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Symposium IAG

Ausgleichung nach maximaler
Korrelation in der geometrischen

Deformationsanalyse
Als Alternative zu den Standardverfahren in der geometrischen Deformationsanalyse
wird ein Formenvergleich auf Grundlage einer Ausgleichung nach maximaler Korrelation

eingeführt. Mit dieser Auswertestrategie ist es möglich, korrekte Aussagen über
stabile und instabile Punkte zu treffen, sogar in Fällen, in denen die auf metrischen

Kriterien basierenden Standardverfahren versagen.

Comme alternative aux méthodes standard pour l'analyse géométrique de déformation,

on utilise une comparaison des formes sur la base d'une compensation selon la

corrélation maximale. Par cette stratégie, il est possible de faire des propositions
correctes sur des points stables et instables, même dans les cas où les méthodes standard

basées sur des critères métriques sont défaillantes.

Corne alternativa ai processi standard nell'analisi della deformazione geometrica si

introduce un confronto delle forme basato su una compensazione con massima
correlazione. Grazie a questa strategia di valutazione, è possibile fare affermazioni
corrette sulla stabilità o instabilità dei punti, addirittura in casi in cui falliscono i processi

standard basati su criteri metrici.

F. Neitzel

1. Einleitung
Die geometrische Deformationsanalyse
ist eine Aufgabenstellung bei der von
vornherein bekannt ist, dass in den Daten

nicht nur zufällige Einflüsse enthalten
sind. Dennoch basieren die gebräuchlichen

Auswertestrategien auf einer
Ausgleichung nach der Methode der kleinsten

Quadrate mit dem Ziel zZ pvv -> min.

Ausführliche Abhandlungen dazu sind in

Pelzer (1971 und Niemeier (1979) zu

finden, einen aktuellen Überblick bieten
Welsch et al. (2000). Auf der Grundlage
von Koordinaten in mindestens zwei
Epochen wird die zu untersuchende Epoche
auf eine Referenzepoche transformiert,
um im Anschluss aus den Residuen eine

Aussage über Deformationserscheinungen

abzuleiten. Diese Modellbildung ist

jedoch in Bezug auf die über die zufälligen

Fehler hinausgehenden
Punktverschiebungen als unvollständig anzusehen,

was die Residuenanalyse erschwert
oder sogar unmöglich macht, da sich die

Residuen aus drei Komponenten
zusammensetzen:

Residuen nach Transformation
tatsächliche Deformationen +

Transformationsdefekt + zufällige Fehler

Die einzige Lösung dieses Problems
besteht darin, die Punkte in stabile und
instabile Punkte zu unterteilen. In den
bekannten Standardverfahren erfolgt diese

Klassifizierung anhand metrischer Kriterien

(z.B. Interpretation von Klaffungsan-
teilen). Ein Beispiel in dem aufgezeigt
wird, dass ein Standardverfahren ein

falsches Ergebnis liefern kann, ist in Reinking

(1994) zu finden.
Als alternatives Auswerteverfahren wird
ein Formenvergleich unter Verwendung
des Korrelationskoeffizienten entwickelt.
Nach einer Ausgleichung nach maximaler

Korrelation (MCA1) ist es möglich, den

Korrelationskoeffizienten zwischen den

Punktgruppen als Kriterium für die

Ähnlichkeit der Formen zu interpretieren. Diese

Ausgleichung ist rein geometrisch
begründet und somit ein non-probabilisti-
sches Auswerteverfahren. Damit ist es

möglich, stabile und instabile Punkte zu

klassifizieren, sogar in Fällen, in denen die

Lösungen nach metrischen Kriterien

versagen.

2. Grundprinzip der
Deformationsanalyse

Unabhängig vom Aufgabengebiet
(Erkennung tektonischer Bewegungen,
Überwachung von Bauwerken, Transformation

heterogener geodätischer Netze,

usw.) herrscht immer das gleiche
Grundprinzip. Auf der Basis wiederholter

Messungen werden die Koordinaten von
Punktfeldern in zwei (oder mehr) Epochen
miteinander verglichen. In der praktischen

