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Symposium IAG

Ausgleichung nach maximaler
Korrelation in der geometri-
schen Deformationsanalyse

Als Alternative zu den Standardverfahren in der geometrischen Deformationsanalyse
wird ein Formenvergleich auf Grundlage einer Ausgleichung nach maximaler Korre-
lation eingefuihrt. Mit dieser Auswertestrategie ist es moglich, korrekte Aussagen Uber
stabile und instabile Punkte zu treffen, sogar in Féllen, in denen die auf metrischen
Kriterien basierenden Standardverfahren versagen.

Comme alternative aux méthodes standard pour I'analyse géométrique de déforma-
tion, on utilise une comparaison des formes sur la base d'une compensation selon la
corrélation maximale. Par cette stratégie, il est possible de faire des propositions cor-
rectes sur des points stables et instables, méme dans les cas ou les méthodes stan-
dard basées sur des critéres métriques sont défaillantes.

Come alternativa ai processi standard nell’analisi della deformazione geometrica si
introduce un confronto delle forme basato su una compensazione con massima cor-
relazione. Grazie a questa strategia di valutazione, e possibile fare affermazioni cor-
rette sulla stabilita o instabilita dei punti, addirittura in casi in cui falliscono i processi

standard basati su criteri metrici.

F. Neitzel

1. Einleitung

Die geometrische Deformationsanalyse
ist eine Aufgabenstellung bei der von
vornherein bekannt ist, dass in den Daten
nicht nur zufdllige Einflisse enthalten
sind. Dennoch basieren die gebrauchli-
chen Auswertestrategien auf einer Aus-
gleichung nach der Methode der kleins-
ten Quadrate mit dem Ziel X pvv — min.
Ausfuhrliche Abhandlungen dazu sind in
Pelzer (1971) und Niemeier (1979) zu fin-
den, einen aktuellen Uberblick bieten
Welsch et al. (2000). Auf der Grundlage
von Koordinaten in mindestens zwei Epo-
chen wird die zu untersuchende Epoche
auf eine Referenzepoche transformiert,
um im Anschluss aus den Residuen eine
Aussage Uber Deformationserscheinun-
gen abzuleiten. Diese Modellbildung ist
jedoch in Bezug auf die tber die zufalli-
gen Fehler hinausgehenden Punktver-
schiebungen als unvollstandig anzuse-
hen, was die Residuenanalyse erschwert
oder sogar unmdglich macht, da sich die
Residuen aus drei Komponenten zusam-
mensetzen:
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Residuen nach Transformation =
tatsachliche Deformationen +
Transformationsdefekt + zufallige Fehler

Die einzige Losung dieses Problems be-
steht darin, die Punkte in stabile und in-
stabile Punkte zu unterteilen. In den be-
kannten Standardverfahren erfolgt diese
Klassifizierung anhand metrischer Kriteri-
en (z.B. Interpretation von Klaffungsan-
teilen). Ein Beispiel in dem aufgezeigt
wird, dass ein Standardverfahren ein
falsches Ergebnis liefern kann, ist in Rein-
king (1994) zu finden.

Als alternatives Auswerteverfahren wird
ein Formenvergleich unter Verwendung
des Korrelationskoeffizienten entwickelt.
Nach einer Ausgleichung nach maximaler
Korrelation (MCA') ist es mdglich, den
Korrelationskoeffizienten zwischen den
Punktgruppen als Kriterium fiir die Ahn-
lichkeit der Formen zu interpretieren. Die-
se Ausgleichung ist rein geometrisch be-
grindet und somit ein non-probabilisti-
sches Auswerteverfahren. Damit ist es
maoglich, stabile und instabile Punkte zu
klassifizieren, sogar in Fallen, in denen die
Losungen nach metrischen Kriterien ver-
sagen.

