATA)'A”
(1.6)
In analoger Weise erhdlt man die ausge-
glichenen Verbesserungen v durch ortho-
gonale Projektion von | auf den zu U or-
thogonalen Unterraum U* (dessen Di-
mension n — u ist). Die entsprechende
Projektionsmatrix werde mit R bezeich-
net. Dann gilt:
-v =Rl, R=1-H (1.7)
Die Schatzung fur die unbekannten Para-
meter erhalt man aus dem sogenannten
Normalgleichungssystem:

(ATAR=A"

Von grosser praktischer Bedeutung ist
nun die Beurteilung der Qualitat der er-
haltenen Schatzungen. Obwohl gleich
genaue Beobachtungen vorliegen, Uber-
tragt sich dies im Allgemeinen nicht auf
die Schatzungen. Die Ursache dafur liegt
in geometrischen Besonderheiten der Un-
terrdume U bzw. U* in ihrer Lage zum Be-
obachtungsraum R". Die wichtigsten
Hilfsmittel im Sinne dieser Geometrie-
Analyse (Sensitivitats-Analyse) stellen
hierbei die Diagonal-Elemente h;;bzw. i
= 1-h;,; (Teilredundanzen) der Projektions-
matrizen, sowie die ausgeglichenen Ver-
besserungen und daraus abgeleitete
Grossen (z.B. standardisierte und studen-
tisierte Verbesserungen) dar. Insbesonde-
re versucht man dadurch Beobachtungen
(einzeln oder kollektiv) zu charakterisie-
ren, die einen grossen Einfluss auf die
Schatzungen haben. In der Fachliteratur
(siehe z.B. Chatterjee, Hadi 1988) wird
dies durch die bekannten Begriffe Hebel-

(1.8)
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punkt (High-Leverage-Point), einflussrei-
che Punkte (Influential Points) und Aus-
reisser (Outlier) charakterisiert.

Die Schwierigkeiten der Erkennung sol-
cher Besonderheiten sind hinlanglich be-
kannt. Zahlreiche Beispiele hierfir wur-
den in der Literatur angeftihrt und resul-
tierten in einer kaum Uberschaubaren
Vielzahl neuer Diagnoseverfahren.

In unserem Beitrag versuchen wir etwas
mehr Klarheit in die verschiedenartigen
Begriffsbildungen zu bringen und eine ge-
meinsame Grundlage zu schaffen. Dies
geschieht durch Einfhrung sogenannter
Pliicker-Koordinaten zur Geometriebe-
schreibung.

Pliicker-Koordinaten entstammen der al-
gebraischen Geometrie (siehe z.B. van der
Waerden 1973) und stellen homogene
Koordinaten zur Beschreibung eines u-di-
mensionalen Unterraums U des R" dar.
Auchin der Approximationstheorie (Ls, L..)
stellen sie wichtige theoretische Hilfsmit-
tel dar (siehe z.B. Finzel 1994). Erste Be-
trachtungen und Anwendungen fur die
L.-Theorie wurden von den Autoren in der
Zeitschrift fur Vermessungswesen verof-
fentlicht (Jurisch, Kampmann 1998; Ju-
risch, Kampmann, Linke 1999 I/1l).

Die Bestimmung der Pliicker-Koordinaten
erfolgt nun durch Berechnung aller u-rei-
higen Determinanten, die sich aus einer
Basis des Unterraumes U ergeben. Sei da-
zu U der Unterraum, der durch die Spal-
ten der Design-Matrix A aufgespannt
wird. Betrachtet man die Matrix A als Ma-
trix ihrer Zeilen:

ASE. i) 5 (1.9)
so erhalt man eine Plucker-Koordinate d
durch Auswahl von u paarweise ver-
schiedenen Indizes iy,..., i, und Berech-
nung der Determinante der entsprechen-
den Submatrix von A:

i LY
de=y, o = de’((all ,...,a‘“)

i];"'siue{l""’n} (110)

n
Offensichtlich gibt es (u) Plicker-Ko-

odinaten. Diese sind jedoch nicht unab-

hangig, sondern erfiillen die sogenann-
ten Plicker-Relationen (van der Waerden
1973; Jurisch, Kampmann, Linke 1999
I/11). Aus den Plicker-Koordinaten zu U er-
geben sich auch unmittelbar diejenigen
des orthogonalen Komplements U*. Ne-
ben den Plicker-Koordinaten zur Matrix
A aus (1.9) bendtigen wir des Weiteren
die entsprechenden Plicker-Koordinaten
zur durch den Beobachtungsvektor | er-
weiterten Matrix A':