Anwendung sind dabei zwei Fälle

grundsätzlich zu unterscheiden:
1. Die Datumsparameter sind im voraus

bekannt.
2. Die Datumsparameter sind unbekannt

(Allgemeinfall).
Im ersten Fall setzen sich die Residuen

nach der Transformation aus zwei

Komponenten zusammen:
Berechnete Abweichungen Deformationen

+ Messfehler

Die Entscheidung, ob die Abweichungen
aus Deformationserscheinungen resultieren,

wird gewöhnlich mit Hilfe statistischer

Tests getroffen.
Im zweiten Fall wird eine Transformation

erforderlich, um die zu vergleichenden
Epochen in ein einheitliches Datum zu

überführen. Die Berechnung der dafür
erforderlichen Parameter erfolgt in der Regel

mit Hilfe einer Ausgleichung nach

kleinsten Quadraten. Die daraus resultierenden

Residuen sind aber oftmals schwer

(manchmal sogar gar nicht) zu interpre-

"3 ^^-^^ / / \

y/s \
\
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y

Abb. 1: Beispielnetz.
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Epoche I Epoche II

Pkt. Nr. Y [m] X[m] y [m] x[m]

1 220.00 220.00 222.00 217.50

2 20.00 220.00 22.50 222.50

3 220.00 20.00 217.50 17.50

4 20.00 20.00 16.00 25.50

5 70.00 70.00 68.00 73.00

6 140.00 140.00 140.00 140.50

7 225.00 220.00 225.00 220.00

8 275.00 240.00 275.00 240.00

9 200.00 300.00 200.00 300.00

10 240.00 240.00 242.00 237.50

Tab. 1: Koordinatenverzeichnis des Netzes.

tieren, da sie sich aus drei Komponenten
zusammensetzen:
Residuen nach Transformation
tatsächliche Deformationen +
Transformationsdefekt + Messfehler

Die einzige Lösung dieses Problems
besteht in einer Klassifizierung des Punktfeldes

in stabile und instabile Punkte. Für

diese Entscheidung sind die berechneten

Trans-formationsparameter aber nicht in

allen Fällen zu gebrauchen aufgrund des

Transformationsdefekts verursacht durch
die instabilen Punkte.

3. Deformationsanalyse
mit metrischen Kriterien
Bei dem folgenden Beispiel (Abbildung 1)

handelt es sich um einen Datensatz, der
in Reinking (1994) verwendet wird, um

aufzuzeigen, dass heutzutage gebräuchliche

Algorithmen bei bestimmten
Netzkonfigurationen nicht in der Lage sind,
ähnliche oder sogar kongruente
Punktgruppen aufzufinden. Da die Koordinaten

(Tabelle 1) bereits im Soll-Datum
bekannt sind, ist zu erkennen, dass die

Punkte 7, 8 und 9 eine kongruente
Punktgruppe (identische Koordinaten in beiden

Epochen) bilden. Diese Information soll

aber während der Berechnung nicht
verwendet werden und das geodätische
Datum soll als unbekannt angenommen
werden.
Für die somit erforderliche Datumstransformation

hat Reinking (1994) das Ver-

Punkt Ri Punkt Rf

1 14.16 6 14.63

2 13.60 7 14.68

3 12.92 8 12.69

4 12.74 9 12.67

5 15.50 10 13.74

Tab. 2: Testgrosse Rf.

fahren «Lokalisierung mit S-Transforma-

tion» mit festem Massstab zwischen beiden

Epochen verwendet. Nach der

Berechnung derTestgrösse Rf, für Details siehe

Niemeier (1985), wird der Punkt, der
den geringsten Wert für Rf liefert (Tabelle

2), als instabil deklariert.
In diesem Fall liefert Punkt 9 den geringsten

Wert für die Testgrösse Rf und ist

somit aus der Gruppe der stabilen Punkte

zu eliminieren. Da aber in diesem Beispiel

bekannt ist, dass es sich bei Punkt 9 um
einen stabilen Punkt handelt, führt diese

Methode hier nicht zu einem korrekten

Ergebnis.

4. Formenvergleich durch
Ausgleichung nach
maximaler Korrelation
Als Alternative zur Deformationsanalyse
mit metrischen Kriterien soll nun der

Vergleich von Formen verwendet werden.

Abb. 2: Zwei ähnliche Dreiecke in ho-
mothetischer Lage.

Abb. 3: Zwei ähnliche Dreiecke in

beliebiger Lage.

Dieser Vergleich basiert auf der Ähnlichkeit

von Formen und kann mit Hilfe des

Korrelationskoeffizienten beschrieben

werden.