2. Grundprinzip der
Deformationsanalyse

Unabhangig vom Aufgabengebiet (Er-
kennung tektonischer Bewegungen,
Uberwachung von Bauwerken, Transfor-
mation heterogener geodatischer Netze,
usw.) herrscht immer das gleiche Grund-
prinzip. Auf der Basis wiederholter Mes-
sungen werden die Koordinaten von
Punktfeldern in zwei (oder mehr) Epochen
miteinander verglichen. In der prakti-
schen Anwendung sind dabei zwei Félle
grundsatzlich zu unterscheiden:
1. Die Datumsparameter sind im voraus
bekannt.
2. Die Datumsparameter sind unbekannt
(Allgemeinfall).
Im ersten Fall setzen sich die Residuen
nach der Transformation aus zwei Kom-
ponenten zusammen:
Berechnete Abweichungen = Deforma-
tionen + Messfehler
Die Entscheidung, ob die Abweichungen
aus Deformationserscheinungen resultie-
ren, wird gewohnlich mit Hilfe statisti-
scher Tests getroffen.
Im zweiten Fall wird eine Transformation
erforderlich, um die zu vergleichenden
Epochen in ein einheitliches Datum zu
Uberfuhren. Die Berechnung der dafur er-
forderlichen Parameter erfolgt in der Re-
gel mit Hilfe einer Ausgleichung nach
kleinsten Quadraten. Die daraus resultie-
renden Residuen sind aber oftmals schwer
(manchmal sogar gar nicht) zu interpre-

Abb. 1: Beispielnetz.
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Epoche | Epoche I
Pkt. Nr. Y [m] X [m] y [m] x [m]
1 220.00 220.00 222.00 217:50
2 20.00 220.00 22.50 222 .50
3 220.00 20.00 217.50 17.50
4 20.00 20.00 16.00 25.50
5 70.00 70.00 68.00 73.00
6 140.00 140.00 140.00 140.50
7 225.00 220.00 225.00 220.00
8 275.00 240.00 275.00 240.00
9 200.00 300.00 200.00 300.00
10 240.00 240.00 242.00 237 50
Tab. 1: Koordinatenverzeichnis des Netzes.
tieren, da sie sich aus drei Komponenten
zusammensetzen: Punkt Re Punkt il
Residuen nach Transformation = 1 14.16 6 14.63
tatsachliche Deformationen + 2 13.60 7 14.68
Transformationsdefekt + Messfehler °) 12.92 8 12.69
4 12.74 9 12.67
Die einzige Losung dieses Problems be- 5 15.50 10 13.74

steht in einer Klassifizierung des Punkt-
feldes in stabile und instabile Punkte. Fiir
diese Entscheidung sind die berechneten
Trans-formationsparameter aber nicht in
allen Fallen zu gebrauchen aufgrund des
Transformationsdefekts verursacht durch
die instabilen Punkte.

3. Deformationsanalyse
mit metrischen Kriterien

Bei dem folgenden Beispiel (Abbildung 1)
handelt es sich um einen Datensatz, der
in Reinking (1994) verwendet wird, um
aufzuzeigen, dass heutzutage gebrauch-
liche Algorithmen bei bestimmten Netz-
konfigurationen nicht in der Lage sind,
dhnliche oder sogar kongruente Punkt-
gruppen aufzufinden. Da die Koordina-
ten (Tabelle 1) bereits im Soll-Datum
bekannt sind, ist zu erkennen, dass die
Punkte 7, 8 und 9 eine kongruente Punkt-
gruppe (identische Koordinaten in beiden
Epochen) bilden. Diese Information soll
aber wahrend der Berechnung nicht ver-
wendet werden und das geodatische Da-
tum soll als unbekannt angenommen
werden.

Fur die somit erforderliche Datumstrans-
formation hat Reinking (1994) das Ver-

Tab. 2: Testgrosse R.

fahren «Lokalisierung mit S-Transforma-
tion» mit festem Massstab zwischen bei-
den Epochen verwendet. Nach der Be-
rechnung der Testgrosse Rf, fur Details sie-
he Niemeier (1985), wird der Punkt, der
den geringsten Wert fur Rf liefert (Tabel-
le 2), als instabil deklariert.