A=A (1.11)

Diese werden durch d bezeichnet:
a:ail,_“’;im . i]"""iu+1 E{l,...,n}
(1.12)

Des Weiteren bezeichne A'jdiejenige Ma-
trix, die aus A entsteht, indem man die |-
te Spalte von A durch | ersetzt. Diese
Pliicker-Koordinaten werden durch d be-
zeichnet:

Nj _Nj g . ; R
d’=d; 11,...,1ue{l,...,n;

(1.13)

O

Um hervorzuheben, dass eine Plicker-Ko-
ordinate die i-te Beobachtung enthalt, be-
nutzen wir die Schreibweise d;:

d =d..

filpwraaitiy

Analog bezeichne d;, eine Pliicker-Koor-
dinate, die die i-te Beobachtung nichtent-
halt:

iy € L0 i)

(1.15)

dpy =4,

ysamly

Analoge Bezeichnungen gelten auch fur
die Pliicker-Koordinaten d bzw. d. Des
Weiteren vereinbaren wir eine Summen-
konvention zur Vereinfachung der
Schreibweise. In Summen Uber Plicker-
Koordinaten wird tber alle Mdglichkeiten
summiert, die die Auswahl der nicht fest-
gelegten Indizes betreffen. Dies soll an
zwei Beispielen erldutert werden:

Vermessung, Photogrammetrie, Kulturtechnik 3/2001

=R
T (-3 | I |
Zdidj = Zdi.i,wi ST

1y, sunsly € {],...,,n}/{i,j} (1.16)

Im Weiteren werden wir nun aufzeigen,
dass sich sowohl die Projektionsmatrizen
als auch die Schatzungen als einfache
Funktionen der Plucker-Koordinaten er-
geben. Wir beginnen mit einer Darstel-
lung von H und R.

Es gilt:
1 2
h.=—) d. 1=1,...,n
1,1 DZI
o dd i#]
hi,j‘gz i =)

1 2 :
..:l—h..:— d 121,...,11
rl,l 1,1 DZ (‘)

D= d =det(ATA)

Aus (1.17) wird Folgendes ersichtlich: Die
Quadratsumme aller Pliicker-Koordinaten
entspricht der Determinante der Normal-
gleichungsmatrix ATA, welche im Weite-
ren als Gesamtmasse der Plicker-Koordi-
naten bezeichnet wird.

Die Grossen hi; bzw. ri; beschreiben also
die Anteile der Pliicker-Koordinaten, die
diei-te Beobachtung enthalten bzw. nicht
enthalten. Aus der Darstellung (1.17) las-
sen sich in einfachster Weise bekannte
Sachverhalte ableiten, von denen nur ei-
nige aufgeftihrt werden sollen.
Offensichtlich gilt hi;e[0,1], wobei die
Grenzfalle hi; = 1 (Restriktion) bzw. h;; =
0 (vollredundante Beobachtung) nur
dann auftreten, falls alle Pllcker-Koordi-
naten, die die i-te Beobachtung enthal-
ten (bzw. nicht enthalten), verschwinden.
Die Ursache fur das Verschwinden liegt
dabei offensichtlich in linearen Abhén-
gigkeiten der Spalten bzw. Zeilen der ent-
sprechenden Submatrix, die zur Bildung

(1.17)
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herangezogen wurde. Sind alle Pltcker-
Koordinaten gleich gross, so wird

h;; :% (i =1,...,n).

Wie man anhand der Normalform der De-
sign-Matrix erkennen kann, ist die Gleich-
heit aller Plticker-Koordinaten im Fall n >
3 nur fir u =1 bzw. u = n-1 moglich. Die
Summe der h;; ist u (Ansermet-Probe), da
in dieser Summe jede Plicker-Koordinate
genau u mal auftritt.