4.1 Der Korrelationskoeffizient
Ausgehend von der Definition des

Korrelationskoeffizienten für zwei Gruppen
reeller Zahlen wird dieser nun in einer
generalisierten Form zwischen Gruppen von
Vektoren aufgestellt. Für den Vergleich
zweier Punktgruppen mit jeweils n Punkten

bietet sich die Möglichkeit an, die

Koordinaten als Vektoren in einem m-di-

mensionalen Vektorraum (z.B. m 2 in

der Ebene) zu betrachten. Die Vektoren

(siehe Formel 1)

beinhalten dann die Koordinaten der

Punkte in Epoche 1 bzw. 2 und man
erhält den Korrelationskoeffizienten in der

Form

£(w,-w)-(z,-z)
/=1

I(w,-w)^X(z,-z)
/=1 /=i

(2)

mit

w, W, ,1V; W, ,]T e 9T und z,-=[*,•, ,z,- z,mfeXm, (' 1. - ¦ n) (1)
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_ i n i n
w — Ya w, und z -£z," /=1 n ,=1

(3)

4.2 Ausgleichung nach maximaler
Korrelation (MCA)
Die Grösse des berechneten Wertes für
den Korrelationskoeffizienten r2 ist

abhängig von

l.dem Ausmass der Übereinstimmung
der Formen (Ähnlichkeit),

2. der relativen Position der Konfigurationen

zueinander.
Dies soll an einem einfachen geometrischen

Beispiel mit zwei ähnlichen
Dreiecken veranschaulicht werden. Um die

Formen zu vergleichen werden Koordinaten

verwendet, so dass jeweils ein

Koordinatensystem festlegt werden muss.

Wählt man diese so, dass sich die relative

Position in Abbildung 2 ergibt, erhält

man den Wert r2 1. Wählt man die

Koordinatensysteme derart, dass man z.B.

die Position der Dreiecke wie in Abbildung
3 erhält, so wird der Korrelationskoeffizient

nicht mehr r2 1 sein.

Um nurdie Übereinstimmung der Formen

festzustellen, müssen alle relativen
Positionen beider Koordinatensysteme untersucht

werden und diejenige ausgewählt
werden, die den maximalen
Korrelationskoeffizienten liefert. Dies erfolgt durch eine

Ausgleichung nach maximaler
Korrelation. Damit erhält man einen
Korrelationskoeffizienten, der frei vom Einfluss der

Koordinatensysteme ist und nur das Mass

der Ähnlichkeit der Formen darstellt.

4.3 Definition und Eigenschaften
des Ausgleichungsergebnisses nach
maximaler Korrelation
Die Lösung einer Ausgleichung nach
maximaler Korrelation wird von Petrovic

(1997) folgendermassen definiert:
Wenn in einer gegebenen Klasse von
reellen Funktionen F ein Element f 6 F

existiert, derart, dass der Korrelationskoeffizient

(quadriert) r2(l, f(x)) seinen maximal

möglichen Wert bezüglich der Klasse

F annimmt, dann ist die Funktion f die

Lösung eines Ausgleichungsproblems
nach maximaler Korrelation.
Diese Ausgleichung hat folgende
Eigenschaft, siehe Petrovic (1991):

142

Ist f e F eine Lösung nach maximaler
Korrelation und gilt Ci + c2 f e F mit Ci, c2 e
5R, dann ist d + c2 f ebenfalls eine Lösung,
nämlich r2 (X, Ci + c2 f r2 (X, f
Die Lösung einer Ausgleichung nach

maximaler Korrelation ist somit im allgemeinen

nicht eindeutig, sondern besteht
vielmehr aus einer ganze Klasse aus der es

eine geeignete Lösung auszuwählen gilt.

5. Ausgleichung nach
maximaler Korrelation
zwischen zweidimensionalen

Ortsvektoren

5.1 Funktionales Modell
Als funktionales Modell wird eine 4-Para-

meter-Transformation

(siehe Formel 4)

mit Xo, Y0 Translation des Koordinatenursprungs,

a Rotationswinkel, m

Massstabsfaktor angesetzt. Führt man die

Abkürzungen a m cos a und o sin a
ergibt sich

5.2 Der Korrelationskoeffizient
Ausgehend von den Gleichungen (5) wird

nun der Korrelationskoeffizient zwischen

den Vektoren

(siehe Formel 6)

aufgestellt. Die Mittelwerte w und z

ergeben sich, mit n Anzahl der homologen

Punkte, zu

w ax-oy + X0

ay + ox + Y0
und Z--

(7)