In diesem Fall liefert Punkt 9 den gerings-
ten Wert fur die Testgrosse Rs und ist so-
mit aus der Gruppe der stabilen Punkte
zu eliminieren. Da aber in diesem Beispiel
bekannt ist, dass es sich bei Punkt 9 um
einen stabilen Punkt handelt, fuhrt diese
Methode hier nicht zu einem korrekten
Ergebnis.

4. Formenvergleich durch
Ausgleichung nach
maximaler Korrelation

Als Alternative zur Deformationsanalyse
mit metrischen Kriterien soll nun der Ver-

Abb. 2: Zwei ahnliche Dreiecke in ho-
mothetischer Lage.

Abb. 3: Zwei &hnliche Dreiecke in be-
liebiger Lage.

Dieser Vergleich basiert auf der Ahnlich-
keit von Formen und kann mit Hilfe des
Korrelationskoeffizienten  beschrieben
werden.

4.1 Der Korrelationskoeffizient
Ausgehend von der Definition des Korre-
lationskoeffizienten flr zwei Gruppen re-
eller Zahlen wird dieser nun in einer ge-
neralisierten Form zwischen Gruppen von
Vektoren aufgestellt. Fur den Vergleich
zweier Punktgruppen mit jeweils n Punk-
ten bietet sich die Moglichkeit an, die Ko-
ordinaten als Vektoren in einem m-di-
mensionalen Vektorraum (z.B. m = 2 in
der Ebene) zu betrachten. Die Vektoren

(siehe Formel 1)

beinhalten dann die Koordinaten der
Punkte in Epoche 1 bzw. 2 und man er-
halt den Korrelationskoeffizienten in der
Form

2
(z<w,~—W)~(z,-—i>j
r? == n )
(w;-W)? Y. (z,-2)
=1 i=1

gleich von Formen verwendet werden. mit
T m T m (i
W,’ =[W," ,Wi2 jovey W,'m] (= 9‘( Und Z,- =[Zi‘ 'ij N Z,-m] 69{ 3 (I= 1, R n) (1)
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w= w; und z=

S|=
s
S|=
[\

I

4.2 Ausgleichung nach maximaler
Korrelation (MCA)
Die Grosse des berechneten Wertes fur
den Korrelationskoeffizienten r? ist ab-
hangig von
1. dem Ausmass der Ubereinstimmung
der Formen (Ahnlichkeit),
2. der relativen Position der Konfigura-
tionen zueinander.
Dies soll an einem einfachen geometri-
schen Beispiel mit zwei dhnlichen Drei-
ecken veranschaulicht werden. Um die
Formen zu vergleichen werden Koordina-
ten verwendet, so dass jeweils ein Koor-
dinatensystem festlegt werden muss.
Wahlt man diese so, dass sich die relati-
ve Position in Abbildung 2 ergibt, erhalt
man den Wert r? = 1. Wahlt man die Ko-
ordinatensysteme derart, dass man z.B.
die Position der Dreiecke wie in Abbildung
3 erhalt, so wird der Korrelationskoeffi-
zient nicht mehr r? = 1 sein.
Um nur die Ubereinstimmung der Formen
festzustellen, mussen alle relativen Posi-
tionen beider Koordinatensysteme unter-
sucht werden und diejenige ausgewahlt
werden, die den maximalen Korrelations-
koeffizienten liefert. Dies erfolgt durch ei-
ne Ausgleichung nach maximaler Korre-
lation. Damit erhalt man einen Korrelati-
onskoeffizienten, der frei vom Einfluss der
Koordinatensysteme ist und nur das Mass
der Ahnlichkeit der Formen darstellt.

