Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 94 (1996)

Heft: 5: GIS 96 : Geografische Informationssysteme im Vormarsch = SIT 96 :

les systèmes d'information du territoire progressent

Rubrik: Firmenberichte = Nouvelles des firmes

Autor: [s.n.]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Swissair Photo + Vermessungen AG:

Kundennahe Produktepalette für alle Geo-Services

Längst werden raumbezogene Informationen weit über klassische Bereiche wie Vermessung und Kartographie hinaus eingesetzt. Moderne Geographische Informationssysteme (GIS) verbinden räumliche Sachverhalte mit Daten aus anderen Quellen und eröffnen so neue Perspektiven für vielfältige Anwendungen. Voraussetzung ist allerdings, dass die Datengrundlagen vorhanden sind und ihre langjährige Nutzung sichergestellt ist. Dafür sorgt die Swissair Photo + Vermessungen AG, die Spezialistin für Erfassung, Bearbeitung, Verwaltung, Analyse und Auswertung raumbezogener Daten. Das Unternehmen kombiniert die über 60jährige Erfahrung im Luftbild- und Ingenieurwesen mit dem modernen digitalen Knowhow eines führenden Anbieters von umfassenden Geo-Services. Das Ergebnis sind vielfältige Dienstleistungen und Produkte, die alle Belange der raumbezogenen Informationsverarbeitung abdecken.

Bei Swissair Photo + Vermessungen reimt sich Tradition besonders gut mit Innovation. Das 1931 gegründete Unternehmen baute als eines der ersten Schweizer Ingenieurbüros eine Marketingabteilung auf. Für Geschäftsführer Thomas Grünenfelder ein logischer und konsequenter Schritt, um Kundennähe und Marktverbundenheit noch besser in die Unternehmenskultur einzubinden: «Das Marketing

ist die Brücke zu den Kunden. Unsere Marketingmitarbeiter sind quasi die «Horcher im Markt». Kundenbedürfnisse werden so erfasst, analysiert und spiegeln sich in unserer Produkte- und Dienstleistungspalette wider.»

Kundennähe aus Prinzip

Kundennähe prägt auch den Unternehmensaufbau. Das Unternehmen ist in die fünf Geschäftsbereiche Geo-Beratung. Geo-Management, Geo-Marketing, Geo-Dienstleistungen und Geo-Produkte unterteilt. Alle Bereiche arbeiten interdisziplinär zusammen, um Geo-Projekte zu realisieren. Den ersten Kontakt haben Kunden typischerweise mit Mitarbeiterinnen und Mitarbeitern der Geo-Beratung. Sie bieten Unterstützung bei der Systemevaluation, begleiten GIS-Projekte, schulen Kunden an neuen Produkten oder erarbeiten mit ihnen in Workshops Planungs-, Entscheidungs- und Arbeitsgrundlagen.

Im Bereich Geo-Management werden Dienstleistungen erbracht, die für die Führung der einzelnen Projekte und die Qualitätssicherung erforderlich sind. Auch Funktionen als Generalunternehmen, die Swissair Photo + Vermessungen für grosse Projekte anbietet, werden von hier wahrgenommen.

View 5

Abb. 1: Digitales Terrainmodell «Axenstrasse» mit eingefärbter Dreiecksvermaschung (Rendering).

Ein sehr zukunftsträchtiger Bereich ist das Geo-Marketing. Marketing-Verantwortliche erkennen immer deutlicher: Realitätsnahe geographische Daten sind eine unentbehrliche Ergänzung zu statistischen Kennzahlen und Marktforschungs-Ergebnissen. Orthophotos, wie sie Swissair Photo + Vermessungen anbietet, leisten in diesem Zusammenhang hervorragende Dienste.

Das wichtige Standbein: Geo-Dienstleistungen

Die Ingenieurdisziplinen sind im Bereich Geo-Dienstleistungen zusammengefasst. Dieser Bereich nimmt heute den grössten Teil der Geschäftstätigkeit ein. Das Angebot umfasst digitale Photogrammetrie, digitale Bildverarbeitung, Scan-, Vektorisierungs- und Plotservices, amtliche und Ingenieur-Vermessungen, digitale Kartographie und Geoinformatik.

Digitale Photogrammetrie

Digitale Photogrammetrie ist eine optimale Ergänzung zu herkömmlichen vermessungstechnischen und kartographischen Verfahren. Der hohe aktuelle Informationsgehalt von Luftbildern wird voll genutzt, z.B. für leicht interpretierbare Bildkarten, für neue Verfahren der amtlichen Vermessung und der digitalen Kartographie. Im Angebot enthalten sind Aerotriangulation, digitale Terrainmodelle und digitale Orthophotos sowie terrestrische Photogrammetrie.

Digitale Bildverarbeitung

Mit der digitalen Bildverarbeitung werden die digitalen photogrammetrischen Prozesse in eine eigentliche Verfahrenskette eingebettet. Zu diesen Verfahren zählen u.a. das hochauflösende und hochpräzise Scannen von Luftbildern, das Zusammensetzen von Einzelbildern zu flächendeckenden Gebieten (Mosaicing), die dynamische Bildanpassung in bezug auf Farbunterschiede und Hell-/Dunkelabstufungen sowie die Datenausgabe in verschiedenen Formaten und auf unterschiedlichen Datenträgern. Begleitet wird die Bildverarbeitung von einem prozessübergreifenden Datenmanagement und von Kontroll- und Qualitätsmechanismen, um die Erfüllung der Kundenanforderungen zu gewährleisten.

Scan-, Vektorisierungs- und Plotservice

Für die Aufbereitung von digitalen Basisdaten aus vorhandenen Plan- und Kartenwerken sind neuartige Scan- und Vektorisierungsverfahren im Einsatz. Dem Verwendungszweck entsprechend werden die analogen Werke gescannt. Die

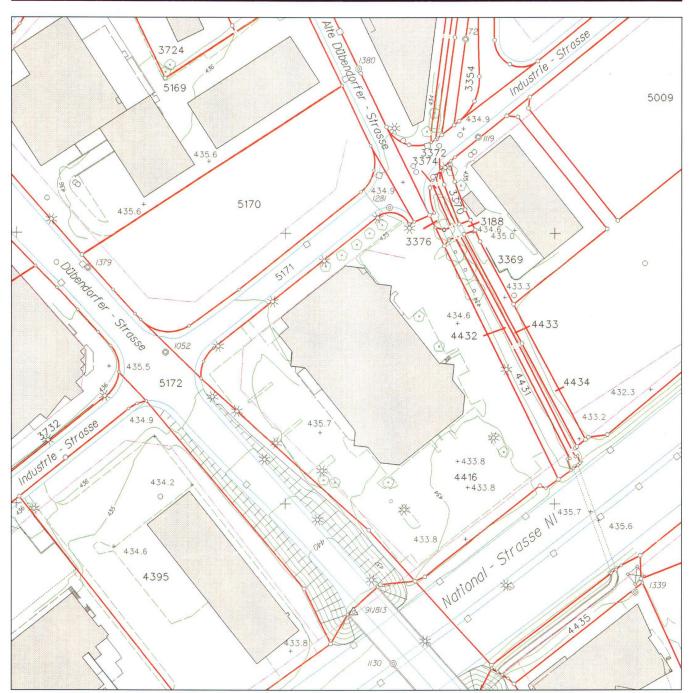


Abb. 2: Ausschnitt zu einem GIS-Datensatz; Katasterdaten kombiniert mit photogrammetrisch ausgewerteten Objekten (Höhenkoten und Höhenlinien, Einzelbäume, Kandelaber, Einlaufschächte).

daraus entstehenden Rasterdaten sind in geographischen Informationssystemen als Situationsreferenz oder als Basis für die Bildschirmdigitalisierung einsetzbar. Für die Konvertierung der Rasterdaten in strukturierte Vektorform stehen erprobte Programmpakete und automatisierte Verfahren zur Verfügung. Diese Raster-Vektorkonvertierung eignet sich speziell für die rasche Numerisierung von Grundbuchund Leitungskatasterplänen. Das Plotten in verschiedenen Qualitätsstufen und in Vektor-, Raster- oder Hybridtechnik vervollständigt das Angebot des Scan-, Vektorisierungs- und Plotservices.

Amtliche Vermessung

Nirgendwo sind Unternehmergeist und Innovation so gefragt wie im Umfeld der amtlichen Vermessung. Den klar formulierten Datenstrukturen für den Grunddatensatz stehen der freie Markt, die Methodenfreiheit und die Geldknappheit gegenüber. Für ein Unternehmen wie Swissair Photo + Vermessungen eine willkommene Herausforderung und grosse Chance. Dank dem breiten Spektrum an GeoDienstleistungen, wie z.B. digitale Photogrammetrie, Scan- und Vektorisierungsverfahren, Plotservice sowie den modernen digitalen Messmethoden und den

AV93-konformen Informationssystemen wird dem Kunden eine umfassende, kompetente und wirtschaftliche Lösung angeboten.

Ingenieur-Vermessung

Der Bereich Ingenieur-Vermessung liegt wieder im Trend. Mit einer konsequenten Akquisitionspolitik, neuen digitalen Verfahren und unter Einbezug der ergänzenden Geo-Dienstleistungen konnten in der Bau-, Überwachungs- und Präzisionsvermessung viele Kunden gewonnen werden.

Abb. 3: Blonay: Digitales Orthophoto aus der Produktepalette «Swissphoto» überlagert mit Daten der amtlichen Vermessung.

Digitale Kartographie

Die digitale Kartographie ermöglicht mit modernen Verfahren und Methoden eine umfassende und effiziente Bearbeitung verschiedenster Kartenwerke. Ein gutes Beispiel ist die Nachführung des Übersichtsplanes 1: 10000. Dazu wurde eine neue Verfahrenskette entwickelt. Sie beginnt mit photogrammetrischen Auswertungen der neuen oder geänderten Objekte und erlaubt mit speziellen GIS-Konfigurationen das Einarbeiten der Kartenobjekte in die Rastergrundlage. Zum Einsatz kommen dabei alle Verfahren der digitalen Kartenverarbeitung wie Bildschirm-Digitalisierung mit gleichzeitiger Objektbildung, Bearbeitung von Rasterdaten, automatisches Generieren der Kartensignaturen und Blattrahmen, interaktives Plazieren der Kartentexte sowie das hybride Plotten. Eine vergleichbare Verfahrenskette für den Anwendungsbereich Gewässerschutzkarten wurde in Zusammenarbeit mit der Geo-Informatik entwickelt. In Ergänzung zur rein grafikorientierten Bearbeitung des Übersichtsplans ist bei der Gewässerschutz-Applikation eine Sachdatenbank integriert.

Geo-Informatik

Immer wichtiger wird die Geo-Informatik. Diese Disziplin ermöglicht die Nutzung

raumbezogener Daten mit Hilfe der modernen Informatik, zum Beispiel in einem GIS. Hier bietet Swissair Photo + Vermessungen sämtliche Dienstleistungen, um GIS in einem Unternehmen oder einer Behörde erfolgreich zu integrieren. Darüber hinaus werden kundenspezifische GIS realisiert. Auf der Grundlage von Datenbank- und GIS-Standardsoftware entwickelt Swissair Photo + Vermessungen ergänzende Software-Module entsprechend individueller Leistungsanforderungen. Durch den Einsatz von Standardsoftware passen diese Lösungen nahtlos in bestehende Organisationen und Büroumgebungen.

Basisdaten à la Carte – Swissphoto

Dem Bereich Geo-Produkte sind die neue Produktepalette Swissphoto und das traditionsreiche Angebot Luftbild zugeordnet. Mit Swissphoto stellt Swissair Photo + Vermessungen die Daten zur Verfügung, die viele GIS-Anwender dringend benötigen. Swissphoto umfasst eine komplette Palette aktueller digitaler Basisdaten flächendeckend über die ganze Schweiz. Als eigenständiger Datensatz bilden sie eine Ergänzung zu Daten der amtlichen Ver-

messung und vielen anderen Informationsquellen. Angeboten werden analoge und digitale Luftbilder in Farbe und Infrarot, digitale Orthophotos in Farbe, Infrarot und Schwarzweiss und digitale Terrainmodelle. Alle Produkte sind auf den unterschiedlichsten Datenträgern gemäss Kundenwünschen erhältlich.

Anwendungen ohne Grenzen

Die Anwendungsgebiete der Swissphoto-Produkte sind vielfältig, wie die folgenden Anwendungsbeispiele zeigen: Die Basisdaten sind kombinierbar mit numerischen Daten der amtlichen Vermessung oder mit digitalen Daten von Leitungsnetzen. Sie eignen sich zur Nachführung digitaler Übersichtspläne oder für Orts- und Quartierpläne sowie für verschiedene Anwendungen in Simulationen, Raumplanung, Naturinventaren, Lärmschutz, Bodenkartierung, Tourismus u. v. m.

Möglich ist auch die direkte Erfassung von Objekten aus Swissphoto-Basisdaten durch Digitalisierung am Bildschirm. So lassen sich vorhandene Datenbestände ergänzen oder neue Themen hinzufügen, wie zum Beispiel Teilbereiche der Bodenbedeckung aus der amtlichen Vermessung, Strassenbegrenzungen, Wege und Verkehrsbebauungen.

Bei 3D-Visualisierungen beliebiger Gebiete ergeben die Swissphoto-Daten «photorealistische» Bilder, deren Qualität und Aussagekraft viel höher ist als die von Satellitenaufnahmen. Die perspektivischen, synthetischen Ansichten sind anschaulich und leicht interpretierbar. Sie eignen sich als Entscheidungsgrundlage in Politik und Wissenschaft.

Luftbilder nach wie vor populär

Neben Swissphoto werden weiter die klassischen Luftbilder angeboten, denen das Unternehmen seine Gründung verdankt. Im Jahre 1931 wollte der Flugpionier Walter Mittelholzer Luftbilder allgemein zugänglich machen. Dies ist gelungen, wie die über 60jährige Unternehmensgeschichte zeigt. In diesem Zeitraum entstand ein einmaliges Luftbild-Archiv über die ganze Schweiz, das über 100 000 Aufnahmen umfasst.

Interdisziplinäres Know-how

Mitarbeiterinnen und Mitarbeiter aus allen Bereichen arbeiten eng zusammen. Ein Beispiel: Die Geoinformatik stellt Werkzeuge und Methoden für Vermessung und Photogrammetrie zur Verfügung, die ihrerseits Daten für die Realisierung von GIS

Swissair Photo + Vermessungen AG

Hauptsitz Adressen

Dorfstrasse 53

8105 Regensdorf-Watt Tel. 01/871 22 22 Fax 01/871 22 00

Filiale Zollikon Bergstrasse 20 8702 Zollikon

01/391 98 57

01/391 98 61

Filiale Altdorf Bahnhofstrasse 9 6460 Altdorf 041/874 20 50 041/874 20 55

Gründung

1931

Leitung Thomas Grünenfelder, Dipl. Ing. ETH und Pat. Ing.-Geometer

Mitarbeiter

Zweck

Erfassen, Bearbeiten, Verwalten und Auswerten von

raumbezogenen Informationen.

Beteiligungen BSF Luftbild- und Vermessungen GmbH, Deutschland

Topsistema Ltda, Portugal ITV AG, Regensdorf-Watt

Geo-Services:

Geo-Beratung

Systemevaluation

LIS/GIS-Projektbegleitung

Schulungen Workshops

Geo-Management

Projektmanagement Qualitätsmanagement Generalunternehmungen

Geo-Marketing

Verknüpfung von Geo- und Marketingdaten

Geo-Dienstleistungen

Digitale Photogrammetrie

Digitale Bildverarbeitung Scan-, Vektorisierungs- und Plotservices

Vermessungen Digitale Kartographie

Geoinformatik

Geo-Produkte

Swissphoto Luftbilder

liefern. Durch diese Zusammenarbeit entsteht letztlich ein ganzheitliches, kompetentes und kundennahes Angebot.

Die Zusammenarbeit wird durch modernste Technik unterstützt. Eine laufend aktualisierte vernetzte Informatik-Infrastruktur steht zur Verfügung, die für sämtliche Produktions- und Entwicklungsaufträge eingesetzt wird.

Durch diese Kombination von modernster Technik und umfassendem, interdisziplinärem Know-how ist Swissair Photo + Vermessungen die kompetente Partnerin

für alle Aufgaben der Geo-Informationsverarbeitung. Mit dem Produkt Swissphoto und den ergänzenden Dienstleistungen zeigt das Unternehmen erneut den Pioniergeist, der schon bei seiner Gründung Pate gestanden hat.

Swissair Photo + Vermessungen AG Dorfstrasse 53 CH-8105 Regensdorf-Watt Telefon 01 / 871 22 22 Telefax 01 / 871 22 00

C-Plan AG:

C-Plan für Windows

Innovation auf neuer Plattform

CINS - das graphisch-technische Informationssystem von C-PLAN ist ab sofort neben der bewährten UNIX-Plattform auch auf Windows NT erhältlich. Dabei fügt sich C-PLAN nahtlos in die Microsoft Office Welt ein. Es bietet somit auch die uneingeschränkte Einbindung von OLE 2 Objekten. So lassen sich z.B. Detailzeichnungen, welche mit einem beliebigen Windows CAD-System wie AutoCAD LT oder AutoCAD 13 erstellt wurden, leicht in jedes Projekt einbinden. Als Datenbank wird dabei MS-Access oder MS-SQL-Server verwendet. Für die Verwaltung geometrischer Daten ist C-PLAN bestens ausgerüstet: Blattschnittfreie Speicherung auch grösster Datenmengen sowie schneller raumbezogener Zugriff ermöglichen die ökonomische Bearbeitung grosser Projekte. Daten unterschiedlichster Herkunft werden in C-PLAN zusammengeführt und homogenisiert.

CINS – Entscheidung für Sicherheit und Wirtschaftlichkeit

Erst ein graphisch-technisches Informationssystem macht die Konditionen für eine aussagefähige Planungsgrundlage anschaulich und deutlich. Nur so werden Entscheidungen sicher. Sachdaten aus den Bereichen Kanal, Gas, Wasser, Elektrizität, Liegenschaften oder Flächennutzung werden für die unterschiedlichsten Aufgabenstellungen individuell selektiert und logisch zusammengestellt. Listenausdrucke oder die anschauliche Darstellung

der sachbezogenen Daten in ihrer räumlichen Dimension auf einem Plan oder am graphischen Bildschirm schaffen die Grundlage für gute und richtige planerische Entscheidungen.

Folgende CINS-Applikationen sind heute verfügbar:

- Abwasserkataster CINS-KANAL für die GEP
- Werkleitungskataster CINS-NETZ (Gas, Wasser, Fernwärme...)
- Werkleitungskataster CINS-EW
- Liegenschaftskataster CINS-REGISTER

CINS-KANAL – Informationssystem für die GEP

CINS-Kanal ist ein System für die «Generelle Entwässerungs-Planung» (GEP). Bei der Planung, beim Ausbau und bei der Sanierung von Kanalnetzen ist der rasche Zugriff auf die zahlreichen Informationen und Daten unerlässlich. Grosse Datenmengen aus den unterschiedlichsten Quellen müssen zur Projektierung neuer Netze oder zur Beurteilung bestehender Kanalnetze herangezogen werden. Ohne ein ausgereiftes Informationssystem ist diese Arbeit nicht zu bewältigen; herkömmliche Methoden der Informationsbeschaffung und der logischen Verknüpfung dieser immensen Datenmengen scheiden nicht zuletzt aus wirtschaftlichen Gründen von vornherein aus.

Ein EDV-gestütztes graphisch-technisches Informationssystem ist deshalb ein zwangsläufiges «Muss» für die exakte Erfassung, Analyse und Präsentation von Kanaldaten.

CINS-KANAL (GEP) besteht aus folgenden Modulen:

- Kanal Katastermodul (Grundmodul)
- Kanal TV-Untersuchungsmodul
- Kanal Klassifizierungsmodul
- Kanal Hydraulikverwaltungsmodul
- Kanal Indirekteinleitermodul
- Verschiedene Schnittstellen zu Hydraulikberechnungsprogrammen, wie z.B. Rehm, HystemExtran oder MOUSE.

Kanal-Katastermodul

Die Grundlage eines jeden GEP's ist der Kanal-Werkkataster und wird mit diesem Modul mit folgenden Sachdatentabellen gelöst:

Abb. 1.

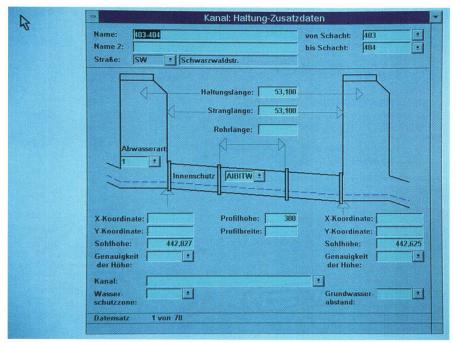


Abb. 2.

- Schachtdaten
- Haltungen- und Strangedaten
- Einzugsgebietdaten

Alle diese Daten welche in der RDBMS gespeichert sind, werden nach Wunsch automatisch auch in Grafikmodul und natürlich auf den Plan plaziert.