X ax-oy+ X0 und Y =ox+ay+Y0

(5)

Setzt man die Vektoren (6) und (7) in den

Korrelationskoeffizienten (2) ein, so erhält

man

(siehe Formel 8)

Nach Bildung der Skalarprodukte und

einigen Umformungen ergibt sich die

endgültige Form

(siehe Formel 9)

wobei zu erkennen ist, dass sich die

Translationsparameter Xo, Yo aufgehoben
haben und sich der Massstabsfaktor m kür-

X {mcoscc) x-(msinor)y + XQ, Y =(ms\na) x+(mcosa) y + Y0 (4)

w,

r =¦

Wi,

w,

/=1

ax,-oy, + X0

ayi + o x, + V0

aXi-oyj + X0

ay, + oXj + Y0:

und z,
Y,

(6)

ax-oy+ X0

ay + ox + Y0

i \

J j
X,

' i _

/=1

a x, -oyi + X0

ayj + oXj + Yo

ax-oy + X0

ay + ox + Y0

y n^

I/=1

x,
Y

(8)

ri _— n _cos a £ Xi X, - nxX + E y, Y; - nyY | +
I>1 /=1

sin a | laXjYi-nxY-Y, y, X, + nyX
a=i /=1

(9)

/=1 /=1
Sx,2-nx2 + Zy2-ny2}x\ £x2-nX2 + ZY2-nY2

M /=1

i Mensuration, Photogrammetrie, Génie rural 3/2001
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zen liess. Diese Eigenschaften führen zu

folgendem Satz:

Satz 1:

Sind n > 2 homologe Punkte in

Koordinatensystemen gegeben, die

mit einer 4-Parameter-Transforma-

tion ineinander überführt werden
sollen und fasst man die Koordinaten

jeweils als Ortsvektoren in

einem 2-dimensionalen Vektorraum
auf, so ist der Korrelationskoeffizient

für diesen Fall unabhängig
von den Translationsparametern X0

und Yo und vom Massstabsfaktor

m.

5.3 Suche nach Maxima
In der Ausgleichung nach maximaler
Korrelation soll die Lösung derart bestimmt

werden, dass der Korrelationskoeffizient
(9) seinen maximalen Wert (r2 max < 1)

annimmt. Um den Extremwert zu
bestimmen wird angenommen, dass der

dazugehörige Punkt im Inneren des

Definitionsbereichs der Funktion r2 liegt. Somit
besteht die Aufgabe ein relatives Maximum

zu finden. Durch Lösung der
Gleichung dr2/doc 0 werden die stationären
Punkte bestimmt, die danach auf ihre

Extremwerteigenschaften zu überprüfen
sind. Nach Bildung der Ableitung dr2/da
kann man die Gleichung dr2/doc 0 lösen

und man erhält für den Extremwert die

Lösung

a arctan

Die Beziehung zwischen dem Rotationswinkel

aus der Ausgleichung nach
maximaler Korrelation und dem Ergebnis aus
einer Helmerttransformation werden in

Abschnitt 6 näher untersucht.

5.4 Residuenanalyse
Hat man durch Lösen der Gleichung (10)
den Rotationswinkel a gefunden, kann

man mit ihm und den frei wählbaren Pa-

Ì>;V,-
/=1

-rixY--ÎViX,
/=1

+ nyX

îx,X,
/=1

-nxX ^lYiYi
/=1

-nyY

(10)

rametern m, X0 und Y0 die ausgeglichenen

Funktionswerte berechnen. Da man
aber mit den frei wählbaren Parametern

eine ganze Klasse von Lösungen generieren

kann, erhält man auch für jeden Punkt

eine ganze Klasse von Residuenvektoren.

Diese Residuenvektoren, bzw. die daraus

abgeleiteten Residuenbilder, gilt es zu

interpretieren um systematische
Punktverschiebungen zu identifizieren. Um eine

strukturierte Datenanalyse durchführen

zu können, ist es sinnvoll, die Residuen

jeweils für alle Punkte gemeinsam in die

Komponenten X- bzw. Y-Verschiebung zu

zerlegen. So erhält man

(mcosa) x. - (msina) y. + X0

(mcosa) xn + (msina) y„ + X0_

(11)

und

Vv

'
(mcosa) y. + (msina) x1 + Y0 'Vi"

(mcosa) y„ + (msina) x„ + V0_ Yn.