Wir untersuchen nun, wie sich die Gros-
sen in (1.17) bei Einfihrung von Beob-
achtungsgewichten andern. Die Beob-
achtungsgewichte pi= V/P; kénnen da-
bei sowohl durch Homogenisierung aus
dem Modell (1.1) stammen (a-priori-Ge-
wichte) als auch durch andere Vorgaben
(etwa bei robusten Verfahren durch ite-
rative Regewichtung) entstehen. Zu-
nachst untersuchen wir die Auswirkung
auf die Plucker-Koordinaten. Mit d(P) be-
zeichnen wir eine solche Plicker-Koordi-
nate. Dann gilt offensichtlich:

d(P): dil,...,iu(P): Pi, ©+- P e i s

u u

(1.18)

d.h., die urspringlichen Plicker-Koordi-
naten werden mit denjenigen Gewichten
multipliziert, die den verwendeten Beob-
achtungen entsprechen. Unter Ausnut-
zung dieses Aspektes lasst sich folgende
Aussage Uber die Sensitivitat der Haupt-
diagonalelemente von H(P) beweisen:

oh.. h..(1-h..

151 — l,l( l,l) i:l,_..,n
oh,;  hi; L

sy —2= l;tj

oP; P; (1.19)

Die hi; stellen also monoton wachsende
Funktionen bzgl. des eigenen Gewichts P;
dar, jedoch monoton fallende Funktionen
bzgl. anderer Gewichte P, mit j #i . Ins-
besondere koénnen voll-redundante Be-
obachtungen (h;; = 0) und Restriktionen
(hij = 1) durch Gewichtung nicht beein-
flusst werden. Liegen die Werte von h;; in
der Néhe von 1 bzw. 0, bewirken selbst
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grosse Gewichte nur kleine Veranderun-
gen der h;;.

Wir zeigen nun, wie sich die Schatzung x
der unbekannten Parameter als Funktion
der Plucker-Koordinaten d aus (1.10) und
d aus (1.13) ergibt:

% =%Zd&j

Vereinbart man weiterhin, dass nur Uber
nichtverschwindende Plicker-Koordina-
ten d # 0 summiert wird, erhalt man aus
(1.20):

(1.20)

d2
Y=p 2w=l (1.21)

Hieraus wird ersichtlich, dass sich die
Schatzung der Parameter als gewichtetes
arithmetisches Mittel der Grossen

d

d

ergibt. Nach der Cramerschen Regel fur
quadratische, konsistente Gleichungssys-
teme sind dies jedoch die Werte fur x;, die
sich aus jeweils u Beobachtungen erge-
ben. Fur u = 1 ergibt sich aus (1.21) un-
mittelbar das arithmetische Mittel der Be-
obachtungen (bzw. das gewichtete arith-
metische Mittel). Flr u = n stellt (1.21) die
Cramersche Regel dar. Die Gewichte in
(1.21) hangen von den Plucker-Koordina-
ten (geometrische Gewichte) ab. Da im
Allgemeinen nicht alle Plicker-Koordina-
ten gleich gross sein kénnen, ist dies je-
doch kein arithmetisches Mittel. Dies wird
auch deutlich, falls man die Summe in
(1.21) in die Anteile aufspaltet, die zur i-
ten Beobachtung gehéren bzw. nicht
gehoren:

dl df
Xj= hi.izwi j_’ * (1 u hi,i)zw(i)d_f%

2
w; = Zdid? (Z:wi =1),

d)’
W(i) = S a7 (ZW@FI)
(1.22)

Fur Werte von h;; in der Nahe von 1 (oder
gleich 1) wird %; also im Wesentlichen aus
den Werten geschatzt, die die i-te Beob-
achtung enthalten. Analoges gilt ftr Wer-
te in der Nahe von 0.

Zerlegt man den Beobachtungsvektor |
gemass

I=1+¢ (1.23)
wobei | die wahren Werte (Erwartungs-
werte) und € den Fehlervektor bezeich-
net, so ergibt sich unmittelbar aus (1.22):
),

d;

A

i—Xj=hi 2w

(1 . hi,i)z W(i) d&)(S)

d(i) (1.24)

Hierbei ist x; der wahre Wert des unbe-
kannten Parameters x; und d (€) bezeich-
ne diejenige Plucker-Koordinate, die er-
halten wird durch Ersetzen der j-ten Spal-
te von A durch den Fehlervektor €. (1.24)
kann z.B. zu Simulationsstudien im Sinne
einer postoptimalen Problemmodifika-
tion genutzt werden.