CINS – KANAL-TV-Untersuchung

Dieses Modul beinhaltet die Übernahme, Verwaltung und Bearbeitung von TV-Diagnosedaten ab ASCII-Schnittstelle und Videoband. Es bildet die Basis für Sanierungskonzepte und zur Beurteilung des Kanalzustandes.

Achtung Aufnahme!

Zur sicheren Darstellung eines Kanalnetzes, zur Beurteilung seines Zustandes und als Basis für die Erstellung sinnvoller Sanierungskonzepte ist eine ganzheitliche Betrachtung qualifizierter Daten und Informationen notwendig. CINS-KANAL, mit seinem Klassifizierungsmodell KANAL-KLAS, bietet hierfür die professionelle und anerkannte Lösung. Ein umfassendes System, das selbst die Untersuchungsergebnisse von Videoaufnahmen in die Bewertung und Beurteilung von Kanalnetzen berücksichtigt. Über diverse Schnittstellen werden die Daten von TV-Untersuchungen im Programm-Modul KANAL-TV direkt übernommen.

Aktualität mit Sicherheit

Die Verwaltung der TV-Daten geschieht auftragsbezogen; fortlaufend werden die Informationen der TV-Diagnosen gespeichert: Das garantiert den Zugriff auf den jeweils aktuellsten Zustand und bildet die Grundlage für eine eindeutige und sichere Klassifizierung in Schadensklassen. Durch die auftragsbezogene Speicherung werden mehrfach vollzogene Untersuchungen ohne Probleme verwaltet.

Automatisierte Plausibilitätskontrollen mit Vergleichstabellen und eine Testlaufoption vor der eigentlichen Speicherung machen die Informationen aus TV-Untersuchungen buchstäblich «wasserdicht».

Auf der sicheren Seite

Umfangreiche Selektionsmöglichkeiten der evaluierten TV-Daten schaffen die notwendige Kompetenz zur sicheren Beurteilung und zur ökonomisch sinnvollen Sanierung des Kanalnetzes. Die selektierten Untersuchungsergebnisse können

sowohl in flexibler Listenform ausgegeben werden wie auch am Graphikschirm oder im Lageplan präsentiert werden. Spezielle Symbole sowie die Einbeziehung von Schadenstexten machen die Zustandsbeschreibung und die Schadensbilder eines Kanals auch dem Laien verständlich. Selbstverständlich können die Ergebnisse der TV-Untersuchungen auch für fremde Programme bereitgestellt werden – CINS ist auch in dieser Richtung offen.

CINS – KANAL-Klassifizierungsmodell

bildet die Entscheidungsgrundlage zur optimalen Kanalsanierung. Ganzheitliches Modell zur Bewertung und Beurteilung von Kanalnetzen.

Durchblick im Untergrund

Es sieht «düster» aus im Untergrund! Marode Kanäle, länger als das Autobahnnetz! Der Sanierungsbedarf schadhafter Kanäle in öffentlichen und privaten Netzen ist unermesslich gross. Strenge gesetzliche Vorschriften und Richtlinien ziehen die Betreiber unmittelbar in die Verantwortung. Strafrechtliche Konsequenzen aufgrund schadhafter Kanalnetze sind nicht ausgeschlossen. Strenge Auflagen im Umweltschutz fordern darüber hinaus ebenfalls eine exakte Zustandsbeschreibung, um erforderliche Kanalsanierungen konsequent durchzuführen.

Mit CINS-KANAL ist ein aussagefähiges Medium zur Dokumentation der genauen Kanaldaten geschaffen worden. Es sorgt für den notwendigen Durchblick im Untergrund, liefert die Entscheidungsgrundlagen für eine optimale Sanierung.

Licht im Dunkel

Es reicht jedoch nicht, lediglich Zustandsbeschreibungen der baulichen oder be-

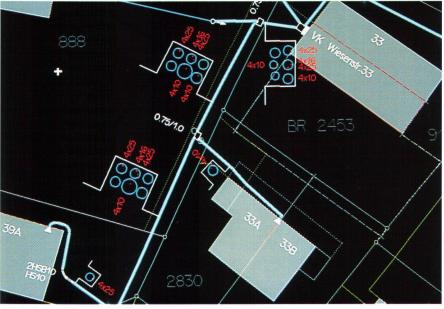


Abb. 3.

Abb. 4.

trieblichen Mängel mit Abbildungen defekter Kanäle (beispielsweise aus TV-Untersuchungen) als Grundlage der Entscheidung für eine Kanalsanierung ins Kalkül zu ziehen. Erst eine übergreifende Auswertung aller erfassten Daten schafft die notwendige Sicherheit, um zu einem ingenieurtechnisch sinnvollen, ökonomisch vertretbaren Sanierungskonzept zu gelangen. Die ganzheitliche Betrachtung vieler Daten und Informationen bringt «Licht ins Dunkel».

Neben den reinen Inspektionsdaten müssen weitere kanalbezogene Informationen, wie hydraulische Verhältnisse, Qualität des Abwassers oder Wasserschutzzonen für die Beurteilung des Kanalnetzes berücksichtigt werden.

In aller Offenheit

Das CINS-Klassifizierungsmodell KA-NAL-KLAS ermöglicht eine genaue Quantifizierung und Qualifizierung aller gespeicherten Informationen in einem Kanalnetz. Es ist ein offenes und variables Modell. Die Gewichtung und Verknüpfung der Daten und Informationen kann variiert und an die unterschiedlichsten Verhältnisse angepasst werden. So lässt sich der aktuelle Zustand eines Kanals nicht nur erkennen, denn durch Verknüpfung und Bewertung der Ist- und Soll-Informationen gelangt man zu einem sinnvollen und optimalen Sanierungskonzept.

Einsame Klasse

Kanalsanierung - transparent und wirtschaftlich. Der bauliche und betriebliche Zustand eines Kanalnetzes wird exakt beschrieben und bewertet. KANAL-KLAS schafft die Relationen zwischen den optischen Inspektionen (TV-Untersuchungen) und den daraus resultierenden Zustandsklassifizierungen. Frei und offen kann der Zustand des Kanals klassifiziert werden, können die höchsten und niedrigsten Schadensklassen individuell formuliert werden: KANAL-KLAS bietet alle Möglichkeiten, wobei selbstverständlich auch eine Standard-Klassifizierung nach VSA zur Verfügung steht.

KANAL-KLAS beschränkt sich jedoch nicht nur auf die Bewertung und Beurteilung von Schadensdaten - auch wichtige Schutzziele aus dem Bereich des Umweltschutzes wie die Reinhaltung des Grundwassers und der Böden können mit dem C-PLAN-Klassifizierungsmodell reich verfolgt werden. Die hierzu notwendigen Randbedingungen, wie beispielsweise Abwasserbeschaffenheit, Lage im Verkehrsraum, Wasserschutzzone, fliessen mit unterschiedlichen, individuell vorgegebenen Bewertungs- und Gewichtungsfaktoren in die Beurteilung des Kanalnetzes ein.

KANAL-KLAS - eine Klasse für sich! Basis für sichere Entscheidungen bei der Sanierung und im Umweltschutz.

CINS Elektrizität

CINS-EW ist ein innovatives Informationssystem für die Elektrizitätswirtschaft. Es steht vor allem Energieversorgungsunternehmen, Elektrizitätswerken und Stadtwerken zur Verfügung. CINS-EW (= Elektrizitätswerk) heisst es folgerichtig und bietet ein moderner, alle Bereiche umfassender Leitungskataster. Eine komplette Dokumentation des Leitungsnetzes als Grundlage für wirtschaftliche Entscheidungen: Leitungsverfolgung, Trassen und Leitungspunkte, Zustand von Sicherungen bis zur automatischen Erzeugung von Trasse-Querschnitten, das Informationssystem Strom (CINS-EW)

von C-PLAN macht sie sichtbar und plau-

Auf einen Blick!

Planungen neuer Stromnetze, das Sichtbarmachen aktiver und inaktiver Leitungen sowie Informationen über eventuell notwendige Arbeiten am Stromnetz, CINS-EW bildet den Background für optimale Energieversorgung.

Bis ins kleinste Detail

CINS-EW schafft Durchblick! Man sieht die räumliche Ausdehnung eines Schadens, den Bezug zu den betroffenen, angeschlossenen Grundstücken und kann so optimal die notwendigen Massnahmen treffen. Die Präsentation tut ein übriges: Ausgabe von Lageplänen mit Hervorhebung der selektierten Daten, die Ausgabe von Werkplänen mit Trassen und Querschnitten oder auch nur die Ausgabe in Listenform.

Entscheidungs- und Planungs-Kurzschlüsse bleiben so ausgeschlossen. Das CINS-Informationssystem Elektrizität ist individuell ausbaubar. Durch weitere CINS-Module lassen sich konkrete Leitungspunktdetails wie Stangen, Erdungsoder Abgangsmessungen oder auch Informationen auf der Seite des Stromabnehmers wie Verbrauchereinheiten, Beleuch-

tungen etc. lässt sich das System zu einem EW-Informationssystem ausbauen. Informationen bis ins kleinste Detail, ohne Kurzschluss. C-PLAN hat die Lösung!

CINS NETZ (Gas, Wasser, Fernwärme)

CINS NETZ ist das Leitungskatastermodul für das Gas- und Wasserfach. Es beinhaltet die Verwaltung von Knoten und Strängen der unterschiedlichsten Leitungen (Gas, Wasser, Fernwärme). Dazu bietet es eine integrierte Drucksystem-Berechnung nach Hardy-Cross.

Unter einem Hut

Filigranen Strukturen gleichen die Leitungsnetze - gleichgültig ob im Gas-, Wasser oder Energiebereich. Ein schwerlich überschaubares «Gewirr» von Linien und Knoten, so stellt es sich beispielsweise im Plan dar. CINS-NETZ, das intelligente Informationssystem von C-PLAN, schafft den Überblick über diese vielfältigen Relationen, ordnet und verwaltet alle grundlegenden Daten zu den unterschiedlichen Netzen. Bringt sie unter einen Hut! Informationen über topographische Lage, Aufund Ausbau von Netzen sowie die Verknüpfung von Leitungen können eingegeben, jederzeit korrigiert oder auch eliminiert werden. Im Kontext mit anderen C-PLAN-Systemanwendungen werden so aussagefähige Leitungskataster erstellt. Leitungskataster mit der Sicherheit der permanenten Aktualität!

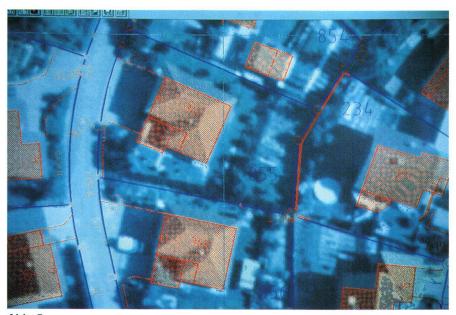


Abb. 5.

Im Falle eines Falles

Für den Betreiber eines Leitungsnetzes ist es enorm wichtig, zu jeder Zeit rasch und anschaulich Informationen über den Zustand des Netzes zu erhalten. Nur eine aktuelle Dokumentation des gesamten Leitungsbestandes kann als Grundlage für richtige und wirtschaftlich vertretbare Entscheidungen, beispielsweise bei Schadensfällen, dienen.

Betriebsunfall, Rohrbruch, Lastabfall oder andere Störungen im Netz – erst die anschauliche Abbildung des Leitungsnetzes sowie die Darstellung im Lageplan ermöglichen eine zielgerichtete Einsatzplanung. Man sieht die räumliche Ausdehnung des Schadens, erkennt die betroffenen angeschlossenen Grundstücke und kann so optimal die Massnahmen zur Schadensbegrenzung und -regulierung treffen.

Zum Beispiel: Wasser

CINS ermöglicht den räumlichen Zugriff auf die unterschiedlichen Daten. Schieber, Klappen, Stränge, Wassereinzugsgebiete eines Leitungsnetzes mit den dazugehörigen Sachdaten, werden mit der topographischen C-PLAN-Datenbank TOPODAT automatisch verknüpft und angezeigt. Innerhalb der Sachdaten kann selektives Suchen nach individuellen Kriterien durchgeführt werden. So wird beispielsweise ein auf dem Graphikschirm «angeklickter» schadhafter Schieber nicht nur mit all seinen Daten (Grösse, Werkstoff etc.) angezeigt, es können gleichzeitig auch alle anderen Schieber gleichen Typs oder Materials nicht nur gesucht und beschrieben werden, sondern auch in ihrer räumlichen Verteilung auf dem Graphikschirm oder im Lageplan markiert werden. Erst ein geschlossenes Gesamtbild des Netzaufbaus in all' seinen Beziehungen ermöglicht die richtige Entscheidung im richtigen Augenblick.

Alles fliesst

Ein permanenter Datenfluss von räumlichen und Sach-Daten gewährleistet höchste Aktualität, das nicht nur die Darstellung des bestehenden Netzes ermöglicht. Wassernetzberechnungen mit den in der Sachdatenbank gespeicherten Daten geben darüber hinaus jederzeit Auskunft über den Fliesszustand in den Leitungen. Lastfälle, wie zum Beispiel Wasserentnahmen der Feuerwehr, werden aktuell dargestellt. Die Rechenergebnisse werden in Abstufungen sichtbar gemacht. Der Plan kann verschiedene Fliessgeschwindigkeiten durch unterschiedliche Färbungen anzeigen. Kritische Bereiche im Leitungsnetz, Störungen, die die Versorgung unterbrekönnten, werden unmittelbar erkannt, Massnahmen zur Sicherung und Wiederherstellung des Netzes können sofort eingeleitet werden.

CINS REGISTER

CINS-REGISTER steht für die Verwaltung und Bearbeitung flächenbezogener Daten für ein Flächennutzungskataster auf Basis der AV93.

Nicht ohne Grund

Geht es um den Nachweis unterschiedlicher Bodennutzungen, um die Darstellung der flächenhaften Ausdehnung einzelner Nutzungen in Lageplänen oder statistische Übersichten – auf CINS ist Verlass! «Auf dem Boden der Tatsachen» verwalten die unterschiedlichen CINS-Programme alle wichtigen Informationen. Ob Bodenbedeckung, Landschaftsschutz. Energiewirtschaft, Wasserwirtschaft - für jede Anwendung bietet CINS die individuelle Lösung. Anteile von Grünflächen und Ackerflächen, von Parks für Anwendungen im Landschaftsschutz, die Anteile versiegelter und offener Flächen bei der Entwässerungsplanung bis hin zum Nachweis von Eigentümern und Nutzern von Grundstücken, die von einer Planung betroffen sind.

Sicherheit – mit NETZ und doppeltem BODEN

Zur genauen Berechnung von Flächenanteilen müssten eigentlich vollständige Flächenumringe definiert werden – üblicherweise werden Nutzungsartengrenzen jedoch nur in offenen Linienelementen (Spaghetti-Code) dargestellt. CINS errechnet selbständig unter Berücksichtigung der Prioritäten die notwendigen Schnittpunkte, bildet aus den «Spaghetti-Linien» geschlossene Flächen und errechnet die Inhalte. Vorgegebene Toleranzen und Prioritäten sorgen hier für Sicherheit und Plausibilität.

CINS zieht alle Register

Die Verwaltung der Informationen geschieht in CINS-REGISTER: Flächen, Parzellen, Flächeninhalte, Bedeckungsarten, Eigentümer und Eigentumsverhältnisse werden in der relationalen Sachdatenbank abgespeichert. Selektionen können nach unterschiedlichsten Kriterien, beispielsweise nach Gebäudeart, Eigentümer etc. vorgenommen werden. Die Ergebnisse dieser Selektionen werden schliesslich flächendeckend und farbig auf dem Graphikschirm oder auf dem Plot hervorgehoben.

Integration von AutoCAD

C-Plan bietet zudem mit den AutoCAD-Mudulen TOPOLOAD und TOPOSAVE die On-Line Integration vom CAD-Standard AutoCAD ins C-Plan System an. Diese Einbindung eröffnet dem Kunden die ganze Palette der AutoCAD-Applikationen.

Z.B. Hybride Daten

Rasterdaten in beliebiger Form, wie z.B. eingescannte Pläne oder Orthofotos, können gemeinsam mit Vektordaten bearbeitet, dargestellt und geplottet werden. Die wichtigsten Features sind:

- Ein Programm für die Verarbeitung von Schwarzweiss-, Graustufen- und Farbrasterbildern der verschiedensten Formate von TIFF bis CCITT Group 4.
- Mehrpunkt Kalibrierung nach fünf standardisierten Methoden: Helmert, Affin, bilinear, biquadratisch und bikubisch
- Gleichzeitige Darstellung und Bearbeitung von mehreren Rasterbildern.

C-Plan AG Worbstrasse 223 CH-3073 Gümligen/Bern Telefon 031 / 985 20 20 Telefax 031 / 958 20 22

Leica AG:

Das GIS/LIS INFOCAM am «Instituto Geografico Agustin Codazzi (IGAC)» in Kolumbien

Das kartographische Institut Kolumbiens, im weiteren mit IGAC bezeichnet, leitete Ende der 80er Jahre eine integrale Modernisierung in die Wege, um die ihm vom Staat vorgegebenen Aufgaben effizienter, rascher und mit bester Qualität zu erfüllen. Neben organisatorischer Optimierung mit gleichzeitiger Straffung der Administration stand vor allem die technologische Erneuerung der kartographischen Produktion im Vordergrund. Dementsprechend erfolgte 1991 eine internationale Ausschreibung, die die Leica AG als integraler Anbieter von Systemen zur Erfassung, Verarbeitung, Analyse und Ausgabe georeferenzierter Daten gewann. Im Dezember 1992 wurde mit der Vertragsunterzeichnung über ein erstes Lieferpaket der eigentliche Startschuss zur technischen Implementierung des mehretappigen Modernisierungsprojektes gegeben.

Aufgaben des IGAC

Im Jahre 1935 wurde aufgrund der Spannungen mit dem Nachbarland Peru die Gründung des «Instituto Geografico Militar» hervorgerufen, um kartographische Grundlagen zur Verteidigung und Sicherstellung der nationalen Souveränität bereitzusstellen. Neben der Erfüllung militärischer Aufgaben begann aber schon bald die Erhebung von Katasterinformationen,

mit dem Zweck, das Grundeigentum zu garantieren und eine einheitliche Basis für Steuererhebungen zu schaffen. Daraufhin erfolgte ein für Lateinamerika eher ungewöhnlicher Wechsel der Zugehörigkeit des IGAC vom Verteidigungs- zum Finanzministerium. Zu Ehren des italienischen Militäringenieurs und Kartographen Agustin Codazzi, der das Projekt zur Erstellung des ersten kolumbianischen Landeskartenwerkes in der Mitte des 19. Jahrhunderts erfolgreich leitete, wurde das Institut 1950 umbenannt.

In den 50er Jahren begann eine Entwicklungsphase, bei der das staatliche Institut neben der Landesvermessung, der Kartographie und dem Grundeigentumskataster vermehrt auch Grundlagen der Agrologie, insbesondere der Bodenkunde und Bodennutzung, erarbeitete. Die thematische Kartographie begann an Bedeutung zu gewinnen. Zudem wurde eine Abteilung für Lehre und Forschung eingerichtet.

Nach rund drei Dekaden mehr oder weniger koordinierter Entwicklung wurden die Aufgaben des IGAC mit seinen etwa 2300 Angestellten, die in Bogotá und den regionalen Büros tätig waren, neu überdacht. Zusätzlich rückten nun auch die Aspekte der Raumordnung und Raumplanung verstärkt in das Aufgabenfeld des Institutes. Mit der Modernisierung sollte nun auch die klassische graphische Kartenherstellung

Abb. 1: IGAC-Haupteingang in Bogotá.

Kurzangaben zu Kolumbien

Fläche: 1.14 Mio. km² (28 x CH)

Einwohner: 33.6 Mio. Hauptstadt: Bogotá

Staatsform: Präsidiale Republik

BSP: 42 Milliarden US\$

schrittweise durch eine digitale Produktionslinie ersetzt werden.