(12)

mit

m e 9l+ frei wählbar und Xo, Y0 e 9Î frei

wählbar.
Da die Parameter X0 und Y0 keinen
Einfluss auf die relativen Verhältnisse
zwischen den Residuen ausüben, liefert eine

Variation dieser Werte keinen

Informationsgewinn und man kann Xo const, und

Yo const, setzen und die Klasse aller

Residuenvektoren lediglich durch Variation
des Parameters m generieren. Die Kriterien

für die Auswahl jeweils einer Lösung
(aus der Klasse) können Annahmen für
ein bestimmtes Verhalten von vx und vY

sein, z.B.:

• glatter Verlauf der Residuen innerhalb

von Punktgruppen,
• bestimmte Grössenordnung der

Residuen für Punktgruppen.

Darauf folgt die Identifizierung der Form

von systematischen Einflüssen, oder die

Einteilung des Punktfeldes in Gruppen mit
unterschiedlichen Deformationserscheinungen.

6. Zusammenhänge
zwischen
Helmerttransformation und MCA
mit zweidimensionalen
Ortsvektoren

Nummerische Untersuchungen haben

gezeigt, dass der Rotationswinkel aus

einer Helmerttransformation mit dem aus

der Ausgleichung einer 4-Parameter-

Transformation nach maximaler Korrelation

übereinstimmt. Dieser Zusammenhang

soll nun mit Hilfe eines Satzes von
Petrovic (1997) weiter untersucht werden:

Wird die Lösung einer Ausgleichung nach

maximaler Korrelation f (x) in einer Klasse

von Funktionen F gesucht mit der

Eigenschaft

\/f(x)eF & Vct.CüsSR => Ci + df^eF,
(13)

so gilt:
Die Lösung nach maximaler Korrelation ist

nicht eindeutig, sondern eine ganze Klasse

{f\f{x) ci + c2fo (x), eu Czs 9Î} ç F,

(14)

wobei die Basisfunktion f0 (x) eine beliebige

aus allen Lösungen sein kann.
Weiterhin wurde von Petrovic (1991) bewiesen:

Falls F die Eigenschaft (13) aufweist, ist

die Lösung nach kleinsten Quadraten in

der Unterklasse (14) enthalten.

Somit kann man, wenn die Klasse F aller

4-Parameter-Transformationen (4) die

Eigenschaft (13) besitzt, aus der Lösung
einer Ausgleichung nach kleinsten
Quadraten die Klasse aller Lösungen nach

maximaler Korrelation erzeugen. Für die

Funktionen der 4-Parameter-Transforma-

tion (4) führt die Forderung (13) zu

folgender Behauptung:

(c2mcosa) x- -(c2msina) y- + c2X0 +c,

(c2m cos a) y. + (c2m sin a) Xa + c2 V0 + c,

Vermessung, Photogrammetrie, Kulturtechnik 3/2001 i
c2mcosa) x. - (c2msina) y. + 02X^ + 0^

(c2m cos a) y. + (fym sin a) x. + c2Y0 + c.
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Start

Ausgleichung nach kleinsten Quadraten

(Helmerttransformation) durchführen

Ergebnis: Transformationsparameter m, a, Xo, Y0

Durch Variation des Massstabes m mit

X, (m cos a) x, - (m sin oc) y, + X0

Y, (m cos a) y, + (m sin a) x, + Y0

Klasse aller Lösungen nach maximaler Korrelation erzeugen

Geeignete Lösung auswählen um Geometrie des Punktfeldes

zu interpretieren (z.B. anhand Residuenbildern)

Modell erweitern / Modellbereiche neu festlegen

Ausgleichung nach kleinsten Quadraten möglich

Ende

Abb. 4: Modelluntersuchung auf Basis der MCA-Lösungen generiert aus
Ergebnissen einer Helmerttransformation.

Beweis:

Fasst man die neu entstandenen
Ausdrücke zu

m'= c^m, X0' C2X0 + C| ur|d Y0' c^Vg + q

(16)

zusammen, so erhält man

(m'cosa) x-, -(m'sina) y: + X0'

(m'cosa) y1 + (m'sinor) x-, + Y0'

(m'cosa) xn -(m'sina) yn+ X0'

(m'cosa) yn -t-(m'sina) xn + Y0'

(17)

Dieser Ausdruck gehört zur selben Klasse

von Funktionen F wie die ursprünglichen

Funktionen der 4-Parameter-Transforma-

tion in den Gleichungen (4), was zu
beweisen war. Somit ist gezeigt, dass sich

die Klasse aller Lösungen nach maximaler

Korrelation aus der «Helmert-Lösung»

erzeugen lässt.