4.3 Definition und Eigenschaften
des Ausgleichungsergebnisses nach
maximaler Korrelation

Die Lésung einer Ausgleichung nach ma-
ximaler Korrelation wird von Petrovic
(1997) folgendermassen definiert:

Wenn in einer gegebenen Klasse von re-
ellen Funktionen F ein Element f € F
existiert, derart, dass der Korrelationsko-
effizient (quadriert) r(l, f(x)) seinen maxi-
mal mdglichen Wert bezlglich der Klas-
se F annimmt, dann ist die Funktion f die
Lésung eines Ausgleichungsproblems
nach maximaler Korrelation.

Diese Ausgleichung hat folgende Eigen-
schaft, siehe Petrovic (1991):
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Ist f € F eine Losung nach maximaler Kor-
relationund gilt ¢ + o fe Fmitcy, o e
R, dann st ¢; + ¢; f ebenfalls eine Lésung,
namlichrz (A, ci +  f)=r2 (A, ).

Die Losung einer Ausgleichung nach ma-
ximaler Korrelation ist somit im allgemei-
nen nicht eindeutig, sondern besteht viel-
mehr aus einer ganze Klasse aus der es
eine geeignete Losung auszuwahlen gilt.

5. Ausgleichung nach
maximaler Korrelation
zwischen zweidimen-
sionalen Ortsvektoren

5.1 Funktionales Modell
Als funktionales Modell wird eine 4-Para-
meter-Transformation

(siehe Formel 4)

mit Xo, Yo Translation des Koordinatenur-
sprungs, o Rotationswinkel, m Mass-
stabsfaktor angesetzt. Fiihrt man die Ab-
kirzungen a =m cos o und o = sin o er-
gibt sich

X=ax-oy+XoundY =ox+ay+Y;.

(5

5.2 Der Korrelationskoeffizient
Ausgehend von den Gleichungen (5) wird
nun der Korrelationskoeffizient zwischen
den Vektoren

(siehe Formel 6)

aufgestellt. Die Mittelwerte w und z
ergeben sich, mit n = Anzahl der homo-
logen Punkte, zu

W:[ax__oyfx"} und 2:{)_(} .
ay+ox+Y, Y
7)

Setzt man die Vektoren (6) und (7) in den
Korrelationskoeffizienten (2) ein, so erhalt
man

(siehe Formel 8)

Nach Bildung der Skalarprodukte und ei-
nigen Umformungen ergibt sich die end-
gultige Form

(siehe Formel 9)

wobei zu erkennen ist, dass sich die Trans-

lationsparameter Xo, Yo aufgehoben ha-
ben und sich der Massstabsfaktor m kr-

M>

i=1

X =(mcosa) x-(msina) y+ Xy, Y =(msina) x+(mcosa) y+Y, (4)
W, = Wi | @ XimoYit X und z; = e [ Xi (6)
Wi, ayi+toxi+Yy Z,'y Y
i axj—oy;+Xo| [ax-oy+Xo Xi| [ X ?
” il layi+toxi+Yy ay+ox+Yy Y| |Y &
re= 8
i axi—oy;+Xo| [aX-oy+X, 22": Xi| (X 2
o\ layi+tox+Y, ay+ox+Yy| ) i3l LYl |Y

n — n _—
r?= {[cosa [ZX,-X,- -nxX+XyY;- n,VY] +
i=1 i=1

— n — o
sina( XY, —nxY - Z}//X,-+n}7XD }/ ©)
i=1 i=1

{(ix,-z = nEB ﬁy,?-ny?)x(ixi?—n)_(? + %Y,-z —anJ}
i=1 =

i=1
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zen liess. Diese Eigenschaften fuhren zu
folgendem Satz:

Satz 1.

Sind n > 2 homologe Punkte in Ko-
ordinatensystemen gegeben, die
mit einer 4-Parameter-Transforma-
tion ineinander Uberflhrt werden
sollen und fasst man die Koordi-
naten jeweils als Ortsvektoren in ei-
nem 2-dimensionalen Vektorraum
auf, so ist der Korrelationskoeffi-
zient fur diesen Fall unabhangig
von den Translationsparametern X,
und Yo und vom Massstabsfaktor
m.