Technisches Modernisierungskonzept

Im Zentrum der Modernisierung stand die Einführung eines integrierten Informationssystemes mit georeferenzierter Datenbank für die vier Abteilungen Kartographie, Kataster, Agrologie und Geographie des IGAC. Das Ziel bestand darin, den Grunddatensatz gemeinsam, gleichzeitig und möglichst redundanzfrei nutzen zu können. Zu diesem Zweck wurde ein technisches Modernisierungskonzept erarbeitet, u.a. mit folgenden Themen:

- Die Datenmodelle sollen in Anlehnung an das deutsche Amtliche Topographisch-Kartographische Informationssystem (ATKIS) entwickelt werden. Zum einen werden die Daten in einem Digitalen Landschaftsmodell (DLM) zur Beschreibung der Landschaft modelliert, und zum anderen mit einem Digitalen Kartographischen Modell (DKM) Anwendung kartographischer Generalisierungs- und Gestaltungsregeln den topographischen Objekten die kartographischen Signaturen zugeordnet. In einer ersten Phase ist ein Objektund Signaturenkatalog für den Massstab 1:25000 zu erstellen.
- Festlegung der Informations- und Datenflüsse sowie der Abhängigkeiten zwischen den verschiedenen Abteilungen des IGAC.
- Datenbanksystem: Die gemäss Objektkatalog definierten Grunddaten sollen in

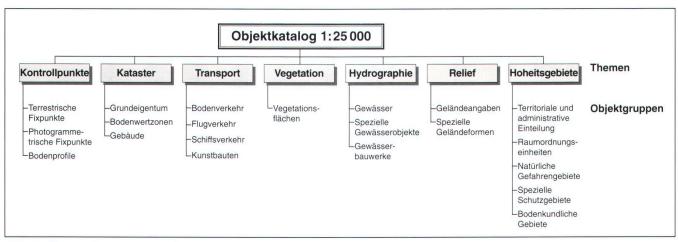


Abb. 2: Themenbereiche und Objektgruppen des Objektkatalogs für das Datenmodell 1:25 000.

einer globalen Datenbank abgespeichert werden. Dazu werden abteilungsspezifische, lokale Datenbanken für besondere Daten geführt.

- Garantie der Datensicherheit mit technischen und organisatorischen Massnahmen, zum einen durch Abschirmung und Kontrolle gegen verbotenen Zugriff und Störungen, und zum anderen mit einem Mehrgenerationen-Backup-Prinzip gegen Datenverlust und Datenverfälschung.
- Festlegung der Datenaustauschformate zu internen sowie externen Datenlieferanten und Datenempfängern.
- Definition des Koordinatensystems: Aufgrund der Grösse Kolumbiens und der damit zusammenhängenden Längenverzerrung wurde ein vierstreifiges, in den Übergangsbereichen überlappendes Gauss-Projektionssystem festgelegt. Als Hilfskoordinatensystem wurde das UTM definiert.
- Pilotprojekte: Mit zwei Pilotprojekten im Massstab 1:25000, das eine mit photogrammterischer Datenerfassung, das andere mit manueller Digitalisierung vorhandener Karten, sollen die ersten Erfahrungen mit der digitalen Produktionslinie gemacht werden. Basierend auf den topographischen Grundlagen werden dann die zusätzlichen Daten des Katasters, der Agrologie und der Geographie in die Projekte integriert.

Systemlösung von Leica

Aufgrund der Komplexität und Grösse des Systems wurde die Lieferung und Installation in zwei Teilpakete aufgeteilt:

Erstes Paket

Phase 1 (1. Hälfte 1993):

 Vollständig vernetztes GIS INFOCAM/ ORACLE mit VAX VMS Dual Host Cluster, 28 Arbeitsstationen mit Digitalisier-

Abb.3: Analytische Photogrammetrie-Arbeitsstationen SD 2000 mit Bildeinspiegelung COLORISS.

tisch und 7 analytische Photogrammetrie-Arbeitsstationen mit Bildeinspiegelung

- Verschiedene Peripheriegeräte, u.a. vier TA10 Präzisionsplotter
- Luftbildkamera RC30
- GPS- und Tachymeter-Systeme sowie Nivillierausrüstungen

Phase 2 (Herbst 1993):

 Aufrüstung und Einbindung von 9 analogen Auswertegeräten (Wild A7, A8, B8 und Kern PG2) in das GIS INFO-CAM/ORACLE-Netzwerk

Phase 3 (Winter 1993/1994):

 23 GIS INFOCAM/ORACLE-Systeme als Ein-, Zwei- oder Dreiplatzsysteme sowie GPS- und Tachymeter-Systeme für 11 regionale IGAC Büros

Zweites Paket

Lieferung und Installation von zwei digitalen photogrammetrischen Arbeitsstationen mit Präzisionsscanner von HELAVA (Jan./Feb. 1996).

Ebenfalls im zweiten Paket ist eine Vereinbarung mit dem IGAC über eine technische Assistenz in verschiedenen Bereichen der digitalen und thematischen Kartographie, der digitalen Photogrammetrie und der Fernerkundung enthalten. Mit der Weiterentwicklung von besonderen GIS-Applikationen werden spezifische Kundenanforderungen abgedeckt, so u.a. von Anwendungen mit verteilten Datenbanken, speziellen Datenanalysen und Generalisierung. Sämtliche Projektphasen wurden und werden weiterhin laufend von Schulungen und technischem Support begleitet. 1995 wurde mit dem IGAC ein SW- und HW-Wartungsvertrag über die ganze technische Ausrüstung schlossen.

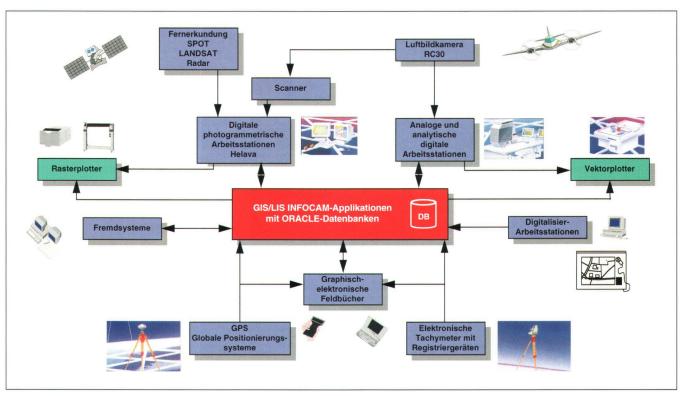


Abb. 4: IGAC-Systemüberblick.

GIS INFOCAM/ORACLE in den verschiedenen Abteilungen des IGAC Datenerfassung

Die photogrammetrische Erfassung mit den aufgerüsteten analog- und den neuen analytischen Auswertegeräten erfolgt mit 3D-Spaghetti-Digitalisierung mittels dem online-verbundenen INFOCAM Modul INCOME COLLECTOR. Bei den analytischen Geräten spiegelt COLORISS laufend die erfasste Geometrie ein. Besonders bei Nachführungsarbeiten kommt diese automatische Bildeinspiegelung verstärkt zum Tragen. Die Altimetrie wurde bisher mit Höhenlinien erfasst. Vor allem bei kleinmassstäblichen Projekten beginnt das IGAC nun aber sukzessive auf die effizientere Rasterpunkterfassung mit Bruchund Formlinien umzustellen, um dann mit dem INFOCAM/SCOP-Interface ein DTM, Höhenkurven sowie andere DTM-Ableitungen, wie Perspektiven, zu generieren. Zugunsten der Performance werden nur die ursprünglich erfassten Daten in die globale Datenbank abgespeichert. Das eigentliche DTM und die Folgeprodukte werden separat abgelegt bzw. archiviert. In einem nächsten Schritt werden die schwach strukturierten Daten, sogenannte «Spaghettis», nach aufgestellten Regeln mit dem INCOME TOBUI-Batchprogramm topologisiert. Die Korrektur allfälliger Erfassungsfehler erfolgt phisch-interaktiv gesteuert mit dem Modul INCOME EDITOR (Abb.5).

Bestehende graphische Kartenwerke er-



Abb. 5: Aufgerüstete analoge Photogrammetrie-Arbeitsstation.

fasst das IGAC ebenfalls in INCOME mit zweidimensionaler «Spaghetti»-Digitalisierung. Die Topologiebildung verläuft entsprechend der Arbeitsmethodik in der Photogrammetrie, selbstverständlich nach anderen topologischen Regeln. In den Abteilungen Kataster, Agrologie und Geographie kommt meistens die voll strukturierte Datenerhebung mit dem Modul IMAGE zum Zuge. Damit lässt sich auch gleichzeitig die umfangreiche Attributierung der thematischen Geo-Daten vornehmen. Verschiedene Makros beschleunigen die Erfassungsprozesse erheblich.

Die Ausgleichung und Übernahme geodätischer Felddaten inklusive Qualitätsnachweis erfolgt mit Punktberechnungsund Transferprogrammen. Zum Beispiel erzeugt die Leica GPS SKI-Software direkt Punktdaten im INFOCAM Sequential Format. Tachymetrische Aufnahmen fügen die Operateure von Feldregistriergeräten ohne Umweg in den INFOCAM Berechnungsteil TASCAL.

Ein nicht zu verachtender Anteil von Daten gelangt von beauftragten Privatfirmen via Transferprogramme in die GIS/LIS INFO-CAM Datenbank. Je nach Qualität und

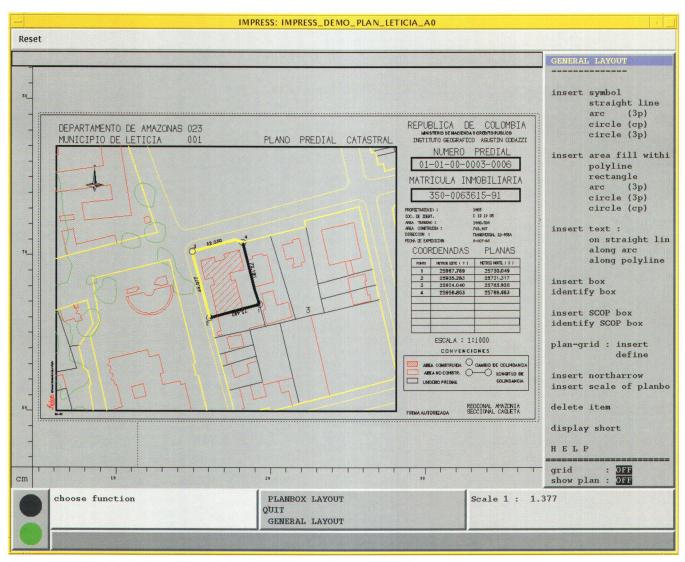


Abb. 6: Grundstückzertifikat im Planbearbeitungsmodul Modul IMPRESS.

Format der Daten importiert das IGAC die Daten direkt oder mittels INCOME-Topologiebildungsprozedur.

Datenaufbereitung-, -analyse und -ausgabe

Mit dem Modul IMAGE redigieren und ergänzen die IGAC-Operateure die raumbezogenen Daten. ORACLE-basierende Abfragewerkzeuge ermöglichen die Analyse der Datenbestände und dienen dem IGAC vor allem der Erstellung thematischer Karten. Berechnungsfunktionen, Flächenverschneidungen, Interpolationen und Geländemodellierungen erzeugen die vom IGAC geforderten Ausgabeprodukte. Schliesslich werden diese mit dem Layoutund Planbearbeitungsmodul IMPRESS von den Operateuren zu druckfertigen Plänen und Karten aufbereitet. Zuvor haben sie mit den INFOCAM Graphikeditoren ihre spezifischen Graphik- und Layoutbibliotheken aufgebaut. Hohe Anforderungen stellte die Katasterabteilung an die Erstellung von Grundeigentumsnachweisdokumenten: Mit speziell fürs IGAC ausgebauten Funktionen lassen sich Tausende innerhalb weniger Tage produzieren.

Erfahrungen und Ausblick

Den ersten Schritt von der klassisch-graphischen in die digitale Kartographie meisterte das IGAC mit der Unterstützung von Leica erfolgreich. Die technologische Modernisierung verlangte von der Institutsleitung ein ausserordentliches Engagement, mussten doch gleichzeitig auch organisatorische, administrative und bauliche Veränderungen vorgenommen werden, um die Abläufe nahtlos vom alten ins neue Produktionssystem überzuführen. Vermesser, Photogrammeter und Kartographen mussten eine neue, «GIS»-Denkweise entwickeln, was anfänglich trotz intensiver Schulungen etwas Mühe bereitete. Bis heute wurden über 40 Projekte, die eine Fläche von fast 400 000 km² abdecken, in ländlichen und städtischen Regionen sowie unterschiedlichen Masstäben von 1:2000 bis zu 1:250 000, fer-Kürzlich wurden tigestellt. weitere ORACLE-Server eingerichtet und die

Diskkapazität von 32 auf 94 Gigabyte erhöht, war doch das IGAC von den anfallenden Datenmengen doch etwas überrascht. Die System- und Datenbankbetreuung bei einer so grossen GIS-Umgebung dürfen nicht unterschätzt werden.

Das IGAC-Projekt tritt zur Zeit in die nächste wichtige Phase ein: Mit der soeben erfolgten Auslieferung von zwei HELAVA-Arbeitsstationen und einem Präzisionsscanner erfolgt die Einbindung der digitalen Photogrammetrie in den kartographischen Produktionsprozess. Zudem werden weitere Installationen von speziellen GIS-Datenanalyse- und Generalisierungsprogrammen folgen. Gleichzeitig erhält das IGAC laufend Schulungen, technische Unterstützung vor Ort und Projektberatung in den verschiedenen Fachgebieten der Vermessung, Kartographie und Geoinformatik.

Leica AG Hans Estermann Kanalstrasse 21 CH-8152 Glattbrugg

Intergraph (Schweiz) AG:

GRICAL und GRIVIS: für Schweizer Vermessungsaufgaben konzipiert

Die Schweizer Software-Lösungen für Vermesser heissen GRICAL und GRIVIS. Beide Module wurden exakt für die hiesigen Anforderungen konzipiert und berücksichtigen alle Anforderungen der AV93. Gleichzeitig sind GRICAL und GRIVIS voll in die GIS-Plattform Modular Gis Environment (MGE) der Weltmarktführerin INTERGRAPH integriert. Die Vorteile dieser partnerschaftlichen Lösung: Beide Systeme lassen sich jetzt und in Zukunft leicht ausbauen, sie profitieren weiter unmittelbar von den künftigen Entwicklungen der GIS-Plattform. Der Datenaustausch mit anderen Anwendungen ist problemlos möglich. GRICAL und GRIVIS basieren wie auch alle INTERGRAPH-Lösungen auf Windows. Eine Integration in Büroumgebungen ist so gewährleistet. Vertrieben werden beide Systeme von der INTERGRAPH (Schweiz) AG, Zürich, und von INTERGRAPH Solutions Centers, wie zum Beispiel der GEOCOM Informatik AG, Hasle-Rüegsau. Dieses Unternehmen hat GRICAL entwickelt. GRIVIS wurde vom Vermessungs- und Meliorationsamt des Kantons Basel-Landschaft, Liestal, konzipiert und realisiert. Die beiden Entwickler Toni Fankhauser, GEOCOM Informatik, und Jean-Marc Buttliger, Vermessungsund Meliorationsamt, stellen ihre Lösungen hier vor.

GRICAL – das moderne Vermessungssystem

GRICAL ist ein intelligentes Geo-Datenmanagementsystem für den Feld- und Büroeinsatz. Sämtliche Messdaten werden in einer relationalen Datenbank verwaltet, was ein äusserst effizientes und übersichtliches Arbeiten erlaubt.

Das integrierte Punktberechnungsmodul führt die Auswertung aufgrund von Feldaufnahmen (polar/orthogonal), Konstruktionen oder Transformationen durch. Feldmessungen können direkt vom Messgerät übernommen werden. Die Konstruktionen decken den Bedarf der amtlichen Vermessung der Schweiz ab. Berechnungen können in den für die Schweiz gültigen Modi «AV93» und «ADV» durchgeführt werden. Diese unterscheiden sich gemäss den geltenden Vorschriften hinsichtlich Genauigkeits- und Zuverlässigkeitsanfor-

derungen. Alternativ steht ein Modus «provisorisch» für die Verarbeitung gemäss benutzerabhängigen Toleranzen/Genauigkeiten und ein weiterer ohne Toleranzverarbeitung zur Verfügung.

GRICAL ermöglicht es, einzelne Punkte zu ersetzen, sobald qualitativ bessere Messungen vorliegen. Dieses kostensparende Konzept zur Überführung der Punkte in den AV93-Standard wird durch eine entsprechende Attributierung sowie der Zuordnung eines frei definierbaren Fangkreises realisiert.

Im Bereich Qualitätssicherung überzeugt GRICAL mit seiner Benutzer-, Instrumenten- und Toleranzverwaltung. Zu jedem Instrument sind mehrere Konfigurationen abspeicherbar. Diese Konfigurationen sind datumbezogen und mit den zugehörigen Messdaten verknüpfbar.

Der einfache Aufbau des Hauptmenüs erlaubt die komfortable Erledigung eines grossen Spektrums an Punktberechnungsaufgaben für verschiedenste Fachgebiete, ohne langes Studium von dicken Handbüchern. Alle Punktberechnungen können vorschriftsgemäss protokolliert werden.

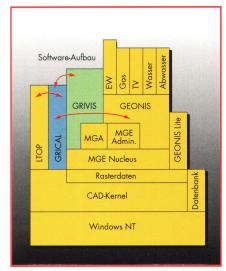


Abb. 1: Software-Aufbau.

Wichtige Parameter sind durch den Benutzer änderbar. Darunter fallen Masseinheiten (Metrisch/Englisch, Altgrad/Radian/Neugrad), Datums- und Zeitformate aber auch Vorgabewerte für die Berechnung, wie z.B. der Koordinaten-Ursprung oder die Richtung der Projektionslinie (Nord/Süd bzw. Ost/West). All diese Einstellungen können pro Projekt (Operat) vorgenommen werden, wodurch es möglich wird, die Berechnungen den verschiedensten Anforderungen anzupassen.

GRIVIS – das AV-Modul auf der Plattform MGE

GRIVIS wurde für die AV93-konforme Verwaltung und Bearbeitung des Grunddatensatzes der amtlichen Vermessung auf

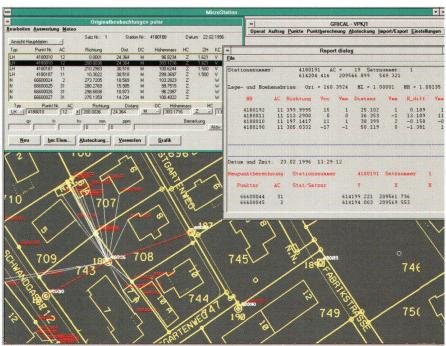


Abb. 2: Oberflächendarstellung mit GRICAL.

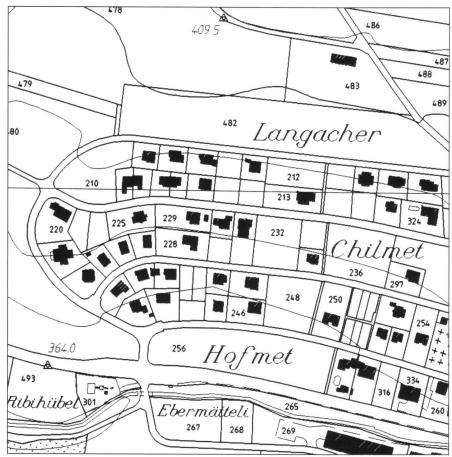


Abb. 3: Aus dem GRIVIS-Datensatz abgeleiteter Übersichtsplan-Ausschnitt.

MGE (Modular GIS Environment), der GIS-Plattform von INTERGRAPH konzipiert. MGE enthält zahlreiche Funktionen für GIS und LIS-Anwendungen in den verschiedensten Bereichen. Damit garantiert GRIVIS die direkte Nutzung der AV-Daten als Teilsystem eines übergeordneten LIS. Als Windows-basierende Applikationen verfügt GRIVIS über die Möglichkeit, Ergebnisse aus Datenauswertungen, unabhängig ob sie in numerischer oder grafischer Form vorliegen, direkt in die Office-Umgebung zu integrieren.

Datenmodell

Das GRIVIS-Datenmodell basiert auf dem MGE-Datenverwaltungskonzept. Die Geometrie und Darstellungsparameter eines Objektes werden im CAD-Kernel gespeichert. Die dazugehörigen Sachattribute sowie die Objektbeziehungen verwaltet ein relationales Datenbanksystem (RDBMS). Bei Objekten mit sehr hohen Konsistenzanforderungen, wie Fixpunkte und Liegenschaften, wird auch die Geometrie im RDBMS verwaltet. Dies garantiert diesen Objekten eine hohe Sicherheit bei Transaktionen.

Implementiert ist das auf der TVAV beruhende Datenmodell des Bundes mit den Mehranforderungen der Kantone BaselLandschaft und St. Gallen. Mit dem Modul MGE Administrator lässt sich dieses Modell bequem an eigene Bedürfnisse anpassen und erweitern.

Bearbeitung der Daten

Für die Bearbeitung der Daten steht dem Anwender die volle Funktionalität des CAD-Kernels und MGE zur Verfügung. GRIVIS ergänzt diese Funktionalität durch speziell auf das Vermessungswesen abgestimmte Funktionen. Die Funktionen sind so ausgelegt, dass sie sowohl im Rahmen von Ersterhebungen wie auch bei Katastererneuerungen oder provisorischen Numerisierungen angewendet werden können. Alle Erfassungsfunktionen lassen die Hybridverarbeitung zu, was insbesondere bei provisorischen Numerisierungen zu einer effizienten Datenerfassung führt. Damit in einer Übergangszeit auch klassische teil- und vollnumerische Operate auf dem AV93-Datenmodell bearbeitet werden können, lässt GRIVIS gewisse kontrollierte Inkonsistenzen in Flächennetzen zu.

Die Berechnung der Punktkoordinaten aus Feldaufnahmen innerhalb der MGE-Umgebung erlaubt das Modul GRICAL.