Abschliessend kann folgender Satz

formuliert werden:

Satz 2:
Sind n > 2 homologe Punkte in

Koordinatensystemen gegeben, die mit
einer 4-Parameter-Transformation
ineinander überführt werden sollen und

fasst man die Koordinaten jeweils als

Vektoren in einem 2-dimensionalen
Vektorraum auf, so ist das Ergebnis

einer Helmerttransformation eine

Lösung aus der Klasse aller Lösungen der

Ausgleichung nach maximaler Korrelation.

Darüber hinaus lässt sich die

Klasse aller Lösungen nach maximaler

Korrelation aus der Helmert-Lösung

erzeugen.

6.1 Bedeutung für die praktische
Anwendung
Die in Satz 2 beschriebenen Eigenschaften

sind von grosser Bedeutung für die

praktische Anwendung. So kann die Klasse

aller Lösungen einer Ausgleichung
nach maximaler Korrelation aus dem

Ergebnis einer Helmerttransformation
generiert werden, wobei für die Berechnung

jede «Standardsoftware» verwendet werden

kann. In Abbildung 4 ist diese

Auswertestrategie als Ablaufplan dargestellt.

vx m vY m
4.00 n 4.00

3.00 3.00

2.00 2.00

.00 1.00

n0.00 0.00 u
1.00 -1.00

2.00 2.00

3.00 -3.00

4.00 4.00

10Punkt 0 Punkt 1

Abb. 5: Residuen vx für die ausgewählte MCA-Lösung. Abb. 6: Residuen vY für die ausgewählte MCA-Lösung.
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7. Deformationsanalyse
durch Formenvergleich

Als Beispiel wird das gleiche Netz wie in

Abschnitt 3 verwendet. Aus der Klasse

aller Lösungen der Ausgleichung nach
maximaler Korrelation wird jeweils eine

Lösung ausgewählt und man erhält mit a
398.7078, m 1.0148, X0 -5.800, Y0

beliebig die Residuen vx in Abbildung
5. Mit der Lösung a 398.7078, m

0.9917, Xo beliebig, Y0 4.350 erhält

man die in Abbildung 6 dargestellten
Residuen vY.

Die Interpretation der Residuenbilder

ergibt, dass sich das Punktfeld in zwei Gruppen

mit unterschiedlichem
Deformationsverhalten aufteilen lässt:

• Gruppe 1 bestehend aus den Punkten

1, 2, 3,4, 5, 6, 10,

• Gruppe 2 bestehend aus den Punkten

7, 8, 9.

Nach dieser Einteilung kann die

Deformationsanalyse fortgesetzt werden, z.B.

durch eine Ausgleichung nach kleinsten

Quadraten für jede Gruppe. Führt man
diese Ausgleichung durch, so zeigt sich,

dass Gruppe 1 aus instabilen und Gruppe

2 aus stabilen Punkten besteht. Diese

Einteilung entspricht den tatsächlichen

Deformationen, die in diesem Beispiel im

voraus bekannt waren.

8. Zusammenfassung

Als Alternative zu den Standardverfahren

der geometrischen Deformationsanalyse
wird ein Formenvergleich mit Hilfe einer

Ausgleichung nach maximaler Korrelation

entwickelt. Diese Ausgleichung ist rein

geometrisch begründet und ist somit ein

non-probabilistisches Auswerteverfahren.

An einem Beispiel, in dem die Analyse

mit metrischen Kriterien versagt, kann

gezeigt werden, dass man mit Hilfe von
MCA Residuenbilder erzeugen kann, die

eine korrekte Einteilung in Punktgruppen
mit unterschiedlichem Deformationsverhalten

ermöglicht. Zudem werden die

grundlegenden Zusammenhänge
zwischen der Helmerttransformation und der

Ausgleichung der 4-Parameter-Transfor-

mation nach maximaler Korrelation

aufgezeigt.

Anmerkungen:
1 MCA (engl.) Maximum Correlation Adjustment

(dt.) Ausgleichung nach maximaler

Korrelation.
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