5.3 Suche nach Maxima

In der Ausgleichung nach maximaler Kor-
relation soll die Losung derart bestimmt
werden, dass der Korrelationskoeffizient
(9) seinen maximalen Wert (2 = max < 1)
annimmt. Um den Extremwert zu be-
stimmen wird angenommen, dass der da-
zugehdorige Punkt im Inneren des Defini-
tionsbereichs der Funktion r? liegt. Somit
besteht die Aufgabe ein relatives Maxi-
mum zu finden. Durch Lésung der Glei-
chung dr¥/do. = 0 werden die stationaren
Punkte bestimmt, die danach auf ihre Ex-
tremwerteigenschaften zu Uberprifen
sind. Nach Bildung der Ableitung dr?/do
kann man die Gleichung dr?/do. = 0 [6sen
und man erhalt fur den Extremwert die
Lésung

n = n o
2 XYi=nxY =3 y; X; + nyX
a = arctan £ "1 .

X,'X,‘ = n)_()_(“" ZyIYI = n}_/V
1 i=1
(10)

Die Beziehung zwischen dem Rotations-
winkel aus der Ausgleichung nach maxi-
maler Korrelation und dem Ergebnis aus
einer Helmerttransformation werden in
Abschnitt 6 naher untersucht.

5.4 Residuenanalyse

Hat man durch Losen der Gleichung (10)
den Rotationswinkel o gefunden, kann
man mit ihm und den frei wahlbaren Pa-

rametern m, Xo und Yo die ausgegliche-
nen Funktionswerte berechnen. Da man
aber mit den frei wahlbaren Parametern
eine ganze Klasse von Lésungen generie-
ren’kann, erhalt man auch fur jeden Punkt
eine ganze Klasse von Residuenvektoren.
Diese Residuenvektoren, bzw. die daraus
abgeleiteten Residuenbilder, gilt es zu in-
terpretieren um systematische Punktver-
schiebungen zu identifizieren. Um eine
strukturierte Datenanalyse durchfuihren
zu konnen, ist es sinnvoll, die Residuen je-
weils fur alle Punkte gemeinsam in die
Komponenten X- bzw. Y-Verschiebung zu
zerlegen. So erhalt man

(mcosa) x; - (msine) yy+ Xo | | X4

Vy = : =
(mcosa) X, +(msina) y,+ Xo | | Xn
(1)
und
(mcos @) yy+(msina) x,+Yy | | Y4
VY = : -
(mecosa) y,+(msina) x,+ Yo | |Yn
(12)
mit

m e R+ frei wahlbar und Xo, Yoe R frei
wahlbar.
Da die Parameter X, und Yo keinen Ein-
fluss auf die relativen Verhaltnisse zwi-
schen den Residuen austben, liefert eine
Variation dieser Werte keinen Informati-
onsgewinn und man kann Xo = const. und
Yo = const. setzen und die Klasse aller Re-
siduenvektoren lediglich durch Variation
des Parameters m generieren. Die Kriteri-
en fur die Auswahl jeweils einer Losung
(aus der Klasse) konnen Annahmen fur
ein bestimmtes Verhalten von vx und vy
sein, z.B.
e glatter Verlauf der Residuen innerhalb
von Punktgruppen,
® bestimmte Grossenordnung der Resi-
duen fur Punktgruppen.

Darauf folgt die Identifizierung der Form
von systematischen Einfltssen, oder die
Einteilung des Punktfeldes in Gruppen mit
unterschiedlichen Deformationserschei-
nungen.