Grundstückmutation

Für die praxisgerechte Bearbeitung von Grundstückmutationen verfügt GRIVIS über ein mächtiges Werkzeug, das beliebig viele Mutationshierarchien unterstützt. Die Bearbeitung erfolgt dabei nach folgendem Verfahren:

Nach dem Lösen einer Mutationsnummer sammelt der Benutzer die zu mutierenden Grundstücke ein. Diese Operation kopiert die Daten aus dem Ausgangs- in den Bearbeitungszustand. Die Daten des Ausgangszustandes werden zu diesem Zeitpunkt für andere Mutationen gesperrt. Die Grundstücke im Bearbeitungszustand lassen sich danach mittels topologischen Funktionen mutieren. Nachdem der neue Zustand definiert ist, wird die Mutation technisch abgeschlossen. Die mutierten Grundstücke befinden sich nun im provisorischen Zustand und können bei Bedarf als Ausgangszustand einer Folgemutation dienen.

Nach dem technischen Abschluss werden als Mutationsakten die Mutationstabelle, der Mutationsplan sowie das Flächenverzeichnis mit der Gegenüberstellung der alten und neuen Grundstücke erstellt. Eine Mutation im provisorischen Zustand kann entweder in den rechtsgültigen Zustand überführt oder wieder annulliert werden.

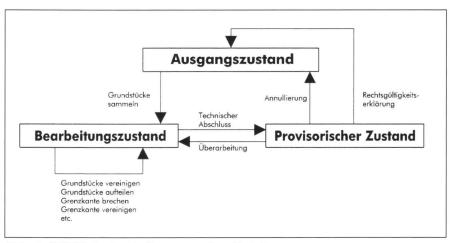


Abb. 4: GRIVIS-Zustandsdiagramm einer Mutation.

Planaufbereitung

Für die Planaufbereitung und -ausgabe stehen die Module GPLOT und IPLOT zur Verfügung. Die Aufbereitung kann aufgrund eines vordefinierten Planrahmens oder eines am Bildschirm definierten Ausschnittes, z.B. Situationsplan A4, erfolgen. Die Darstellungsmodelle der einzelnen Planarten werden in Textdateien konfiguriert

Auswertungen

Mit den MGE-Tools ergeben sich für den versierten GIS-Anwender vielseitige Auswertungs- und Analysemöglichkeiten aus dem AV-Datenbestand. Werden die AV-Daten mit weiteren geographischen Daten kombiniert, erweitern sich die Möglichkeiten und damit der Nutzen erheblich. Fürs Erzeugen von verschiedenen in der amtlichen Vermessung benötigten Verzeichnissen, wie z.B. die Grundstückstatistik, der Liegenschaftsbeschrieb und die Statistik der Bodenbedeckung (Arealstatistik) stehen Makros bereit. Alle resultierenden Ausgaben lassen sich unter Windows in die Office-Umgebung integrieren.

Schnittstellen

GRIVIS bietet Übersetzungsprogramme für folgende Formate an: DXF/Geobau, GEOS2, LTOP, GRE4, HP48 und DHM25. Ein AVS/Interlis-Übersetzer befindet sich in Entwicklung.

Intergraph (Schweiz) AG Thurgauerstrasse 40 CH-8050 Zürich Telefon 01 / 308 48 48 Telefax 01 / 308 49 19

Firma	INTERGRAPH (Schweiz) AG	INTERGRAPH Corp.
Adresse	Thurgauerstrasse 40 8050 Zürich	Huntsville Alabama 3589-0001
Telefon Telefax	(1) 308 48 48 (1) 308 49 19	(1) 205 730 2000 (1) 205 730 2461
Firmenleitung	Jean-Pierre Beer General Manager	James W. Meadlock, CEO and Chairman of the Board
Gründung	1985	1969
Umsatz	20 Mio. Franken	ca. 1,05 Mia. US-Dollar
Mitarbeiter	46	9600 weltweit
Zweck	Beratung, Vertrieb und Support der INTERGRAPH-Produkte	
Produkte	Personal Workstations, komplette Interaktive Informations- Systeme für branchenübergreifende Anwendungen in den Bereichen GIS/LIS, Leitungskataster, Bauingenieurwesen, Vermessung, Kartographie, Geologie, Architektur, Anlage- planung, Fabrik- und Büro-Layout, Desktop Publishing, Maschinenbau und Fertigung, Elektronik.	
Service	Umfassender Support aller installierter Systemkomponenten inkl. Applikationssoftware und Datenbanken, kundenspezifische Systemanpassungen, umfassende Schulung.	

Niconsult AG:

GIS richtig auswählen und ökonomisch einführen

Die Informatikfirma Niconsult AG

Niconsult AG wurde 1986 gegründet. Geschäftssitz ist Bern.

- Schwerpunkte in den Geschäftsfeldern LIS/GIS und Dokumentenverwaltung sind die Beratung, die Erstellung von Pflichtenheften, die anbieterunabhängige Systemevaluation und -einführung.
- Die langjährige Tätigkeit in diesen Marktsegmenten garantiert Kompetenz und Zuverlässigkeit.
- Die Ingenieure der Niconsult AG sind seit mehr als 15 Jahren im LIS/GIS-Bereich tätig.
- Niconsult AG verfügt mit der FINDER Software über ein bewährtes und ausgezeichnetes System zur Erfassung und insbesondere Auswertung von Marktübersichten.
- Für das Projektmanagement und die Projektmethodik führt Niconsult zur Zeit eine Applikation des ARIS-Toolset® ein.

Abb. 1: Auswahl-Kriterien festlegen.

GIS-Beratung

Niconsult AG ist im GIS-Bereich vollständig unabhängig von allen Herstellern und Betreibern von GIS. Die Ergebnisse unserer Beratung sind ausschliesslich eine Synthese aus den Kundenbedürfnissen und -wünschen sowie unserem Knowhow. Wir sind überzeugt, dass wir durch unsere echte Unabhängigkeit von Herstellern und Betreibern von GIS/LIS/NIS für die Erarbeitung von Konzepten und Evaluationen besonders prädestiniert sind

Im Bewusstsein, dass auch ein sehr gut angepasstes GIS nicht alle Bedürfnisse einer mittleren oder grösseren Unternehmung resp. Verwaltung zu lösen vermag, setzen wir auf Lösungen aus integrierten Teilsystemen. Jedes Teilsystem soll zuerst die vordringlichsten Aufgaben organisato-

risch elegant und fachtechnisch sauber lösen – um dann zielsicher zu einem ökonomischen Ganzen zu verschmelzen.

Durch unsere permanente Beobachtung des Marktes haben wir immer die aktuelle Übersicht über verfügbare Systeme und Entwicklungstrends.

Für die Abwicklung von GIS-Projekten setzen wir eine Anwendung des ARIS-Toolset® ein: Die den Basis-Referenzmodellen hinterlegten Methodenmodelle und Tools unterstützen mit elektronischen Formularen, Checklisten, Konzept- und Lösungsbeschreibungen etc. alle Projektaktivitäten.

GIS-Marktübersicht GEOFIND

Die LIS/GIS Marktübersicht erscheint nun in der 7. Auflage unter dem neuen Namen GEOFIND und in elektronischer Form. An der SOGI/GISWISS Tagung im April 1996 in Morges wird GEOFIND der Öffentlichkeit vorgestellt.

Bewährtes haben wir beibehalten: GEO-FIND beschreibt Land- und Geoinformationssysteme einheitlich anhand von über 120 Kriterien. Mit der neuen Ausgabe werden auch Anbieter ausserhalb des deutschsprachigen Raumes berücksichtigt. Die LIS/GIS-Marktübersicht wird deshalb nun auch ausserhalb des deutschsprachigen Raumes angeboten. Ausserdem wird berücksichtigt, dass LIS/GIS in zunehmendem Masse in unternehmensweite Informationssysteme integriert werden. Deshalb wurden neu auch «GIS-nahe» Systeme und Dienstleistungen aufgenommen.

Absolut neuartig ist die Möglichkeit, mit EDV-Hilfsmitteln Recherchen durchzuführen. Mittels unserer FINDER-Software können Anwender erstens ihre Anforderungen an Anbieter, Systeme und Dienstleistungen einfach definieren (Abb. 1) und zweitens eine Auswahl der Antworten festlegen, die sie sich von den Anbietern wünschen (Abb. 2). Die FINDER-Software

Abb. 2: Berichts-Umfang festlegen.

Abb. 3: Auswertung am Bildschirm.

generiert dann einen druckbaren Bericht aus GEOFIND der nur noch genau das enthält, was für einen gegebenen Fall wirklich interessiert (Abb. 3).

GEOFIND ist erhältlich auf CD-ROM, PC-Disketten oder auch immer noch gedruckt.

ARIS-Toolset®

Die «Architektur integrierter Informationssysteme ARIS» ist ein EDV-gestütztes Rahmenkonzept zur Beschreibung aller Aspekte integrierter Anwendungssysteme. Es wurde von IDS Prof. Scheer, Saarbrücken, entwickelt und in Deutschland bereits über 5000 mal verkauft. Mit diesem Architekturkonzept wird eine umfassende Sicht auf Geschäftsprozesse gegeben, die verhindert, dass Einzelaspekte (z.B. Datenmodelle) bei der Problembeschreibung dominieren und andere Aspekte (z.B. Organisationsmodelle) übersehen werden.

ARIS erzwingt drei Sichten auf eine betriebswirtschaftliche Problemstellung: Organisations-, Daten-, Funktions- und Steuerungssicht. Das Toolset eignet sich hervorragend für Softwarehersteller und gleichermassen für Berater: Dem Berater zur Modellierung von Anforderungen etc. und dem Hersteller u.a. zur Modellierung und Dokumentation von Standardanwendungen. Das Methoden- und Toolset bietet also ein EDV-spezifisches Vorgehensund Projektmanagementmodell, Fachkonzepte und Methoden sowie Softwaretools für die Durchführung von EDV-Projekten. Es führt und unterstützt den Lieferanten bzw. Systemberater über den gesamten Verkaufsprozess, vom Erstkontakt über Bedarfsanalyse, Ausschreibung, Offertvergleich bis hin zur Systeminstallation und Abnahme.

Der deutsche Partner von Niconsult AG, Dr. Schardt consilium, München, hat für die Steuerung von Dokumenten Management Projekten eine ARIS-Anwendung erstellt. Gegenwärtig entwickelt Niconsult daraus eine Anwendung für GIS-Projekte.

Niconsult AG
Aarstrasse 98, Postfach
CH-3000 Bern 13
Telefon 031 / 312 13 11
Telefax 031 / 311 91 78
E-mail ni_info@niconsult.ch

Unisys (Schweiz) AG:

Land- und Infrastrukturmanagement: eine Realität bei Unisys

Unisys (Schweiz) AG bietet innerhalb des Bereiches Land- und Infrastrukturmanagement folgende, speziell für die Bedürfnisse des Schweizer Marktes entwickelte Lösungen an:

- NIS Netzinformationssystem
- KISS Katasterinformationssystem
- GPS Modul
- CAPITASTRA Grundbuchlösung

Diese auf dem Geographischen Informationssystem ARGIS 4GE basierenden Applikationen beinhalten kundenorientierte Modularität, kostengünstige Standardisierung auf der Basis offener und moderner Systemtechnologien und der dafür speziell erforderlichen Funktionalitäten. Damit werden die Voraussetzungen für ein den heutigen Erfordernissen der Ver- und Entsorgungsunternehmen, der amtlichen Verwaltungen und der Ingenieurbüros entsprechenden Informationsmanagements erfüllt.

Für die Unternehmen ist es von grosser Wichtigkeit, die Bedeutung von Informationen mit geographischem Bezug für eine rationelle und effiziente Erbringung von Zusatzdienstleistungen an Kunden, durch innovative Lösungen und bessere Reaktionsfähigkeit zu erkennen und in entsprechende Wettbewerbsvorteile umzusetzen.

Das Geographische Informationssystem ARGIS 4GE als Basis spezieller Lösungen

Das Geographische Informationssystem ARGIS stellt die leistungsfähige Basis für alle fachspezifischen Lösungen dar und bietet dem Anwender dadurch die folgenden Vorteile:

- offenes und modulares Systemkonzept auf Basis Arbeitsstationen
- Verwendung von Software-Standards (Unix, X-Windows, TCP/IP)
- objektbezogene, relationale Datenbanktechnologie (Oracle, SQL)
- Mehrbenutzerbetrieb (Client-Server-Architektur) integrierbar in bestehende EDV-Umgebungen
- ARGIS Inquiry
 Facility
 File
 Group
 Function
 Selection
 Options
 Help

 That the Falleouse

 Close

 Zoom in Zoom Out
 Pan Configure

 That the Falleouse
 of the form of the falleouse
 of the form of the falleouse
 of the form of the falleouse
 of the falle

Abb. 1: Die Landinformationssysteme sollten einen globalen oder einen punktuellen Zugriff erlauben. Daher die Partnerschaft von Privatwirtschaft und Verwaltungen. (Alle Abbildungen: © Maurice Robadey.)

Fig. 1: Les systèmes d'information du territoire doivent permettre des approches globales ou ponctuelles. D'où le partenariat entre administrations et économie privée.

- flexibler Einsatz durch kundenspezifische Adaptierungen und Optimierungen
- Schnittstellen zu Fremdsystemen
- Vollumfängliche GIS-Funktionalitäten (Flächenverschneidung, Netzwerkanalysen, Selektionen, etc.).

Das Netzinformationssystem ARGIS*NIS

Verstärkter Wettbewerb und zunehmende Offenheit der Märkte erfordern von Technischen Betrieben und Unternehmen der Energieversorgung strukturelle Anpassungen und eine erhöhte Effizienz. Auch in der Schweiz stehen die Werke vor einem tiefgreifenden Umbruch durch einen fundamentalen Wandel in der Organisation der Stromversorgung und dessen Verteilung.

Der Erhaltungsaufwand der Versorgungssysteme in den Gemeinden wird ständig grösser. Diese Netze (Elektrizität, Gas, Wasser, Fernwärme, Kanalisation, usw.) sind komplex strukturiert und räumlich ausgedehnt. Bei der Verwaltung, Nachführung und Auswertung der umfangreichen Bestände an Leitungsdokumentationen (Trassen und Schemapläne, Skizzen, usw.), die heutzutage überwiegend noch manuell durchgeführt werden, müssen zur Bewältigung künftiger Aufgaben modernste Mittel der Informationstechnologie eingesetzt werden.

Dies führt zur Ablösung der traditionellen Anlagedokumentation Methoden der (Pläne, Karteien, Ordner). Die damit verbundene Steigerung der Produktivität und Flexibilität verbessert die Dienstleistungsangebote bei gleichzeitiger Kontrolle der Kosten. Netzinformationssysteme auf der Basis relationaler Datenbanken stellen damit ein wichtiges Instrumentarium zur Optimierung technischer Operationen dar. Die gemeinsame Nutzung der verfügbaren Daten verhindert die früher unvermeidlichen Redundanzen und ermöglicht bemerkenswerte Einsparungen.

ARGIS*NIS wird als Ersatz und Erweiterung der bisher eingesetzten Leitungsdokumentationen genutzt. Zusätzlich zur Verwaltung und Nachführung der umfangreichen Datenbestände können die verschiedensten, systemgesteuerten Netzwerkanalysen durchgeführt werden. Alle erforderlichen Informationen werden dem Anwender ressortübergreifend und aktuell zur Verfügung gestellt und der Unternehmensleitung zur Entscheidungsfindung aufbereitet.

Damit werden alle für die Versorgungsunternehmen und Werke wichtigen Anforderungen erfüllt:

- Informationen sind aktuell, vollständig und konsistent am Arbeitsplatz verfügbar
- Planungsaufgaben werden durch

- zweckmässige Datenbewirtschaftung effizienter
- Programme für Netzausbau und Netzunterhaltsplanung werden unterstützt. Dadurch wird die Versorgungssicherheit durch Vermeidung von Schäden und schnellere Störungsbehebung beträchtlich erhöht
- Planungsausschnitt, Massstab und darzustellende Informationen sind auswählbar und leicht zu ändern
- «intelligente» Informationen ermöglichen Auswertung nach unterschiedlichen Kriterien.

Das Katasterinformationssystem ARGIS*KISS

Kantonale und städtische Vermessungsämter sowie einzelne Geometerbüros stehen vor der Aufgabe, das Kataster in Zukunft auf effizientere und schnellere Art zu erfassen, zu verwalten und zu aktualisieren. Dies kann, zusammen mit den erforderlichen Abfragen und Analysen, mit Hilfe modernster Informationstechnologien durch zentrale Datenhaltung kostengünstiger und zeitgerechter ausgeführt werden.

ARGIS*KISS stellt durch die volle Implementierung des AV 93 Datenmodells eine speziell auf die Anforderungen des Schweizer Katasters konzipierte Applikation dar und bietet dem Anwender den folgenden Nutzen:

- digitale Erfassung, Weiterführung und Abfrage des gesamten Katasters
- Reduzierung der Kosten durch zentrale Datenhaltung und einheitliche Systemund Softwarebasis
- vollumfängliche GIS-Funktionalitäten
- höchste vermessungstechnische Genauigkeit und Qualität
- Überlagerung der amtlichen Vermessungsdaten mit beliebigen Anwendungen
- Schnittstellen zu den wichtigsten Vermessungssystemen.

Die Datenbearbeitung der in der Geographischen Datenbank («Operat») organisierten, objektorientierten Informationen erfolgt in frei definierbaren Projekten, die nach folgenden Typen unterschieden werden:

- Erfassungsprojekt
- Mutationsprojekt
- Auswerteprojekt.

Ortungssystem: ARGIS*GPS Modul

ARGIS*GPS ist ein globales Positionierungssystem. Es wurde für Leitzentralen entwickelt, um mit neuester Technologie Einzelfahrzeuge oder Flotten zu disponieren. Mit Hilfe von Satelliten können die

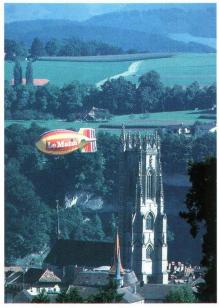


Abb. 2: Die Stadt Freiburg beendet die Numerisierung seiner Katasterpläne und wird seine Leitungsnetze mit seinem Landinformationssystem verwalten.

Fig. 2: La ville de Fribourg termine la numérisation de ses plans cadastraux et va gérer ses réseaux avec son système d'information du territoire.

genauen Positionen von Objekten berechnet und am Bildschirm dargestellt werden. Im Gegensatz zu anderen, herkömmlichen Systemen bietet ARGIS*GPS alle Vorzüge und Möglichkeiten eines GIS (Geographisches Informationssystem) mit intergrierter Verwaltung und Analyse von Informationen jeglicher Herkunft. Mit massgeschneiderten Applikationen, ba-Grundsystem auf dem ARGIS*GPS, können jegliche Anforderungen des Kunden bezüglich Konzept, gegenseitiger Abhängigkeit von Datensätzen, Benutzeroberfläche, Anzeige von Informationen am Bildschirm oder auf Listen, Analyse, aber auch die Planung von komplexen «real-time» Abläufen realisiert werden.

Die Grundbuchlösung CAPITASTRA

Bei der manuellen Grundbuchführung fehlen oft die Daten des rechtsgültigen Zustandes und der Einblick in die laufenden Geschäfte. Die elektronische Grundbuchlösung CAPITASTRA entspricht der eidgenössischen Gesetzgebung und ist an die Bedürfnisse des jeweiligen Grundbuchamtes anpassbar. Datenschutz, Datensicherheit und -integrität sowie die Einbindung in die organisatorischen Rahmenbedingungen werden vom System gewährleistet.

Damit werden alle für die Grundbuchämter wichtigen Anforderungen erfüllt:

- dauernde Auskunftsbereitschaft über aktuelle, rechtsgültige Grundbuchinformationen
- Steigerung der Produktivität durch Reduktion des Arbeitsaufwandes
- Investitionsschutz durch Anpassungsfähigkeit (konsequente Parametrisierung)
- Benutzerakzeptanz durch einfachste Benutzerführung in moderner Umgebung
- höhere Rechtssicherheit der erfassten Daten
- klar definierte Schnittstellen zu GIS-Systemen
- juristische exakte Abbildung des Grundstücks.

Weitere Lösungen im Bereich «Öffentliche Verwaltungen»

Die Geschäftsabläufe in Administration und Verwaltung bergen ein grosses Rationalisierungs- und Optimierungspotential. Die diesbezüglichen Ansätze im modernen Geschäftsprozessmanagement weisen der Informatik eine neue, zentrale Rolle zu. Die Lösung openGEKO erweitert die standardmässigen Büroapplikationen um umfassende Groupware- und Workflowfunktionen und bietet die Transparenz eines umfassenden Management-Informationssystems.

Mit dem Einsatzleitsystem POLIS können Einsätze von Polizei- und Feuerwehrorganisationen sowie Rettungsdienste sofort erfasst, kontrolliert bearbeitet und

Abb. 3: Auf dem Bildschirm sichtbar: Ausschnitt des numerisierten Katasterplanes der Altstadt von Freiburg. Fig. 3: La vieille ville de Fribourg en données numérisées avec, sous l'écran, le plan cadastral dessiné automatiquement.

anschliessend detailliert ausgewertet werden. ELS bildet zusammen mit der Lösung für das Rapportwesen, RAPOL, das Polizei-Informationssystem POLIS.