Wir wenden uns nun dem Studium der
geschatzten Werte vund 6 bzw. V'V zu.
Dabei kommen die Plicker-Koordinaten
der erweiterten Design-Matrix (im Weite-
ren erweiterte Plicker-Koordinaten ge-
nannt) zur Anwendung (siehe (1.18)). Es

gilt:

(1.25)
. D , D
VTV_B’ B “(h-u)D
D-Yd = det((A‘)TA')
_ o T
D= d? =der(a”A) -

Unter Verwendung der Zerlegung (1.23)

\ Mensuration, Photogrammeétrie, Génie rural 3/2001
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erhdlt man die Aussage, dass sich die
Plicker-Koordinaten d = d()), die durch
Randerung von A mit | entstehen, nicht
von denjenigen Pllicker-Koordinaten un-
terscheiden, die durch Randerung von A
mit dem Fehlervektor € entstehen:

d0)=d6)  d)=0

In diesem Sinne kénnen die Pliicker-Ko-
ordinaten d als lokale Fehlerschatzer ver-
standen werden. Liegt insbesondere nur
eine fehlerhafte Beobachtung vor (g # 0,
g=0,j#1i),soqilt:

(1.27)

ail,...,im_l =0
i iy, B {1,...,n}/{i}
ai,,...,iu,i =& 'dil,.,.i

1yeeenly € {1,...,n}/{i}

d.h., alle erweiterten Pliicker-Koordinaten
verschwinden, die die fehlerhafte Beob-
achtung nicht enthalten. In diesem Fall
geht (1.26) unter Beachtung von (1.17)
Uber in:

(1.28)

ATA 5
VN Sh o8

(1.29)
Lasst manin (1.25) alle verschwindenden
Summanden weg und dividiert beide Sei-
ten durchrij# 0 (keine Restriktion), so er-
halt man:

| g
- =ZW@)%

d)’
i —Z_:&i(% (ZW@) -1)

Die Grossen auf der linken Seite in (1.30)
werden in der Literatur auch Grobfehler-
schatzungen genannt. Nach (1.30) erge-
ben sie sich als gewichtetes arithmeti-
sches Mittel der Grossen

=

-

(1.30)

Q|

(i

(o)

Diese Grossen konnen aber ebenfalls als
diejenigen Grobfehlerschatzungen inter-
pretiert werden, die sich fir die i-te Be-

obachtung aus den (u+1) Beobachtun-
gen, die zu d; gehoren, ergeben.
Wir wenden uns nun dem Problem der
Ausreissersuche (Grobfehleraufdeckung)
zu. Wir betrachten dazu eine nichtver-
schwindende Plicker-Koordinate d; # 0 .
Unter Beachtung von (1.27) und der
Schwarzschen Ungleichung erhélt man:
d; = di,,..‘,iu,i
i),y €. u )i}
d;’ 2 N2
z-r g+ ZSiu
Jiseendu k=1
Gioeeerdu € fiiaeeniy,i} (1.31)
(1.31) stellt eine Fehlerabschatzung fur
die Fehler in den Beobachtungen i, is,...,
iy dar. Grosse Werte von d; kénnen somit
auf grosse Fehler hinweisen. Jedoch kann
ein solcher grober Fehler nicht innerhalb
dieser Beobachtungen detektiert werden.
Wir wenden uns deshalb zunachst der
Frage nach kleinen (bzw. verschwinden-
den) Pliicker-Koordinaten d; zu, da diese
auf kleine Fehler hinweisen kénnten. Da-
bei geht es jedoch nicht um einzelne
Plicker-Koordinaten, sondern um Grup-
pen von Beobachtungen, fur die alle
Plicker-Koordinaten klein sind, die diese
Beobachtungen nicht enthalten. Sei da-
Zu:
|={i1,...,ik} i1,...,ikE {1,..., n}
eine Indexmenge und d; bezeichne alle
maoglichen Plicker-Koordinaten, die die
Indizes aus | nicht enthalten. Um die
«Kleinheit» dieser Plicker-Koordinaten
zu quantifizieren, setzen wir die Masse
(Quadratsumme) ins Verhéltnis zur Ge-
samtmasse:

_ 240
1 Z az

Ist r, klein, so bringen die Beobachtun-
gen, die nicht zu | gehoren, nach (1.26)
auch nur einen kleinen Beitrag zur Schat-
zung von 6. Ist | einelementig (I = {i}), so

Lo |

(1.32)

Vermessung, Photogrammetrie, Kulturtechnik 3/2001

geht (1.32) Uber in:

(1.33)

Die Grossen r;; sind jedoch die Diago-
nalelemente der Projektionsmatrizen R
bzw. H, die sich aus der erweiterten De-
signmatrix ergeben. Diese stellen be-
kannte Diagnosetools dar (siehe z.B.
Chatterjee, Hadi 1988). Insbesondere gilt
der Zusammenhang:

T

H=H+—
VTV

(1.34)

Des Weiteren kann die Idee in (1.32) so-
fort auf die Untersuchung von Hebel-
punkten (Gruppen von Hebeln) tbertra-
gen werden, indem man statt der Plicker-
Koordinaten d die Pliicker-Koordinaten d
verwendet.
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Hat man nun eine solche Indexmenge |
aufgedeckt, fur die r, klein ist (ver-
schwindet), so muss noch nach der Ursa-
che fur die Kleinheit der damit verbunde-
nen Plicker-Koordinaten gesucht wer-
den. Als Ursache daftr kommen jedoch
nur zwei Aspekte ins Spiel. Die Index-
menge | kann Hebelpunkte (auch im Sin-
ne von Gruppen) enthalten, die zur Klein-
heit von entsprechenden Plicker-Koordi-
naten flhren. Diese mUssen aus | entfernt
werden. Die Kleinheit dieser Plicker-Ko-
ordinaten ist somit geometrisch bedingt.
Fur verbleibende Pllcker-Koordinaten
kommen als Ursache fir die Kleinheit nur
statistische Ursachen (kleine Fehler) in Be-
tracht. Aus (1.31) erhéalt man dann reali-
stische Grobfehlerschatzungen, falls man
i1,..., iu g 1 wahlt,

Beispiele:
Siehe Tagungs-Proceedings

Literatur:

Chatterjee, S., Hadi, A. S. (1988): Sensitivity
Analysis in Linear Regression. John Wiley &
Sons, New York.

Finzel, M. (1994): Linear Approximation in I3
Journal of Approximation Theory, Vol. 76:
326-350.

Jurisch, R., Kampmann, G. (1998): Vermit-
telnde Ausgleichungsrechnung mit balancier-
ten Beobachtungen — erste Schritte zu einem
neuen Ansatz. Zeitschrift fir Vermessungswe-
sen, 123: 87-92.

Jurisch, R., Kampmann, G., Linke, J. (1999):
Uber die Analyse von Beobachtungen in der
Ausgleichungsrechnung. Zeitschrift fir Ver-

messungswesen, 123: 350-357 (Teil 1),
388-395 (Teil II).

Van der Waerden, B.L. (1973): Einfuhrung in
die algebraische Geometrie, Springer Verlag,

Berlin.

Prof. Dr. rer. nat. Ronald Jurisch
Prof. Dr.-Ing. Georg Kampmann
Hochschule Anhalt (FH)
Fachbereich Vermessungswesen
Forschungsgruppe GeoMath
Postfach 2215

D-06846 Dessau

swipos®-Positionierungsdienste
des Bundesamtes fiir Landestopographie

Referenzstation

swipos - GIS/GEO

¢ cm-Genauigkeit in Echtzeit
e Zugang mit GSM Uber 0900-Dienstenummer
¢ Erhéhte Wirtschaftlichkeit dank Wegfall einer eigenen

e |deal fur den GIS- und Vermessungsbereich

swipos - NAV

* Metergenauigkeit in Echtzeit

e Zugang mit speziellem UKW/RDS-Decoder

e Anwendung im Natur- und Umweltschutz, Planung
sowie Land- und Forstwirtschaft

swipos

Bundesamt fiir Landestopographie

CH-3084 Wabern

Seftigenstrasse 264

Telefon 031/963 23 76
swipos@LT.admin.ch

150

Mensuration, Photogrammeétrie, Génie rural 3/2001




	Plücker-Koordinaten : ein neues Hilfsmittel zur Geometrie-Analyse und Ausreissersuche