Vermessung, Photogrammetrie, Kulturtechnik 3/2001

6. Zusammenhange
zwischen Helmert-
transformation und MCA
mit zweidimensionalen
Ortsvektoren

Nummerische Untersuchungen haben
gezeigt, dass der Rotationswinkel aus ei-
ner Helmerttransformation mit dem aus
der Ausgleichung einer 4-Parameter-
Transformation nach maximaler Korrela-
tion Ubereinstimmt. Dieser Zusammen-
hang soll nun mit Hilfe eines Satzes von
Petrovic (1997) weiter untersucht wer-
den:

Wird die Losung einer Ausgleichung nach
maximaler Korrelation f (x) in einer Klas-
se von Funktionen F gesucht mit der Ei-
genschaft

ViMeF & Vo,ee®R = c+af(eF,
(13)

so gilt:

Die Lésung nach maximaler Korrelation ist

nicht eindeutig, sondern eine ganze Klas-

se

{(flf=ci+ch(X, ¢, e R}cF,

(14)
wobei die Basisfunktion fo (x) eine belie-
bige aus allen Losungen sein kann. Wei-
terhin wurde von Petrovic (1991) bewie-
sen:

Falls F die Eigenschaft (13) aufweist, ist
die Losung nach kleinsten Quadraten in
der Unterklasse (14) enthalten.

Somit kann man, wenn die Klasse F aller
4-Parameter-Transformationen (4) die Ei-
genschaft (13) besitzt, aus der Lésung ei-
ner Ausgleichung nach kleinsten Qua-
draten die Klasse aller Losungen nach ma-
ximaler Korrelation erzeugen. Fir die
Funktionen der 4-Parameter-Transforma-
tion (4) fuhrt die Forderung (13) zu fol-
gender Behauptung:

(c;meosa) x; - (comsina) yy + ¢ Xg +¢
(comcos ) yq +(cmsine) Xy +C,Yg +¢y
: eF
(comcos ) x; - (comsina) yy+¢, Xy +¢
(c;mcosa) y; +(c,msina) Xy +C,Yg + ¢4
(15)
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Ausgleichung nach kleinsten Quadraten
(Helmerttransformation) durchftihren

l

r Ergebnis: Transformationsparameter m, o, Xo, Yo

Durch Variation des Massstabes m mit

Xi=(m cos a) xi — (m sin &) y; + Xo
Yi=(mcos o) yi + (M sin o) X + Yo

Klasse aller Loésungen nach maximaler Korrelation erzeugen

I

Geeignete Losung auswahlen um Geometrie des Punktfeldes
zu interpretieren (z.B. anhand Residuenbildern)

’ Modell erweitern / Modellbereiche neu festlegen J

| Ausgleichung nach kleinsten Quadraten moglich ‘

Funktionen der 4-Parameter-Transforma-
tion in den Gleichungen (4), was zu be-
weisen war. Somit ist gezeigt, dass sich
die Klasse aller Losungen nach maxima-
ler Korrelation aus der «Helmert-Losung»
erzeugen lasst.

Abschliessend kann folgender Satz for-
muliert werden:

Satz 2:

Sind n > 2 homologe Punkte in Koor-
dinatensystemen gegeben, die mit ei-
ner 4-Parameter-Transformation in-
einander Uberfuhrt werden sollen und
fasst man die Koordinaten jeweils als
Vektoren in einem 2-dimensionalen
Vektorraum auf, so ist das Ergebnis ei-
ner Helmerttransformation eine L6-
sung aus der Klasse aller Lésungen der
Ausgleichung nach maximaler Korre-
lation. Darlber hinaus lasst sich die
Klasse aller Lésungen nach maxima-
ler Korrelation aus der Helmert-Lo-
sung erzeugen.

Abb. 4: Modelluntersuchung auf Basis der MCA-Lésungen generiert aus Er-
gebnissen einer Helmerttransformation.