Unisys stellt das in zahlreichen Projekten und allen Bereichen der Informatik erworbene Fachwissen dem Anwender in Form der folgenden Dienstleistungen zur Verfügung:

- Bedarfsanalysen und Implementierungsstrategien
- Soll-Konzeptionen und Beratung bei der Erarbeitung von Pflichtenheften
- Projektbegleitende Unterstützung

Applikationsentwicklung und «Customerizing».

Dem Benutzer wird damit die optimalste und effizienteste Vorgehensweise bei der Auswahl von Informationssystemen sowie bei der Beschaffung der neuen Technologie ermöglicht und somit dessen Entscheidungssicherheit erhöht.

Unisys (Schweiz) AG Zürcherstrasse 59–61 CH-8800 Thalwil Telefon 01 / 723 33 33 Telefax 01 / 720 37 37

Niederlassung in Basel, Bern, Lausanne

- système ouvert et concept modulaire
- utilisation de plateformes standards (Unix, X-Windows, TCP/IP)
- technologie de base de données relationelle pour la gestion des objets (Oracle, SQL)
- système multiutilisateur (architecture client/serveur)
- intégration au réseaux informatiques en place
- mise en œuvre flexible par des adaptations spécifiques
- interfaces multiples pour l'échange de données
- éventail complet de fonctionnalités SIG (polygones, analyses de réseaux, sélection, etc.).

Unisys (Suisse) SA:

La gestion du territoire et des infrastructures techniques: une réalité chez Unisys

Unisys (Suisse) SA offre dans le secteur de la gestion du territoire et des infrastructures techniques diverses solutions qu'elle a développé en tenant compte particulièrement des spécificités du marché suisse:

- NIS Système d'information pour la gestion des réseaux urbains
- KISS Système d'information pour la gestion des données cadastrales
- Module de positionnement GPS
- CAPITASTRA Gestion intégrée du registre foncier

Ces applications basées sur le logiciel ARGIS 4GE apportent à leurs utilisateurs des possibilités étendues grâce notamment à leur modularité et à leur facilité d'adaptation aux besoins de la clientèle. Elles mettent en œuvre les standards du marché en s'appuyant sur les technologies ouvertes les plus modernes et les plus économiques. Ces applications répondent en tous points aux caratéristiques exigées par les gestionnaires de réseaux urbains, les administrations publiques ou les bureaux d'ingénieurs lors de la mise en place d'un système de gestion informatisée.

Dans ces entreprises la plus haute importance est conférée aux données à référence spatiale: tirant profit de la relation des informations de base avec leur emplacement dans le territoire géographique, elles sont à même d'apporter des prestations de service rationnelles et efficientes et, par des solutions innovatives, de réagir plus rapidement aux conditions du marché en bénéficiant d'un avantage concurrentiel certain.

Les avantages de base du système d'information géographique ARGIS 4GE

Le système d'information géographique ARGIS 4 GE représente l'élément de base efficace de toutes les applications spécifiques et apporte à l'utilisateur des avantages immédiats:

Le système d'information pour la gestion des réseaux urbains ARGIS*NIS

La concurrence toujours plus forte et la libéralisation des marchés économiques imposent aux gestionnaires de réseaux, aux producteurs et aux distributeurs d'énergie des adaptations structurelles et une efficacité accrue. En Suisse aussi, les industries concernées voient leurs structures profondément déstabilisées par un changement fondamental de l'organisation de la distribution d'énergie et de sa répartition sectorielle.

Les charges des communes pour s'approvisionner en énergie deviennent toujours plus lourdes. Les réseaux qui en dépendent (électricité, gaz, eau, chauffage à distance, canalisations d'assainissement, etc.) sont complexes et limités dans l'es-

Fig. 4: Données cadastrales issues de la nouvelle mensuration de la vieille ville de Fribourg.

Abb. 4: Katasterdaten aus der Neuvermessung der Altstadt von Freiburg.

pace. La gestion, l'exploitation, le remplacement et l'extension des équipements installés exige une documentation de travail et de prise de décision (tracés, schémas, esquisses, etc.) qui se fait de nos jours encore souvent manuellement. Pour couvrir les besoins de demain, les technologies les plus modernes de l'informatique et des communications devraient être mises en œuvre. Cette nouvelle orientation conduit à la suppression de la documentation traditionnelle des équipements de réseaux (plans, cartothèque, classeurs). L'amélioration de la productivité ainsi obtenue et la plus grande souplesse dans le travail permettent de fournir de meilleurs services, au meilleur coût.

ARGIS*NIS permet de remplacer et de compléter la documentation actuellement utilisée pour la gestion des réseaux. De plus, grâce notamment à la richesse et à la souplesse de la base de données, les analyses de réseaux les plus diverses peuvent être effectuées. Les informations actualisées nécessaires, qu'elles soient centralisées ou gérées par les services éloignés de l'entreprise, sont mises à disposition de l'utilisateur et permettent aux organes dirigeants de prendre de meilleures décisions.

Toutes les exigences essentielles des entreprises de distribution sont ainsi satisfaites:

- les informations sont actuelles, complètes, cohérentes et directement disponibles à la place de travail
- les tâches de planification sont plus efficaces grâce à une gestion de données spécifiques au type d'énergie
- les programmes d'extension et de planification de l'entretien des réseaux sont assistés. La sécurité de la distribution est ainsi fortement augmentée par une réduction des dommages et une réponse plus rapide lors de dérangement
- les extraits de plans, échelles et informations à présenter peuvent facilement être affichés et modifiés
- des informations «intelligentes» permettent de préparer des rapports selon différents critères.

Le système de gestion des données cadastrales ARGIS*KISS

Les services cantonaux et communaux de mensuration ainsi que les bureaux de géomètres sont aujourd'hui confrontés à l'introduction de méthodes efficaces et rapides pour la saisie, la gestion et la mise à jour des données cadastrales. L'utilisation des outils informatiques les plus modernes leur permet en outre d'effectuer des interrogations et des analyses complexes en exploitant les profits d'une base

Fig. 5: Glissement de «Falli-Hölli» (FR); une meilleure gestion du territoire devrait permettre d'éviter de telles catastrophes. Le site en glissement a été surveillé par mesures GPS.

Abb. 5: Geländerutschungen «Falli-Hölli», eine bessere Nutzungsplanung sollte solche Katastrophen vermeiden. Die Rutschzone ist mit GPS-Messungen überwacht worden.

de données centralisée de manière efficace, économique et rapide.

Grâce à son entière conformité au modèle officiel de la Confédération MO93, ARGIS*KISS correspond aux besoins de la gestion cadastrale en Suisse et apporte à ses utilisateurs les fonctionnalités spécifiques nécessaires:

- saisie par digitalisation, exploitation et interrogation du cadastre dans sa totalité
- réduction des coûts par une gestion centralisée des données et un logiciel unique de traitement des applications
- éventail de fonctions SIG complet
- techniques de mensuration de haute qualité et précision
- superposition d'applications diverses aux couches de données cadastrales
- interfaces avec les systèmes courants de mensuration.

Le traitement des objets d'une portion de territoire (opérat) stockée dans la base de données géographique se fait grâce à la sélection libre de projets de travail que l'on peut définir comme suit:

- projet de saisie
- projet de mutations
- projet d'exploitation.

Module ARGIS*GPS pour le positionnement par satellite

Le module ARGIS*GPS est un système de positionnement global destiné aux centrales d'alarme et aux salles de contrôle qui permet de suivre des flottes de véhicules dans le terrain avec la technologie GPS (Global Positioning System) d'avantgarde. La position exacte des objets est déterminée par satellite et affichée sur l'écran. Par rapport aux systèmes courants, le module ARGIS*GPS utilise pleinement les avantages et les possibilités des SIG (systèmes d'information géographique) pour la représentation, la gestion, l'analyse et l'intégration de données d'origine diverse.

Grâce à la modularité du système ARGIS*GPS, les besoins de la clientèle peuvent être intégrés au niveau du concept afin de réaliser des applications personnifiées à tous les stades du développement: schéma de données, interface utilisateur, affichage à l'écran, analyses et listages. De cette manière, il est possible de réaliser le suivi de processus de contrôle et de planification complexes en temps réel.

La gestion intégrée du registre foncier avec la solution CAPITASTRA

La traitement manuel du registre foncier occasionne souvent des retards sur l'état officiel des données et la visibilité des affaires en cours. La solution informatique CAPITASTRA répond aux exigences légales en la matière et peut être adaptée aux caractéristiques de tout office de registre foncier. Le système assure la protection, l'intégrité et l'archivage des données, de même qu'il englobe les règles d'organisation et de contrôle y relatives.



Fig. 6: Zone d'affectation du plan d'aménagement de Cormagens (FR), sur fond d'image raster.

Abb. 6: Zonennutzung der Ortsplanung von Cormagens (FR) auf Rastergrundlage des Übersichtsplanes.

Les exigences élevées des offices de registre foncier sont couvertes:

- information permanente sur l'état officiel à jour du registre foncier
- augmentation de la productivité par la réduction des procédures de travail
- protection de l'investissement par la souplesse d'adaptation de la solution (niveau de paramétrisation élevé)
- sécurité élevée des données saisies sur le plan légal
- interface efficace avec les systèmes d'information géographique SIG

 représentation juridique exacte de la parcelle.

Autres solutions pour les administrations publiques

Les procédures de travail dans le secteur de l'administration bénéficient encore aujourd'hui d'un potentiel important d'optimisation et de rationalisation. Pour atteindre cet objectif, le contrôle des procédures administratives par les outils de l'informatique est appelé à jouer un rôle prédominant. Parmi les diverses solutions disponibles, il faut noter en particulier:

La solution OpenGEKO élargit les possibilités des systèmes bureautiques standards et permet le déroulement des fonctions à l'échelle d'un département et de l'ensemble de l'administration (Groupware et Workflowmanagement); elle amène la transparence d'un système de gestion intégré dans le cadre d'un Management Information System.

Le système d'aide à l'engagement POLIS et de gestion des rapports RAPOL permet aux corps de police et aux services de lutte contre le feu de contrôler immédiatement les moyens engagés d'en traiter les données en temps réel et ensuite d'établir les rapports adéquats.

Unisys met à la disposition de ses clients une expérience acquise dans la gestion et l'élaboration de projets importants et nombreux sous forme de prestations de services, notamment:

- étude des besoins et stratégie d'implémentation
- conception de solutions et assistance à l'établissement de cahiers des charges
- contrôle de projets
- développement d'applications et customisation.

L'utilisateur est conseillé sur les méthodes les plus efficientes lors du choix de systèmes d'informations et de leur mise en œuvre. Il bénéficie de ce fait de la sécurité la plus élevée dans ses décisions touchant à l'organisation et aux structures informatiques.

Unisys (Suisse) SA World Trade Center Avenue Gratta-Paille 2 CH-1000 Lausanne 30 Grey Téléphone 021 / 641 15 15 Téléfax 021 / 641 15 00

Durch die Tatsache, dass wir ein Büro von

Vermessungsfachleuten sind, können wir

GEOLine:

Innovative Datenerfassung und -aufbereitung für LIS/GIS

Die Firma GEOLine, Büro für Geoinformation hat sich zum Ziel gesetzt, mittels modernen Methoden Datenerfassung und Datenaufbereitung für raumbezogene Informationssysteme anzubieten. Im Zentrum steht dabei die Methode Scanning – Vektorisierung – Strukturierung, mit welcher Pläne aller Art von analoger Form in digitale Form (Raster- oder Vektordaten) umgewandelt werden.

Wer heute einen Kataster aufbaut, macht sich Überlegungen zum Aufbau und Einsatz von raumbezogenen Informationssystemen. Die heute erhältlichen Softwareprodukte bieten dem Anwender umfangreiche und effiziente Werkzeuge zur Lösung seiner Probleme an. Die Nutzung der Katasterinformationen wird immer vielseitiger. Ohne passende Grundlagedaten (Grundbuchplan, Übersichtsplan, Landeskarte) können solche Informationssysteme nicht betrieben werden.

Die Beschaffung der digitalen Grundlagedaten aber auch die Überführung von bestehenden graphischen Katastern war bis jetzt eine kostspielige und zeitintensive Angelegenheit. Die Daten wurden meist mittels manueller Digitalisierung der Pläne erfasst, entweder am Digitalisiertisch oder am Bildschirm. Gefordert sind jedoch kostengünstig, effizient und mit hoher Genauigkeit erfasste Daten, welche rasch verfügbar sind. Datenerfassung ist eine verantwortungsvolle Aufgabe und verlangt auf die jeweilige Problemstellung zugeschnittene, innovative Lösungen. – Ein Fall für GEOLine.

Scanning

Wir bieten Ihnen als erste Stufe des Datenerfassungsprozesses das Scanning an. Wir sind in der Lage, schnell und preiswert, alle Dienstleistungen anzubieten: vom einfachen Schnellscan über kontrollierten Standardscan bis zum hochauflösenden Präzisionsscan, die Konversion in alle gängigen Datenformate und Datenlieferungen mittels Diskette, Modem, DAT oder CD-ROM.

Vektorisierung / Strukturierung

Die nächste Stufe der Datenverarbeitung, auf dem Weg vom Plan zum digitalen Datensatz ist die Vektorisierung mit anschliessender Strukturierung. Bei diesem Arbeitsschritt werden aus den Rasterdaten mittels Rohvektoren und nach den Regeln der Methodendatenbank dieienigen Elemente der Zeichnung erkannt, welche sich eindeutig zeichnerisch unterscheiden lassen (Strichstärke, Strichart, Symbol oder Text). Die erkannten Elemente werden ihrer Bedeutung entsprechend, automatisch in separaten Ebenen abgelegt. Zusätzlich werden geometrische Bedingungen überprüft bzw. erzeugt (z.B. Flächenbildung, Geradlinigkeit) oder Basisattributierung durchgeführt (z.B. Parzellennummer zu Parzelle). Die nicht erkannten Zeichnungselemente werden von uns manuell nachbearbeitet.

Transformation / Datenkonversion

Im nächsten Arbeitsschritt werden mittels der Transformation einerseits allfällige Verzüge des Planträgers eliminiert (Entzerrung) und andererseits der Bezug zum Landeskoordinatensystem geschaffen (Georeferenzierung). Je nach Zustand und Qualität des Originalplans können die strukturierten Daten mittels des Koordinatennetzes oder mittels Passpunkten in Landeskoordinaten transformiert werden. Je nach Aufgabestellung und Qualitätsanforderungen an das Endprodukt können die Daten linear (z.B. affin) oder nichtlinear (z.B. nachbarschaftsgetreue Transformation zur Zusammenführung mit Teilnumerik) transformiert werden. Mit der Datenkonversion werden die fertigen digitalen Pläne für den Datentransfer ins Zielsystem umgewandelt, entweder in ein universelles Datenübertragungsformat (DXF/ Geobau, AVS) oder direkt in das Format des Zielsystems (z.B. Intergraph-DGN, Sicad-SQD, ArcView-SHP, C-Plan-Format oder andere).

Gesamtlösungen

unsere Kunden auch dahingehend unterstützen, dass wir bei fehlenden Transformationsgrundlagen die Erhebungen und Messungen von geeigneten Passpunkten vor Ort im Felde vornehmen können. Unsere langjährige Erfahrung in Planung, Aufbau und Betrieb von raumbezogenen Informationssystemen hilft uns, unsere Kunden bei der Integration der Daten im System (Weiterverarbeitung, Attributierung etc.) bis hin zum Customizing von Benutzeroberflächen und zum Betrieb von Informationssystemen zu unterstützen. Die enge Zusammenarbeit mit Vermessungs- und Photogrammetriebüros macht es uns möglich, unseren Kunden interdisziplinäre Lösungen anzubieten.

Beratung

Wir beraten unsere Kunden bei der Lösung von Problemen im Bereich LIS/GIS sowie Datenbeschaffung und Datenkonversion. Dabei können wir durch Ausarbeitung von Voranalysen, Informatik-Konzepten oder Pflichtenheften Unterstützung anbieten, führen Systemevaluationen durch und übernehmen Projektleitung, Coaching oder Aufgaben der Projektbegleitung.

Unser Know-how – Ihr Vorteil

Unsere Kunden profitieren vom langjährigen Fachwissen in den Bereichen Vermessung, GIS/LIS und elektronische Datenverarbeitung. Zu unseren Kunden zählen Ingenieur- und Geometerbüros, Gemeinden, öffentliche und private Verund Entsorgungsunternehmen, kantonale Ämter und Bundesstellen, welche in irgendeiner Form raumbezogene Informationen nutzen.

GEOLine
Martin Probst
Brunnadernstrasse 10
CH-3006 Bern
Telefon 031/ 351 80 51
Telefax 031 / 351 01 55
E-mail 101330.254@compuserve.com

Ingenieur- und Vermessungsbüro Sennhauser, Werner & Rauch AG:

LIS/GIS-Anwendungen in der Praxis

Die Firma

Sennhauser, Werner & Rauch AG (SWR) ist ein 1948 gegründetes Ingenieur- und Vermessungsbüro mit zur Zeit rund 80 Mitarbeitern. SWR bietet ein breites Spektrum von Dienstleistungen an: Hoch- und Tiefbau, kommunale Bauverwaltung, Verund Entsorgung, Planung, Beratung, Umwelt- und Kulturtechnik, Vermessung, Land- und Geographische Informationssysteme (LIS/GIS). Durch die jahrzehntelange Tätigkeit in verschiedenen Gemeinden und in allen technischen Bereichen des Gemeindeingenieurwesens vereinigt SWR ein breites und umfassendes Wissen über die in den Gemeinden und Werken anfallenden Anliegen und Probleme. In die Vermessungsabteilung eingegliedert ist der Bereich LIS/GIS, der hier vorgestellt werden soll. Die LIS/GIS-Spezialisten, erfahrene Informatiker und Ingenieure, bekamen schon früh die Gelegenheit, umfassende LIS für die Gemeinden aufzubauen. Durch die interdisziplinäre Zusammenarbeit mit den im eigenen Betrieb vorhandenen Fachkräften, die die Probleme und Wünsche der Gemeinden und Werke bestens kennen, können den Kunden kompetente Lösungen angeboten werden.

Kommunale LIS

1986 konnte SWR im Rahmen eines RAV-Pilotprojektes erste praktische Erfahrungen mit dem Aufbau eines LIS sammeln. Im Auftrag der Projektleitung RAV (Reform Amtliche Vermessung) wurden über ein Teilgebiet der Stadt Schlieren sämtliche Ebenen des damaligen Datenkataloges der Amtlichen Vermessung aufgearbeitet. Darauf aufbauend entstanden erste LIS-Erweiterungen mit den Themen Abwasser, Wasser, Elektrisch und Fernmeldewesen.

Initialisierung

In einigen Gemeinden und Städten wurden die Weichen für den Aufbau eines LIS schon früh gestellt. Zum einen wurde bereits in den Siebzigerjahren intensiv mit der Numerisierung der Grunddaten der Amtlichen Vermessung begonnen und damit eine erste Grundlage für den Aufbau eines LIS gelegt. Zum andern wurde rechtzeitig damit begonnen, die Gemeindebehörden und die Vertreter der Werke auf die Vorteile des numerischen Katasters und die Einführung eines LIS aufmerksam zu machen. Viele Vertreter der Gemeinden und Werke erkannten vorausblickend die in Zukunft wahrzuneh-

menden Aufgaben in den verschiedensten Bereichen der Ver- und Entsorgung, des Verkehrs, der Raumplanung, des Zivilschutzes und des Umweltschutzes. Sie erkannten auch, dass das LIS das geeignete Werkzeug für die Dokumentation und Präsentation der Daten von Grund und Boden ist.

Projektierung

Für eine erfolgreiche Abwicklung eines LIS sind gleichermassen die organisatorischen, technischen und finanziellen Probleme zu lösen. Vor allem die organisatorischen Aspekte werden vielfach unterbe-Dabei muss gerade wertet. Koordination zwischen den LIS-Beteiligten und deren Motivation zur Erreichung eines gemeinsamen Ziels ein vordringliches Anliegen der Projektverantwortlichen sein. Zudem sind die zeitlichen Abläufe genau zu regeln. Eine detaillierte Erhebung des Ist-Zustandes liefert Hinweise auf die Verfügbarkeit, den Umfang und die Zuverlässigkeit der Datendokumente. Daraus lassen sich die Datenerfassungsmethoden und die zu erwartende Datenqualität ableiten. Technische Probleme sind im Umfeld Datenkatalog, Datenmodelle, Systeme, Schnittstellen und Kommunikation zu lösen. Die entscheidende Hürde vor der Realisierung ist der finanzielle Aspekt. Dazu sind umfassende Überlegungen bezüglich Wirtschaftlichkeit, zeitlicher und thematischer Etappierung, Kosten und Gebühren nötig.

Realisierung

Gerade aus finanziellen Überlegungen hat sich der Einstieg in ein LIS in zwei Etappen bewährt. In einem Einstiegsprojekt werden alle zur Zeit wichtig erscheinenden Themen des LIS über ein kleines repräsentatives Gebiet bearbeitet. Aus den im Einstiegsprojekt gemachten Erfahrungen können gemeindespezifische Probleme erkannt und eine zuverlässige Kostenschätzung für das gesamte Gemeindegebiet abgeleitet werden. Zudem stehen gemeindeeigene Daten zur Verfügung, die es den potentiellen Entscheidungsträgern ermöglichen, Zweck und Nutzen eines LIS besser zu erkennen. Bis anhin ist nach der Erprobung im Einstiegsprojekt die eigentliche Projektabwicklung ohne Probleme vonstatten gegangen. Sowohl bezüglich Qualität als auch bezüglich Kosten konnten die vorgängig gesteckten Ziele erreicht werden.

SWR hat zur Zeit in drei Städten und drei Gemeinden kommunale LIS in Bearbeitung und erfüllt gleichzeitig in zwei weiteren Städten Beratungsmandate. Als Beispiel eines möglichen kommunalen Ebenenmodelles sei das in der 7. und letzten Jahresetappe stehende LIS Birmensdorf erwähnt (Abb. 1).

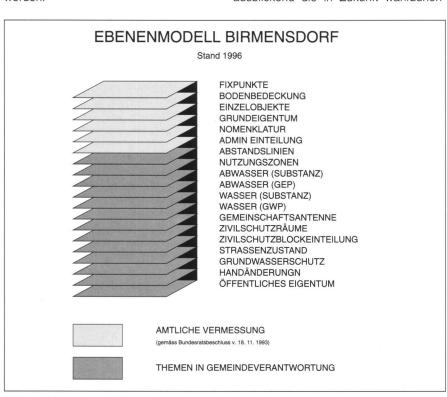


Abb. 1: Ebenenmodell.

Mit der Nutzung der Daten durch die Gemeinde (Verwaltung, Werke, Gemeindeingenieur, Gemeindebehörden) sind im Laufe der Bearbeitung zusätzliche Forderungen und Wünsche entstanden, die zu einer kontinuierlichen Erweiterung des LIS geführt haben. Durch die Bearbeitung in thematisch unabhängigen Ebenen kann das LIS jederzeit um zusätzliche Ebenen ergänzt werden. Bereits sind Gemeinden dazu übergegangen, ihre Investitionsplanungen aus dem LIS abzuleiten, sei es nun im Bereich Wasserversorgung oder Strassenunterhalt. In zwei Gemeinden bearbeitet SWR das anspruchsvolle Thema Elektrisch. Neben dem baulichen Teil (Trassee mit Trassee-Körper-Querschnitten) wird auch der betriebliche Teil (Kabel, Muffen) mit der Netzverfolgung aufbereitet, um so ein umfassendes Netzinformationssystem zu erhalten.

Weitere LIS/GIS-Projekte

Die folgenden Projekte, die über den kommunalen Rahmen hinausgehen, sollen die verschiedenen Aktivitäten von SWR im LIS/GIS-Bereich dokumentieren:

- Aufbau eines LIS über das Werkareal des Gasverbundes Ostschweiz in Schlieren und über den Waffenplatz Reppischtal mit den Themen Amtliche Vermessung, Abwasser, Wasser, Gas, Elektrisch, Telefon, Antenne, Fernwärme
- Pilotprojekt zur Koppelung von STRA-DA-DB mit einem LIS für die Pilotstrecke Nationalstrasse N20 mit den Themen Basisbezugssystem, Axen, Beläge, Ausrüstungen und Werkleitungen
- Erstellung eines LIS für die Nationalstrasse Teilstück N20 mit den Themen Amtliche Vermessung, Entwässerung, Wasserversorgung, Ausrüstungen (Leitschranken, Zäune, Lärmschutzeinrichtungen) und Elektroanlagen (Leitungstrassee, Querschnitte, Elektrokabel, Verkehrsregelung)
- Projekt Amtliche Vermessungsschnittstelle (AVS) im Auftrag der Eidg. Vermessungsdirektion: Erstellen eines Testdatensatzes über den eidg. Datenkatalog für die neue Amtliche Vermes-

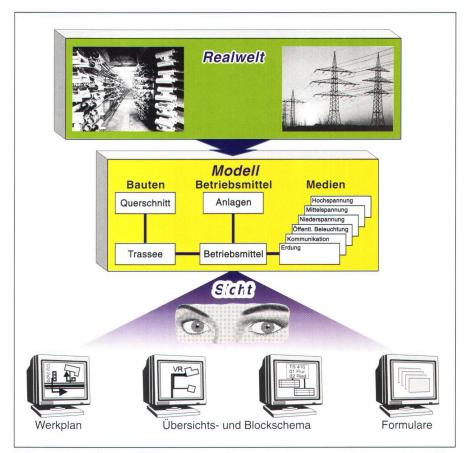


Abb. 2: Beispiel einer EW-Anwendung Realwelt – Datenmodellierung – Verschiedene Sichten auf die nur einmal vorhandenen Daten.

sung, der den Systemherstellern zu Testzwecken bei der Realisierung der AVS abgegeben wurde. Für den gleichen Kunden wurde eine Systemapplikation für die gesamtschweizerische Überwachung der technischen und administrativen Belange der Amtlichen Vermessung erstellt.

Daten, Datenhaltung, Schnittstellen

Kernstück in einem LIS bilden die Daten. Sie sind der wertvollste Teil eines Informationssystems. Der Wertanteil der Daten in einem LIS beträgt ca. 85%. Der Anteil der Technik (Hard- und Software) liegt nur bei 15%. Diese Zahlen verdeutlichen, dass dem Aspekt Daten (Datenordnung, Daten-

konsistenz, Datenhaltung und Schnittstelle) grösste Aufmerksamkeit geschenkt werden muss. Daher hält sich SWR bei der Generierung der Datenmodelle an einschlägige Vorgaben und Empfehlungen, wie sie von den verschiedenen Fachverbänden (SIA, VSA, SVWG, VSE) und aus den Erfahrungen der Praxis vorgegeben sind. Mit einer konsequenten Übernahme und Fortsetzung des Datenmodells und der Schnittstelle der Amtlichen Vermessung (Datenbeschreibung in INTERLIS) sind die Anforderungen, die an die Datenhaltung gestellt werden müssen, erfüllbar. Das verwendete LIS-System muss die Gewähr bieten, die Realwelt in einem Datenmodell abbilden zu können. Zudem müssen, obwohl die Daten nur einfach vorhanden sein dürfen, verschiedene Sichten

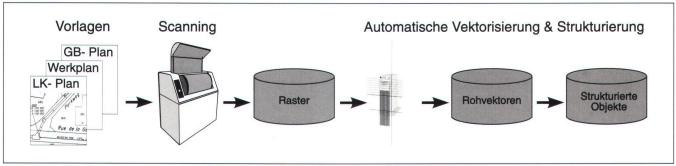


Abb. 3: Rasterbildbearbeitung, automatische Vektorisierung und Strukturierung.

auf die Daten und Auswertungen möglich sein (Abb. 2).

Neue Wege in der **Datenerfassung**

Ein nicht zu unterschätzendes Hindernis bei der Realisierung von Geo-Projekten stellt die in vielen Fällen noch fehlende Verfügbarkeit flächendeckender, digitaler Grundlagendaten dar. Darum setzt SWR ein hybrides Bildverarbeitungssystem ein, welches eine schnelle, präzise und kostengünstige Datenerfassung garantiert. Der Ablauf im einzelnen: Die gescannte Planvorlage wird als digitales Rasterbild ins System eingelesen. Die Rasterdaten werden automatisch vektorisiert, wobei aus den aneinandergereihten Rasterpunkten lagegenaue Geradenstücke gebildet werden, sogenannte Rohvektoren. Bei der Strukturierung werden durch Mustererkennungstechniken unterscheidbare Linien, Symbole und Texte automatisch erkannt und entsprechend ihrer Bedeutung attributiert (Abb. 3). Nicht oder fehlerhaft erkannte Objekte können mit flexiblen Nachbearbeitungsfunktionen schnell ergänzt oder korrigiert werden. Die Rasterdaten, Rohvektoren oder strukturierten Vektoren können mit Transformationen verschiedenster Art ins Landeskoordinatensystem überführt werden. Eine grosse Anzahl verfügbarer Datenschnittstellen (Interlis, DXF,...) sichert den reibungslosen Zugang zu verschiedensten CAD- und Geo-Informationssystemen.


 Rasterbildbearbeitung, automatische Vektorisierung und Strukturierung

Durch die Abwicklung von vielen LIS-Projekten vom Anfang bis zum Schluss (eingeschlossen die «Knochenarbeit» beim Zusammentragen aller in Tausenden von Einmassplänchen, Handskizzen und Registerblättern enthaltenen Informationen) konnte sich SWR grosse praktische Erfahrungen über sämtliche Schritte beim Aufbau eines LIS aneignen. SWR kann damit dem Kunden ein umfassendes und praxisnahes Fachwissen anbieten.

LIS/GIS-Dienstleistungen

- Beratung und Projektleitung
- Analyse, Konzept, Pflichtenheft
- Datenmodellierung
- Entwicklung von Software-Applikationen, Schnittstellen
- Schulung und Software-Support
- Datenerhebung, -erfassung,- nachführung und -verwaltung

Ingenieur- und Vermessungsbüro Sennhauser, Werner & Rauch AG Rütistrasse 26 CH-8952 Schlieren Telefon 01 / 730 18 44 Telefax 01 / 731 03 13

- Punktschnittstelle zu ASCII-Daten
- editierbares Dreiecksnetz mit Bruchkanten und Raster-DGM
- Seitenschürzen
- Höhenlinien mit beliebigen Linientypen und automatischer Beschriftung
- Längen- und Querprofile
- Verschneidung von DGM-Flächen
- farbige Expositions- und Gefällepläne
- Wasserlinien
- Markierung von Graten und Rinnen
- Oberflächenberechnung
- Volumenberechnung nach Prismen- und Querprofilmethode
- automatische Dammgenerierung
- · automatische Böschungskonstruktion
- zusätzliche Polylinientools
- herausragende Verarbeitungsgeschwindigkeit
- verfügbar für AutoCAD 12/13 DOS und Windows

Einführungspreis Vollversion bis 30. Juni 1996: CHF 3900.- (exkl. MWSt)

Bestellen Sie noch heute Ihre Testlizenz für 30 Tage!

Amberg Messtechnik AG Trockenloostrasse 21 CH-8105 Regensdorf-Watt

Tel. (01) 870 92 22 Fax (01) 870 06 18

Amberg Messtechnik

Ernst Basler & Partner AG:

Geographische Informationssysteme (GIS) als Dienstleistung für die Gemeinden

Ernst Basler & Partner ist mit über 180 Mitarbeitern in den Tätigkeitsfeldern Ingenieurbau, Infrastruktur und Verkehr, Energie und Haustechnik, Umwelt und Sicherheit sowie Baumanagement im In- und Ausland tätig.

Die Dienstleistungen umfassen Beratung und Studien, Planung und Projektierungen, Projektmanagement, Betriebs- und Unterhaltsplanung.

Bei allen Tätigkeiten spielt die Informatik eine besondere Rolle. Das Spektrum der EDV-Dienstleistungen umfasst Beratung, Planung und Realisierung von individuell angepassten EDV-Lösungen in den Bereichen Netzwerke, Datenbanken, Informationssysteme, physikalische Modellierungen sowie als besondere Spezialität Geographische Informationssysteme (GIS).

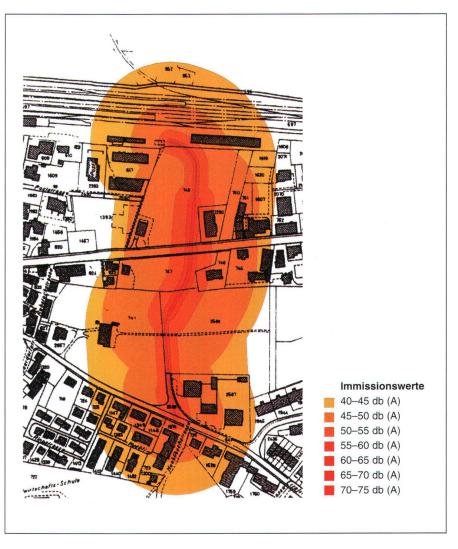
Für die Verwaltung hat das Management räumlich verteilter Daten in den letzten Jahren an Bedeutung gewonnen. Aus diesem Grund hat Ernst Basler & Partner das Angebot an CAD- und GIS-Dienstleistungen stark ausgebaut und auf spezifische Kundengruppen massgeschneidert.

Unsere Dienstleistungen für die Gemeinde

- Aufbau von Landinformationssystemen (LIS)
- Verwaltung, Analysen und Kartierung räumlicher Daten mit GIS
- Katasterpläne, Zonenpläne, Leitungskataster, Parzellenbewirtschaftung mit GIS
- EDV- und GIS-Beratung, Hardware-Software- Daten- Konzepte, individuelle EDV-und GIS-Lösungen
- Planung und Projektierung im Hoch- und Tiefbau
- Unterhaltskonzepte für verschiedene Infrastrukturanlagen
- Verkehrsplanung, Lärmkataster/Massnahmenpläne
- Wasser Abwasserplanung im Rahmen von GEP und GWP
- Energie-, Umwelt- und Abfallplanung
- Kommunale und regionale Sicherheitsplanungen.

Unsere GIS-Lösungen für die Gemeinde basieren dabei auf folgenden Grundgedanken:

- Vorhandene Daten, wie z.B. aus der amtlichen Vermessung, werden voll integriert.
- Die Gemeinde soll die Datenverwaltung und -auswertung jederzeit selbst, auf der Basis von Windows-PC's, ausführen können.
- Kein zusätzlicher Personalbedarf: Der Einsatz eines GIS erleichert verschiedene Verfahren und Abläufe in der Gemeinde. Damit kann das System mit


dem vorhandenen Personalbestand betrieben werden.

- Der Einsatz von international anerkannter Softwarebausteine gewährleistet eine ständige Weiterentwicklung der Produkte.
- Unsere GIS-Lösungen werden in Zusammenarbeit mit lokalen Ingenieurbüros aufgebaut.

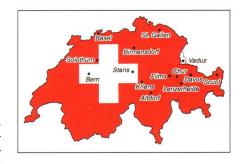
Verwendete Produkte

- GIS: ArcInfo ArcView Genamap MapInfo
- DB: Access dBase Sybase
- CAD: AutoCAD Speedikon Stratis
- DOS/Win-UNIX-Win/NT-OS/2

Ernst Basler & Partner AG Ingenieurunternehmen Zollikerstrasse 65 CH-8702 Zollikon Telefon 01 / 395 11 11 Telefax 01 / 395 12 34

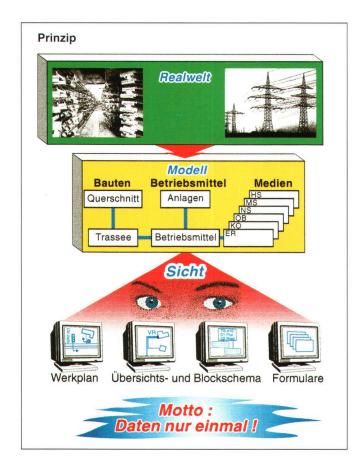
Adasys AG:

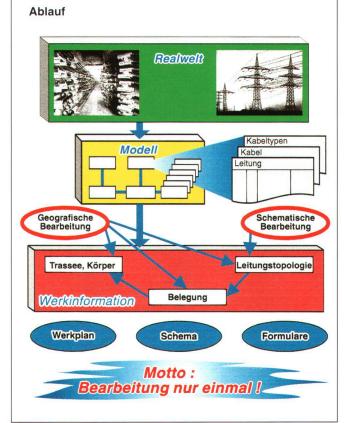
Adalin-EW-Lösung


Adasys

ADASYS hat in der Schweiz über 200 ADALIN-Arbeitsplätze installiert. Viele dieser ADALIN-Arbeitsplätze werden im Rahmen von komplexen Landinformationsprojekten eingesetzt. Einige Beispiele von solchen Projekten sind: das LIS-Davos, das LIS der Stadt Chur, das LIS-Uri, das US-Nidwalden oder das GIS der Stadt Bern. In allen diesen Projekten werden grösstmögliche Synergieeffekte zwischen den raumbezogenen Daten realisiert. Jeder Beteiligte bewirtschaftet nur das Thema, wofür er zuständig ist und stellt es zum Nutzen des Ganzen den anderen Beteiligten zur Verfügung. Dass diese Zielsetzung neben einer ausgefeilten Technik auch organisatorische Massnahmen nötig macht, haben u.a. diese Projekte aufgezeigt.

Adalin-EW-Lösung


ADASYS hat gemeinsam mit der ADALIN-EW-Gruppe die ADALIN-EW-Lösung für die Dokumentation und Auswertung der Stromnetze realisiert. Neu wurden jetzt die schematischen Sichten integriert. Auf Basis der identischen Daten stehen neben den geografischen, situationsbezogenen auch schematische Abbildungen zur Verfügung. Durch dieses Konzept der vollen Integration wird es möglich, die Datenerfassung sowohl auf Seite der detaillierten geografischen Beschreibung wie auf der Seite der Schemata zu beginnen und nachzuführen, wobei die zum grössten Teil gemeinsamen Daten nur einmal erfasst werden müssen.

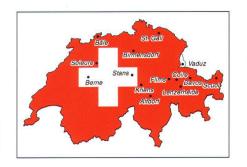

Das Prinzip der ADALIN-EW-Lösung – die umfassende Beschreibung der Elektrizitäts-Netzinformationen in einem Daten-

modell, bei dem jeder Sachverhalt nur einmal beschrieben ist, abzubilden und darauf aufbauend die nötigen Sichten zur Verfügung zu stellen – bietet neben den Vorteilen bei der Nachführung eine grosse Flexibilität bei der Gestaltung der Arbeits-Abläufe.

Adasys AG Kronenstrasse 38 CH-8006 Zürich Telefon 01 / 363 19 39 Telefax 01 / 363 53 73

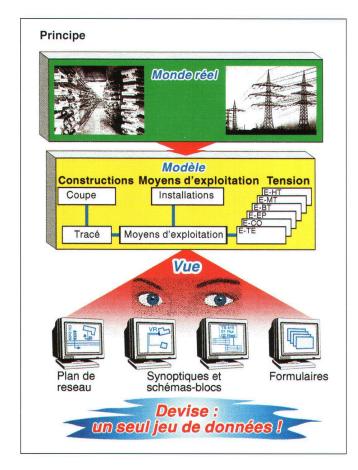
Adasys AG:

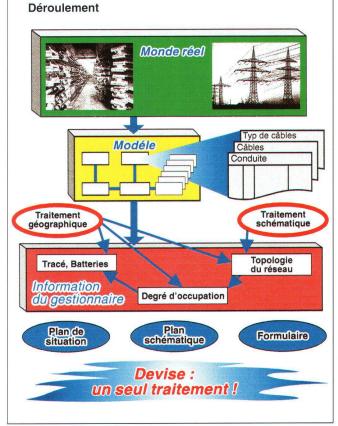
La solution Adalin-Electricité


Adasys

Plus de 200 stations ADALIN sont actuellement en production en Suisse. Une grande partie de ces postes de travail ADALIN sont utilisés dans le cadre de projects d'information du terroire complexes. Citons entre autres: le SIT-Davos, le SIT de la Ville de Coire, le SIT-Uri, le SIT-Nidwald ou le SIG de la Ville de Berne. Dans tous ces projets, des synergies maximales sont obtenues grâce à la multiplicité des données à référence spatiale. Chaque utilisateur gère uniquement le théme dont il est responsable et le met à disposition des autres utilisateurs, et ainsi au profit de l'ensemble. Ces projets ont notamment démontré qu'à part une technique sophistiquée, des mesures d'organisation s'avèrent indispensables.

Adalin-Electricité


En commun avec le groupe spécialisé ADALIN-Electricité, ADASYS a réalisé la solution ADALIN-Electricité pour la documentation et l'exploitation des réseaux électriques. La nouveauté est l'intégration complète de la schématique des réseaux. La représentation géographique et schématique est ainsi possible à partir des mémes données. Grâce à ce concept d'intégration complète, il sera possible de commencer et d'actualiser d'une part la saisie détaillée de la description géographique et d'autre part la description schématique, et cela avec une acquisition unique pour la plus grande partie des données.


Le principe de la solution ADALIN-Electricité – la description complète et sans

redondances des informations des réseaux électriques dans un modèle de données, avec la possibilité d'en extraire différentes «vues» – offre à part des avantages de mis à jour des données une grande flexibilité lors de l'organisation du déroulement des travaux.