Beweis:

Fasst man die neu entstandenen Aus-
driicke zu

m'=cum, Xo'= cpXo +¢y und ¥o'=GYg +¢4

(16)
zusammen, so erhalt man

(m'cos @) x; —(m'sine) y; + Xo'
(m'cosa) y; +(m'sina) Xy + Yy’
: e F.
(m'cosa) x, —(m'sine) y, + Xq'
(m'cosa) y, +(m'sina) x, + Yy
(17)

Dieser Ausdruck gehort zur selben Klasse
von Funktionen F wie die urspriinglichen

6.1 Bedeutung fur die praktische
Anwendung

Die in Satz 2 beschriebenen Eigenschaf-
ten sind von grosser Bedeutung fir die
praktische Anwendung. So kann die Klas-
se aller Losungen einer Ausgleichung
nach maximaler Korrelation aus dem Er-
gebnis einer Helmerttransformation ge-
neriert werden, wobei fur die Berechnung
jede «Standardsoftware» verwendet wer-
den kann. In Abbildung 4 ist diese Aus-
wertestrategie als Ablaufplan dargestellt.

4.00V—x Ll 4.00 s [m

3.00 B 3.00 -

2.00 - — 2.00 |

1.00 - = 1.00

0.00 0 R — = 0.00: T — |
-1.00 -1.00 |
-2.00 - -2.00 |

-3.00 - -3.00 1 L]
-4.00 - = -4.00 -

Pkt 1 2 3 4 5 6 7 8 9 10 Punkt 1 3 45 6 7 8 9 10

Abb. 5: Residuen vx fur die ausgewahlte MCA-Losung.

Abb. 6: Residuen vy fur die ausgewahlte MCA-Lésung.

144 \ Mensuration, Photogrammétrie, Génie rural 3/2001



IAG-Symposium

7. Deformationsanalyse
durch Formenvergleich

Als Beispiel wird das gleiche Netz wie in
Abschnitt 3 verwendet. Aus der Klasse al-
ler Lésungen der Ausgleichung nach ma-
ximaler Korrelation wird jeweils eine L6-
sung ausgewahlt und man erhalt mit o =
398.7078, m = 1.0148, X, = -5.800, Y,
= beliebig die Residuen vy in Abbildung
5. Mit der Lésung o = 398.7078, m =
0.9917, Xo = beliebig, Yo = 4.350 erhalt
man die in Abbildung 6 dargestellten Re-
siduen vy.
Die Interpretation der Residuenbilder er-
gibt, dass sich das Punktfeld in zwei Grup-
pen mit unterschiedlichem Deforma-
tionsverhalten aufteilen lasst:
® Gruppe 1 bestehend aus den Punkten
1,2,3,4,5,6, 10,
® Gruppe 2 bestehend aus den Punkten
7,8,9.
Nach dieser Einteilung kann die Defor-
mationsanalyse fortgesetzt werden, z.B.
durch eine Ausgleichung nach kleinsten
Quadraten fur jede Gruppe. Fihrt man
diese Ausgleichung durch, so zeigt sich,
dass Gruppe 1 aus instabilen und Grup-
pe 2 aus stabilen Punkten besteht. Diese
Einteilung entspricht den tatsachlichen
Deformationen, die in diesem Beispiel im
voraus bekannt waren.

8. Zusammenfassung

Als Alternative zu den Standardverfahren
der geometrischen Deformationsanalyse
wird ein Formenvergleich mit Hilfe einer
Ausgleichung nach maximaler Korrelati-
on entwickelt. Diese Ausgleichung ist rein
geometrisch begriindet und ist somit ein
non-probabilistisches  Auswerteverfah-
ren. An einem Beispiel, in dem die Analy-
se mit metrischen Kriterien versagt, kann
gezeigt werden, dass man mit Hilfe von
MCA Residuenbilder erzeugen kann, die
eine korrekte Einteilung in Punktgruppen
mit unterschiedlichem Deformationsver-
halten ermdglicht. Zudem werden die
grundlegenden Zusammenhdnge zwi-
schen der Helmerttransformation und der
Ausgleichung der 4-Parameter-Transfor-
mation nach maximaler Korrelation auf-
gezeigt.

Anmerkungen:

' MCA = (engl.) Maximum Correlation Adjust-
ment = (dt.) Ausgleichung nach maximaler
Korrelation.
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