Adasys AG Kronenstrasse 38 CH-8006 Zürich Téléphone 01 / 363 19 39 Téléfax 01 / 363 53 73

CAD Rechenzentrum AG:

10 Jahre CAD Rechenzentrum AG 200 Jahre Erfahrung in Sachen GIS/NIS

Seit 10 Jahren sind Geographische Informationen und deren Abbildung in geeigneten Systemen für uns das Thema. Mit ausgewählten und bewährten Werkzeugen entwickeln wir Softwareprodukte und Lösungen für raumbezogene Daten, insbesondere im Bereich Leitungsinformationssysteme. Der Bezug zur Praxis ist uns dabei besonders wichtig. Darum dürfen bei uns die Kunden auch «ganz schön reinreden», denn nur in offenen Beziehungen entstehen gute Lösungen. Mit mehr als 100 Kunden in der Schweiz pflegen wir bereits Beziehungen auf dieser Basis. Unser Angebot in Sachen GIS/NIS/CAD:

- LIDS
 - Entwicklung und Support aus einer Hand
- SMALLWORLD
 Autorisierte Vertretung für die Schweiz
- MicroStation
 Ausgezeichneter Entwicklungspartner

Übernahme der Vertretung von Smallworld für die Schweiz

Die CAD Rechenzentrum AG hat die Vertretung von SMALLWORLD-GIS der Firma

Smallworldwide Ltd. (UK, Cambridge) für die Schweiz übernommen. Mit dem Schritt ein zweites Produkt neben LIDS in das Leistungsangebot aufzunehmen, kommt man den Bedürfnissen eines weiteren Marktsegmentes entgegen: Mit SMALLWORLD-GIS fokusiert man primär den anspruchsvollen Markt grosser Energieversorger sowie sonstiger überregionaler GIS-Anwendungen.

Das eigene Produkt LIDS wird unberührt von diesem Schritt konsequent für den Einsatz in den traditionellen Bereichen weiterentwickelt und optimiert. Mit den beiden Produkten LIDS und SMALLWORLD-GIS ist man überzeugt, die strategische Ausrichtung der Unternehmung, das Entwickeln und Implementieren von praxisorientierten und optimierten Systemen im Bereich GIS/NIS, zukunftsweisend für alle Marktsegmente und Bedürfnisse abdecken zu können.

LIDS

Praxisorientiertes und bewährtes Netzinformationssystem für mittlere und kleine Versorgungsunternehmen, Gemeinden

Abb. 1: LIDS: bewährtes und einsatzbereites Netzinformationssystem für kleine und mittlere Unternehmen.

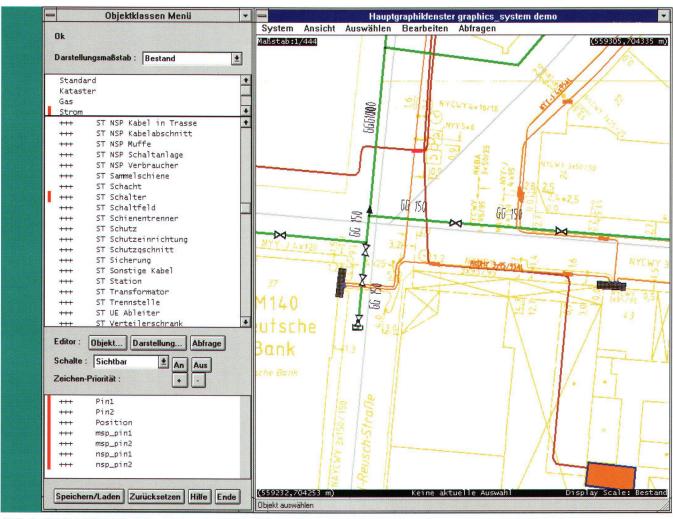


Abb. 2: SMALLWORLD-GIS: objektorientierte GIS-Technologie auf WindowsNT für grosse Anwendungen.

und Ingenieurbüros. Mit über 300 Installationen in Europa ein Leader in diesem Marktbereich.

Als Basisprodukte von LIDS werden weltweit anerkannte und offene Standard Basisprodukte eingesetzt. Von der Entwicklung einer vollständig eigenen graphischen Umgebung hatte man abgesehen. Eine Entscheidung, welche sich heute im Trend der allgemeinen Standardisierung in der EDV als absolut richtig erwiesen hat. LIDS baut auf dem Grafik-Kernel MicroStation und einer relationalen Datenbank (z.B. Oracle) auf. Beide Basiskomponenten sind auf vielen Hardwareplattformen verfügbar. Durch eine moderne Programmierung kann LIDS dadurch auf ingesamt fünf Plattformen angeboten werden. Im Vordergrund steht heute klar der PC mit Windows NT.

SMALLWORLD: GIS-Technologie à la Carte

1988 gegründet, kann SMALL-WORLD auf eine, wenngleich junge, so doch beeindruckende Geschichte zurückblicken. Als 1990 die ersten Systeme verkauft wurden hat noch niemand damit gerechnet, dass in sechs Jahren weltweit 3500 Lizenzen zum Einsatz kämen. Damit hat ein GIS-System erstmals einen wirklichen, globalen Durchbruch erzielt.

Der Grund ist sicherlich in den technologischen Wurzeln des System zu suchen. Insbesondere bei grossen, überregionalen Anwendungen der Energieversorgung kommt die Funktionalität und Basistechnologie von Smallworld zum tragen. Nachfolgend eine kurze Zusammenfassung der technologischen Highlights von Smallworld-GIS:

- konsequent objektorientiert
- absolute Blattschnittfreiheit
- echtes Multi-User-Konzept
- einzigartige Rasterintegration (Hybridtechnik)
- integriertes CASE-Tool
- durchgängige Entwicklungsumgebung (MAGIK)
- dynamische Topologiebildung und Daten-Validierung
- hardwareunabhängig

Dies erlaubt eine effiziente und wirtschaftliche Einführung und Nutzung des Systems. Insbesondere die Integration in bestehende EDV-Umgebungen sowie die Einbindung vorhandener Applikationen ist damit optimal gewährleistet.

Résumé

Mit den beiden bewährten und anerkannten Produkten LIDS und Smallwold-GIS wird das gesamte Spektrum der Netzdokumentation – von der kleinen Gemeinde bis zum überregionalen Energieversorger – optimal abgedeckt.

Die langjährige Erfahrung der Unternehmung in Sachen GIS/NIS gewährt eine kundenorientierte Implementierung der GIS-Produkte in Form von praxisorientierten Lösungen.

In jeder Beziehung die richtige Lösung.

CAD Rechenzentrum AG Geschäftsbereich GIS/NIS Baslerstrasse 96 CH-4123 Allschwil/BL Telefon 061/486 66 00 Telefax 061/486 66 99

Geo-Informationssysteme GmbH:

Mit GRADIS-GIS ins Data Warehouse

Unser Unternehmen

Die Wurzeln der Geo-Informationssysteme GmbH liegen bei der Firma Contraves. Bereits 1974 begann man dort ein Datenerfassungssystem zwecks Digitalisierung von Karten zu entwickeln. 1978 konnten die ersten Lizenzen im Markt plaziert werden. 1987 übernahm strässle die GIS- und CAD-Aktivitäten der Contraves. Damit verbunden waren eine Neukonzipierung der GIS-Software und eine Orientierung an internationalen Industriestandards. Ende 1995 gingen die GIS-Aktivitäten von strässle an die Geo-Informationssysteme GmbH über. Hier liegen auch alle Rechte an der GRADIS-Produktfamilie.

Heute zählen rund 40 Mitarbeiter zur Geo-Informationssysteme GmbH mit Sitz in Krailling bei München. Niederlassungen gibt es in Glattbrugg (CH), Dresden, Giessen und Düsseldorf.

Corporate GIS mit GRADIS-GIS

Verfolgt man die Entwicklung der GIS-Technologie von ihrem Anfang in den 70er Jahren bis zur Gegenwart, so ist eine Entwicklung von der reinen Kartenproduktion über die Bestandsdokumentation hin zu einem viel umfassenderen Verständnis von GIS im Sinne von unternehmensweiten raumbezogenen Informationssystemen zu beobachten. Die folgende Abbildung zeigt diese Entwicklung und die einzelnen Phasen auf.

Heute geht es bei der Einführung von Geo-Informationssystemen um mehr als um die Bestandsdokumentation mittels Planwerken.

Folgende Ziele werden angestrebt:

- unternehmensweite, wirtschaftliche Bereitstellung von aktueller und korrekter räumlicher Information.
- optimale Unterstützung strategischer und operativer Entscheidungen.
- optimale Unterstützung der zentralen Unternehmensprozesse.
- Schaffung operativer und strategischer Wettbewerbsvorteile.

Die Geo-Informationssysteme GmbH bietet seinen Kunden Produkte und Dienstleistungen an, die sie bei der Erreichung der genannten Ziele unterstützen. Dieses Verständnis von GIS, welches ein langfristig geplantes, unternehmensweites raumbezogenes Informationsmanagement voraussetzt, wird unter dem Begriff «Corporate GIS» zusammengefasst.

Dieses Konzept deckt sich mit der grundsätzlichen Positionierung der GRA-DIS-GIS-Lösungen. Geographische Informationssysteme werden als eine besondere Ausprägung allgemeiner betrieblicher Informationssysteme betrachtet und nicht als eine Insellösung für die graphische Datenverarbeitung. Das System GRADIS-GIS setzt daher auf den gängigen Standards moderner betrieblicher Informationssysteme auf.

Im Rahmen von GIS-Projekten ist die weitaus grösste und wertvollste Investition noch immer diejenige in die Daten. Der Aufbau eines Datenbestandes von hoher Qualität und die Erhaltung der Datenqualität mit vertretbarem zeitlichen und finanziellem Aufwand sind deshalb Schlüsselaufgaben, die es zu lösen gilt. GRADIS- GIS kann einen wesentlichen Beitrag zur Erreichung dieser Ziele leisten.

Nicht als neu und auch nicht als revolutionär wird in diesem Zusammenhang das Data Warehouse-Konzept eingeführt, firmierte es doch in der Vergangenheit unter den Etiketten «Decision Support System» bzw. «Management Information System». Ein Data Warehouse ist, wie sein Name sagt, das zentrale Informationslager eines Unternehmens. Bill Inmon, der Vater des Data Warehouses, definiert es als «themenorientierte, integrierte, zeitlich veränderliche, nichtflüchtige Datensammlung zur Unterstützung von Managemententscheidungen».

Die Daten eines Unternehmens werden in einer einzelnen integrierten, relationalen Datenbank gespeichert. Eine effiziente Data Warehouse-Umgebung wandelt Betriebsdaten so um, dass der Endanwender leicht auf die Daten zugreifen und sie analysieren kann. Der Endanwender wird somit nicht mit Strukturen der einzelnen Datenbanken belastet. Er wird, von der Technik getrennt, in die Lage versetzt, über eine graphische Benutzeroberfläche

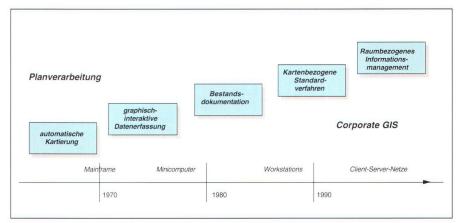


Abb. 1: Entwicklung der GIS-Technologie.

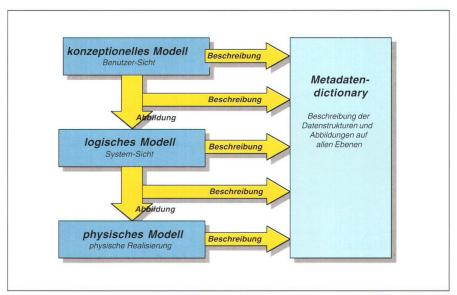


Abb. 2: Metadaten-Dictionary.

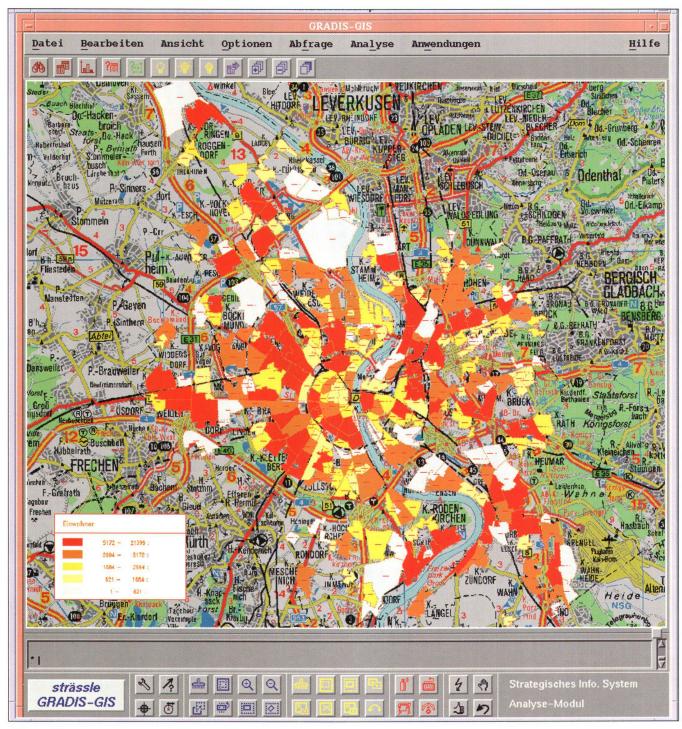


Abb. 3: Choroplethenkarte: Einwohner pro Stadtviertel.

Anfragen an den Rechner zu richten, um Daten zu selektieren bzw. Ergebnisse zu berechnen und zu präsentieren. Er bringt die Daten zum «Sprechen» und hat somit eine anwendungsorientierte Sicht der Daten.

Die Kriterien Datenmodellierung und Data Warehouse-Management spielen neben der Hardware- und Datenbankwahl dabei eine entscheidende Rolle.

Sie umfassen:

- Abbilden, Extrahieren und Umwandeln von Daten
- Erzeugen von Programmcode

- Erstellen und Verwalten von Metadaten
- Pflegen des Data Warehouses.

Metadaten sind Daten über Daten. Programmierer und Endanwender brauchen sich nicht zu fragen, was die Daten in einem Warehouse bedeuten, da die Metadaten beschreiben, woher die Daten stammen und wie sie in ihr derzeitiges Format gebracht wurden.

Da viele Daten einen Raumbezug haben, kann GRADIS-GIS aus einem Data Warehouse mit Daten gespeist werden. Die notwendigen Konzepte und die Lösung werden im folgenden vorgestellt.

GRADIS-GIS: Meta-Datenmodell

Beim Design eines Infomationssystems nimmt die Datenmodellierung eine zentrale Stellung ein. Im Verlauf der Datenmodellierung wird im wesentlichen festgelegt, welche Aspekte der Realwelt in welcher Art und Weise im System abgebildet werden. Mit anderen Worten: es wird die Informationsstruktur des Systems festgelegt.

In der Regel wird dabei folgendermassen vorgegangen:

- Erstellen eines konzeptionellen (vom Zielsystem unabhängigen) Datenmodells: In dieser Phase wird in enger Zusammenarbeit mit den Fachanwendern definiert, welche Objekte für das System relevant sind, mit Hilfe welcher Attribute sie beschrieben werden können und welche Beziehungen zwischen den Objekten existieren. Das dabei entstehende Modell wird in einer leicht verständlichen, vom Zielsystem unabhängigen Weise (meistens mittels Entity-Relationship-Modell, ER-Modell) beschrieben.
- Erstellen eines logischen (systemspezifischen) Datenmodelles: In dieser Phase wird das Modell aus Phase 1 auf die Konzepte des Zielsystems abgebildet. Es wird zum Beispiel festgelegt, wie eine logische Beziehung zwischen zwei Entitäten im Zielsystem abgebildet wird. Meistens gibt es verschiedene Möglichkeiten, ein konzeptionelles Datenmodell in ein logisches zu überführen. Das Erstellen eines logischen Datenmodells erfordert sehr gute Kenntnisse über das Zielsystem.
- Erstellen des physischen Datenmodells. In dieser Phase wird das Modell im Zielsystem physisch implementiert.

GRADIS-GIS bietet die Möglichkeit, eine detaillierte Beschreibung des konzeptionellen, des logischen und des physischen Datenmodells – inklusive Information über die Abbildung des konzeptionellen auf das logische Modell und die Abbildung des logischen auf das physische Model – in einem eigens dafür konzipierten Dictionary abzulegen. Benutzer und Anwendungsentwickler können jederzeit auf Informationen dieses Meta-Modells (Daten des Datenmodells) zugreifen.

Damit wird es möglich, mit kleinem Aufwand sehr flexible, benutzerorientierte Anwendungen zu entwickeln. Sobald alle Funktionen konsequent auf dem Dictionary basieren, muss bei einer Änderung des Datenmodells lediglich das Dictionary nachgeführt werden. Eine Änderung der Funktionalität ist nicht nötig. Dieselbe Funktionalität kann also in ganz unterschiedlichen thematischen Zusammenhängen ohne Programmieraufwand verwendet werden. Zudem kann die Interaktion mit dem Anwender in der ihm vertrauten (systemunabhängigen) Begrifflichkeit gestaltet werden.

Das Meta-Dictionary erweist sich auch bei der Integration von GRADIS-GIS in unternehmensweite betriebliche Informationssysteme als sehr hilfreich. Es kann als Basis für einen weitgehend datenmodellunabhängigen Informationsaustausch dienen.

Das Data Warehouse mit Raumbezug

Das Geo-Informationssystem GRADIS-GIS lässt sich über das beschriebene Meta-Datenmodell mit dem innovativen Data Warehouse-Konzept verbinden. So ist z.B. ein Analyse-Tool entstanden, das überall dort einsetzbar ist, wo grosse Sachdatenbestände mit Raumbezug effizient genutzt werden sollen. Die entsprechende GRADIS-GIS-Anwendung (GRADIS-SIS = strategisches Informationssystem auf Basis GRADIS-GIS) ist vollkommen offen für die unterschiedlichsten Fragestellungen und Projektthemen.

Entsprechend allgemein lassen sich die Einsatzgebiete wie etwa Controlling, Marketing, Planung und Politik formulieren. Diese Aufgaben sind in den unterschiedlichen Unternehmungen und Organisationen zu erfüllen. Ein integriertes Data Warehouse kann für deren Bewältigung die richtigen Informationen liefern.

GRADIS-SIS erschliesst die zahlreichen Raumbezüge der unternehmensweiten Daten auf jedem frei wählbaren räumlichen Niveau und versieht umgekehrt die Raumdaten mit einer unbegrenzten und flexiblen Menge von Sachdaten. Die Geo-Objekte werden mit Geometrie, Topologie und Attributen in der ORACLE-Datenbank von GRADIS-GIS abgelegt und fortgeschrieben. Die Sachinformationen wie etwa Struktur-, Zähl, Mess- und Umfragedaten werden für die jeweilige Problemstellung umstrukturiert. Nach räumlichen. zeitlichen und sachlichen Kriterien können mehrdimensionale Informationspakete gebildet werden. Über den Raumbezug im GIS werden die Daten mit den speziellen Möglichkeiten der Raumanalyse ausgewertet bzw. die Informationen oder Resultate in Form von thematischen Karten visualisiert.

In GRADIS-SIS werden alle Daten – Geoinformation sowie Sachdaten – durch das intelligente Metadatensystem organisiert und beschrieben. Diese Meta-Datenbeschreibung sichert den Überblick über die Daten und ermöglicht komfortable Suchmöglichkeiten. Damit wird das Datenmodell automatisch in die Benutzeroberfläche eingebaut.

Für Aufbau und Pflege komplexer Datenmodelle bietet GRADIS-SIS eine Reihe spezieller Funktionen. Die Fortschreibung der Daten, inklusive der geometrischen, topologischen, attributiven und logischen Beziehungen, wird wesentlich vereinfacht. Einerseits erleichtern die Visualisierungsmöglichkeiten des GIS eine Überprüfung der Strukturen, andererseits übernimmt GRADIS-SIS die Synchronisation der räumlichen und sachlichen Datenbestände.

Der Einstieg in die Analyse ist über den Raumbezug im GIS oder über die Sachinformationen möglich. Die Geo-Objekte werden einfach und sicher über eine der vielfältigen geometrischen Funktionen ausgewählt werden. Das Thema kann problemorientiert über Schwellenwerte der Attribute abgegrenzt werden.

Die Abgrenzung der Untersuchungsgebiete dient der gezielten weiteren Suche von Sachinformationen. Mehrdimensionale Sachdaten können beliebig mit den GIS-Attributen verknüpft und neu strukturiert werden. So sind GIS-Attribute und Sachdaten direkt über das Geo-Objekt abrufbar. Die höchste Form der Informationsgewinnung stellt die beliebige raumbezogene Aggregation von Daten auf ein höheres räumliches Niveau dar. Dies kann über feste oder über ad-hoc aufbaubare Beziehungen zwischen verschiedenen Geo-Objekten geschehen.

In GRADIS-SIS sind alle für die Analyse benötigten Funktionen übersichtlich in drei Bausteinen organisiert:

- Formulierung von Abfragen
- Bildung von Mengen
- Definition von Visualisierungsformen.

Die einzelnen Schritte eines Bausteines können gespeichert, editiert und erneut gestartet werden. Durch geeignete und wiederholte Kombination dieser Analyse-komponenten kann somit eine Vielzahl der unterschiedlichsten Fragestellungen zur Lösung geführt werden. Komplizierte Analysen werden durch die Teilschritte überprüfbar und bleiben von der Technik her einfach zu bedienen. Damit kann nicht nur das Ergebnis abgespeichert werden, sondern auch das Verfahren, das eine bestimmte Fragestellung löst.

Geo-Informationssysteme GmbH Rolf Thiemann Talangerstrasse 7 D-82152 Krailling Telefon 0049-89-9610212 Telefax 0049-89-9610190 strässle Informationssysteme AG Geo-Informationssysteme Markus Widmer

Kanalstrasse 33 CH-8152 Glattbrugg Telefon 01 / 8288 354 Telefax 01 / 8288 212

Geocom Informatik AG:

Grical und Geonis – GIS-Software auf breiter Basis

Gute Software hat sich zuerst nach ihren Anwendern und deren Anforderungen zu richten. Nach diesem Prinzip entwickelt die Geocom Informatik AG, Hasle-Rüegsau, ihre Lösungen, wie zum Beispiel die Punkteberechnung Grical und das Netzinformationssystem Geonis. Der Erfolg gibt dem Unternehmen recht. Innerhalb nur eines Jahres haben sich die beiden GIS-Applikationen am Schweizer Markt durchgesetzt.

Geocom Informatik ist ein junges Unternehmen – und ein erfolgreiches dazu. Am 1. Januar 1995 startete der Geschäftsbetrieb mit sieben Mitarbeiterinnen und Mitarbeitern. Heute sind es bereits 18, darunter zwölf mit Hochschulabschluss. Das Wachstum hält an.

Das Team aus sieben Software-Entwicklern, fünf Applikations-Ingenieuren, vier Mitarbeitern in Verkauf, Support, Installation und Schulung sowie zwei Sekretärinnen bietet Informatik-Vollservice aus einer Hand. Das Angebot reicht von Lösungen für Geographische Informationssysteme, kundenspezifische Software-Entwicklungen, Verkauf von Hard- und Software über Konzeption und Installation von Netzwerken bis zu Beratung und Schulung.

Software von Profis für Profis

Schwerpunkt ist die Entwicklung professioneller Software auf der Grundlage von Windows, Windows 95 und Windows NT. Angeboten werden sowohl Standard-Applikationen als auch individuelle Lösungen. Die beiden erfolgreichen GIS-Anwendungen Grical und Geonis sind ein gutes Beispiel, welche Grundsätze Geocom Informatik bei der Software-Entwicklung befolgt. Toni Fankhauser, Geschäftsleiter des Unternehmens, erläutert: «Die Entwicklungsdauer muss bei jedem Produkt möglichst kurz sein. Sonst droht bei der Entwicklung bereits die Überalterung.» Geocom Informatik setzt deshalb auf das weitverbreitete GIS des Weltmarktführers Intergraph, das umfangreiche Basisfunktionen bietet. Auf dieser Grundlage wurden die Punkteberechnung Grical und das Netzinformationssystem Geonis als spezifische Module entwickelt, die optimal auf Schweizer Bedürfnisse abgestimmt sind.

Konzentration der Kräfte

Die Vorteile dieses Vorgehens liegen auf der Hand: Weil GIS-Grundfunktionen von Intergraph bereits zur Verfügung stehen, können sich Geocom-Entwickler auf spezifische Schweizer Anforderungen konzentrieren. Darüber hinaus werden die Grundfunktionen ständig weiterentwickelt. Anwender der Module Grical und Geonis können sicher sein, am Entwicklungsfortschritt des Weltmarktführers in Sachen GIS in Zukunft unmittelbar teilzuhaben. «Weil unsere Produkte von der schnellen Weiterentwicklung der Basisprodukte profitieren, und wir unsere Kräfte gezielt für einzelne Problemteile einsetzen können, werden wir es auch in Zukunft einfacher haben, stets an der Spitze der Entwicklung zu stehen», so Fankhauser.

Auf Zusammenarbeit setzt Geocom Informatik auch bei der Vermarktung der beiden Module. Die Intergraph (Schweiz) AG, Zürich, vertreibt Grical und Geonis im Rahmen ihres umfassenden GIS-Angebotes, bietet darüber Service und Schulungen. Damit ist eine optimale Integration der beiden Module in GIS-Lösungen für die verschiedensten Anwendungen gewährleistet. Im Gegenzug vertreibt Geocom Informatik als Intergraph Solutions Center alle GIS-Produkte des Partners.

Vollständig eingebettet

Grical und Geonis ergänzen sich ideal durch ihre vollständige Einbettung in die GIS-Welt von Intergraph und arbeiten problemlos mit anderen Modulen und dem MGE (Modular GIS Environment) zusammen. Die Durchgängigkeit der Daten durch die ganze MGE-Famile ist gewährleistet. Teure und komplexe Datenkonvertierungen sind überflüssig.

Auf solider Basis


Neben den beiden GIS-Applikationen, die mittlerweile in vielen Schweizer Verwaltungen, Vermessungs- und Ingenieurbüros eingesetzt werden, hat Geocom Informatik zahlreiche kundenspezifische Softwarepakete entwickelt. Sie sind exakt den Bedürfnissen des jeweiligen Auftraggebers angepasst, bieten aber eine Zukunftssicherheit, die übliche proprietäre Lösungen nicht aufweisen. Der Grund: Das Unternehmen setzt bei seinen Entwicklungen auf weitverbreitete und bewährte Standardwerkzeuge, so dass die Produkte auch später problemlos erweitert und angepasst werden können. Diese klaren und konsequent gelebten Grundsätze bei der Software-Entwicklung sind die Erklärung für den Erfolg von Geocom Informatik und eine solide Basis, auf der in Zukunft noch viele weitere kundenspezifische und Standard-Lösungen entstehen werden.

Geocom Informatik AG

Gründung: 1. Januar 1995 Leitung: Toni Fankhauser

Mitarbeiter: 18

Geocom Informatik AG Rüegsaustrasse 30 CH-3415 Hasle-Rüegsau Telefon 034 / 460 30 30 Fax 034 / 460 30 32

Geonis in der Praxis - Leitungskataster Abwasser mit Objektinformation.

Intercad S.A.:

Vermessungslösungen mit AutoCAD 12 und 13

Die Firma INTERCAD S.A., Locarno, wurde 1987 gegründet und ist seit dieser Zeit als Partner der Autodesk Schweiz tätig, sowie Mitglied der ADGE (Autodesk Developer Group Europe). Ziel der INTERCAD S.A. ist es, im Bereiche der CADInformatik ein umfassendes Angebot erstklassiger Dienstleistungen zu erbringen und zwar entsprechend den wechselnden und steigenden Bedürfnissen der Wirtschaft.

Wir sind spezialisiert auf dem Gebiet von CAD Anwendungen in den Bereichen Kataster-, Kultur- und Bauingenieurwesen, sowie auf dem Gebiete von geografischen Landinformations-Systemen (LIS/GIS).

Wir verfügen über ein junges, dynamisches Team von qualifizierten und spezialisierten Mitarbeitern. Mit ihren fachtechnischen Mitarbeitern ist das Unternehmen jederzeit in der Lage mit Kapazität und Fachwissen Arbeiten im Bereich der CAD Informatik effizent, termingerecht und fachlich korrekt auszuführen.

Die Firma ist in drei Hauptbereiche stukturiert und zwar in die Bereiche Dienstleistungen, Entwicklung und Verkauf.

Dienstleistungen

In diesem Bereich offeriert die INTERCAD S.A.

- Systemberatung, Programmierungen
- Technischen- sowie Anwender-Support,
 Schulung und Ausbildung
- Raster/Vektor Umwandlungs-Service
- Scan/Plot Service
- Projekt- und Datenmanagement.

Seit 1988 befasst sich die INTERCAD S.A. mit der Scan-Technologie und betreibt seit dieser Zeit einen eigenen A0 Scanner für die Umwandlung von alten Katasterplänen und Zeichnungen. In all diesen Jahren hat man eine grosse Erfahrung auf diesem Gebiete erworben und kann heute die Umwandlung von Plänen, vom einfachen Scanning bis hin zur kompletten Transformierung in Vektoren den Kunden anbieten.

Es können Formate bis A0 bearbeitet werden.

Den Bereichen Support, Schulung und Ausbildung sowie Beratung wird ebenfalls grösste Aufmerksamkeit geschenkt.

Entwicklung

Die Abteilung Entwicklung widmet sich in der Hauptsache CAD-Anwendungen für das Kataster-, Kultur- und Bauingenieur-

Die wichtigste von der INTERCAD S.A. entwickelte Applikation und von mehr als 150 Anwendern in der Schweiz eingesetzt, ist CAD-MAP: eine Applikation zur Verwaltung von Katastermappen und Infrastrukturen (Kanalisation, Wasserversorgung, Gas, Licht, Kabel-TV).

CAD-MAP entspricht den schweizerischen Normen der AV93 und den Normen der SIA.

Das Programm läuft unter AutoCAD 13 Windows und Windows NT. CAD-MAP wird in Deutsch, Französisch und Italienisch in der ganzen Schweiz vertrieben.

Alptransit

Zur Zeit wird CAD-MAP einer harten Probe durch die Geometer-Büros des Kantons Tessin, welche vektorisierte Pläne der Gemeinden, die im Perimeter des Projektes Alptransit liegen, erstellen, unterzogen.

Zu diesem Zwecke werden zwei verschiedene Techniken angewandt. Beide Techniken sind gleichwohl effizent und können mit CAD-MAP verwaltet werden.

- Digitalisierung über den Bildschirm: mittels des Moduls CAD OVERLAY der Softdesk werden die mit einem A0 Scanner erstellten Rasterfiles in CAD-MAP übernommen und auf dem Bildschirm digitalisiert. Anschliessend wird auf dem Vektorplan eine Georeferenzierung mit dem Modul DORIS (Team Informatica) vorgenommen, welches die Punkte in die für die Arbeit vorgeschriebenen Toleranzen berechnet.
- Digitalisierung über das Vermessungs-Programm GEOS und einem A0 Digitalisiertablett: in diesem Falle ist eine Umwandlung der Katasterpläne nicht notwendig. Das so erhaltene Datenfile von GEOS wird über die entsprechende Schnittstelle in CAD-MAP eingelesen und zum Erstellen der Pläne verwendet.

Abschliessend können die so erhaltenen Operate an den Kanton mittels einer speziell für den Kanton Tessin entwickelten Schnittstelle IMURFTI (Interfaccia per Misurazione Ufficiale del Registro Fondiario del cantone Ticino) überspielt werden.

Zukünftige Entwicklungen

Nachdem alle Aspekte von CAD-MAP, welche das Katasteringenieurwesen betreffen, optimal gelöst und abgedeckt sind, hat die INTERCAD S.A. 1995 sich für die Strategie entschieden, die Verwendung von CAD-MAP auf die Bauingenieurbüros sowie auf die Baubüros der Gemeinden und Werke, welche schlussendlich die Anwender der mit CAD-MAP erstellten Produkte sind, auszudehnen.

Für das erste Semester 1996 wird CAD-MAP mit den einzelnen Modulen ergänzt, welche die Verwaltung von Infrastrukturen auch auf Datenbankebene möglich machen, d.h. jedes einzelne Element der Infrastruktur wird mit externen Attributen verbunden und in einer externen Datenbank abgelegt.

Das erste Modul das zur Verfügung stehen wird, ist das Modul Kanalisation mit der Datenbank ORACLE. Die weiteren Module folgen im Laufe des Jahres. Es sind vorgesehen, die Module für die Wasserversorgung, für die Zonenplanung, für Elektrizität, Gas und Kabel-TV.

Für die Entwicklung dieser neuen Applikationen hat die INTERCAD S.A. die Windows NT Umgebung ausgewählt. Dies deshalb, weil es von den aktuell zur Verfügung stehenden 32 bit Betriebssystemen das einzige ist, das in der Lage ist, mit dem UNIX System zu bestehen. Windows NT bietet dem Anwender von technischen Stationen Stabilität, Sicherheit, Multitasking, robuste Speicherverwaltung, Kompatibilität mit den MS Offfice Applikationen und letztlich Netzwerkfähigkeit. All dies zu vertretbaren Kosten.

Windows NT, ausser dass es einen grösseren RAM Speicher verlangt, ist auf jedem Standard Personal Computer installierbar. Die Komponenten und Peripherien für diese PC's sind heute auf dem Markt für das beste Preis/Leistungsverhältnis erhältlich.

Mit diesen Entwicklungen bieten wir den Gemeinden, den Werken, den Geometern und den Ingenieurbüros eine interessante Applikation unter AutoCAD 13 an, welche mit den heute auf dem Markt vorhandenen CAD-Systemen ohne weiteres in Bezug auf Wirtschaftlichkeit und Anwendung konkurrieren kann.

Die Wiederverkäufer

Aktuell werden die Produkte von der INTERCAD S.A. von zwei Wiederverkäufern vertrieben, für die französische Schweiz die Firma GEOSCAN S.A. in Chexbres (VD) und für die Deutsche Schweiz von der Firma LEICAAG in Glattbrugg (ZH).

Dank unserer Wiederverkäufer konnten wir unsere Applikationen auf eindrückliche Weise im Markt einführen und gleichzeitig einen Service garantieren, der den Anforderungen unserer Kunden vollkommen gerecht wird.

Wir von der Firma INTERCAD S.A. sind von drei Argumenten vollständig überzeugt:

- von der Spezialisierung

- von der Qualität
- und am meisten von unseren Kunden.

Wir wollen unseren Kunden ein vertrauenswürdiger Partner sein und uns von dieser Basis aus für ihre Anliegen engagieren. Unser Dienstleistungs-Angebot ist äusserst vielfältig und deckt in erster Linie die Bedürfnisse und Ansprüche unserer Kunden ab.

Zögern Sie nicht, setzen Sie sich mit uns in Verbindung und unterbreiten Sie uns Ihre Probleme, wir sind dafür da Ihnen zu helfen.

Intercad S.A. Via Varenna 2 CH-6600 Locarno Telefon 091 / 751 41 85 Telefax 091 / 751 10 86

ITV AG:

Wieviel GIS brauchen Sie wirklich?

Professionelle Beratung gewährleistet optimierte Lösungen für den betrieblichen Bedarf

Geographische Informationssysteme (GIS) erobern sich immer neue Anwendungen. Die Verbindung räumlicher Informationen mit Daten aus allen möglichen Bereichen erschliesst Erkenntnisse, die nicht nur Wissenschaftlern, Planern und Ingenieuren bei ihrer täglichen Arbeit helfen. Gerade in der öffentiichen Verwaltung und im kommerziellen Bereich gewinnen die Systeme an Bedeutung, zum Beispiel in der Standort- und Verkehrsplanung, beim Betrieb von Leitungsnetzen, im Marketing, in der Werbewirksamkeitskontrolle und in der Logistik. Überall dort können GIS für wahre Wissenssprünge sorgen wenn sie richtig evaluiert, implementiert und vor allem richtig angewendet werden. Das allerdings ist ohne professionelle und neutrale Beratung kaum möglich.

In Verwaltungen und Unternehmen werden Hardware und Netzwerke immer leistungsfähiger. Gleichzeitig steigt das Angebot an GIS-Software, die mit üblichen Office-Umgebungen kompatibel ist. Die logistischen Voraussetzungen für einen breiten GIS-Einsatz verbessern sich so fast von Tag zu Tag, die anspruchsvollen geographischen Anwendungen verlassen ihren ursprünglichen Anwenderkreis. Er

setzte sich im wesentlichen aus Wissenschaftlern, Planern und Ingenieuren zusammen, die mit den Systemen, den Datengrundlagen und daraus abgeleiteten Informationen umzugehen wussten und eventuelle Schwierigkeiten in eigener Initiative meistern konnten.

Ein GIS muss passen

Für Experimente ist in Zeiten von Lean und New Public Management allerdings kein Platz mehr. Heute müssen GIS passend in eine Organisation integriert werden. Zugriffsberechtigte Anwender aller Ausbildungs- und Hierarchiestufen sollen Informationen effizient und sicher abrufen können, wenn sie zuvor fachlich entsprechend eingewiesen wurden.

Diese Integration erfordert Expertenwissen. Verwaltungen und Unternehmen nutzen immer mehr die Dienstleistungen spezialisierter Berater, um sich GIS für ihre Anwendungen exakt anpassen zu lassen. Die Beratungsleistungen umfassen in der Regel Projektmanagement, Evaluation, Implementation, Schulung und Support. Gut beraten sind künftige GIS-Anwender, wenn sie möglichst frühzeitig auf das Know-how von Experten zurückgreifen und nicht erst, wenn die ersten Anbieter von GIS-Software bereits vor der Tür stehen. Angesichts des breiten und verlockenden Angebots leistungsstarker Pro-

ITV AG

Adresse: Dorfstrasse 53, CH-8105 Regensdorf-Watt, Telefon 01 / 871 21 90, Telefax 01 / 871 21 99

Gründung: 1990

Leitung: Rudolf Schneeberger, Dipl. Ing. ETH

Zweck: Beratungs- und Ingenieur-Unternehmen für Geographische Informationssysteme


Dienstleistungen: GIS-Konzepte,
-Pflichtenhefte und -Schulung
Datenmodellierung und Applikationsentwicklung
Komplette GIS-Lösungen

gramme widmen viele Unternehmen der Evaluation zuviel Aufmerksamkeit. Dabei ist selten ein GIS-Projekt an leistungsschwacher Software gescheitert, sondern meist wegen Fehlern im Projektmanagement

Neutrale Bedarfsanalysen durch unabhängige Berater

GIS-Berater analysieren zunächst die Datengrundlagen, die vorhandenen fachlichen und technischen Voraussetzungen. Weiter klären sie zusammen mit den künftigen Anwendern ab, welche Informationen das neue System bereitstellen soll und welche Erweiterungen wünschenswert sind. So entstehen Planungsgrundlagen, die nicht nur für die Evaluation, sondern für das ganze Projekt wegleitend sind. Klar ist, dass gerade diese Grundlagenarbeit besser bei einem neutralen Berater aufgehoben ist als bei Mitarbeitern von Software-Anbietern, auch wenn sie hohe fachliche Qualifikationen aufweisen. Ausgewählt werden sollte schliesslich ein GIS. das die Anforderungen exakt erfüllt und nicht zahlreiche eindrucksvolle, aber letztlich wenig verwendete und damit teure Applikationen zur Verfügung stellt. Sinnvoller ist es oft, mit anwendungsspezifischer Datenmodellierung und Applikationsentwicklung ein Standard-GIS zu optimieren, eine Leistung, die GIS-Spezialisten ebenfalls anbieten.

Nach der Evaluation und gegebenenfalls Optimierung wird das GIS implementiert. Auch dabei setzen erfahrene Berater auf Projektgruppen mit Anwendern. So lassen sich die Anforderungen ermitteln, um das System passend in die betrieblichen Abläufe zu integrieren. Schulung und darüber hinaus Datennachführung und Support nach Bedarf runden ein Leistungsangebot ab, mit dem sich künftige GIS-Anwender gegen Fehlgriffe und Enttäuschungen absichern können.

Planung, Bau und Betrieb von Leitungsnetzen generieren eine Vielzahl unterschiedlicher Daten. Mit ihrer Zusammenführung in einem GIS werden diese Informationsmengen besser nutzbar. Entscheidungen können auf solider Datengrundlage gefällt werden, das GIS wird zum Management-Informationssystem.

Mit jeder Anwendung steigt der Nutzen

Die Nutzen, die sich nach erfolgreicher Installierung aus einem GIS ziehen lassen, sind vielfältig. Prozesse und Planungen in einer Verwaltung oder einem Unternehmen werden zusammengeführt, die lange Jahre nebeneinander herliefen und zum Teil unabhängig voneinander optimiert wurden. Diese Zusammenführung erschliesst neue Informationen und Entscheidungsgrundlagen.

Ein Beispiel sind Leitungsnetze, etwa für Elektrizität, Wasser oder Abwasser. Diese Netze generieren zahlreiche Informationen, die an unterschiedlichen Stellen verwendet und weitergeführt werden. Ein Beispiel sind Daten über den Netzbetrieb, etwa über Kunden und Netzbelastung. Weiter liegen Unterlagen über Planung und Projektierung vor, wie Ausschreibungen, Pläne und Baudokumentationen. Für die Instandhaltung und den Unterhalt des Netzes ist unter Umständen wieder eine eigene Abteilung zuständig, die ebenfalls über einen reichen Datenbestand verfügt. All diese Informationen haben letztlich

einen räumlichen Bezug: Kunden entnehmen Strom oder Wasser an ganz bestimmten Stellen im Netz, Reparaturen und Ausbesserungsarbeiten sind an ganz bestimmten Orten erforderlich. Zusammen in einem GIS liefern diese Daten zum Beispiel Rückschlüsse auf den Instandhaltungsbedarf in Abhängigkeit von der Netzbelastung. Mit diesen Informationen ist dann eine vorausschauende Wartung möglich. Sie können auch in die Planung von Netzwerkerweiterungen einfliessen. Diese Beispiele verdeutlichen, welchen Nutzen die räumliche Verknüpfung vorhandener Daten in einem GIS bietet. Weitere Anwendungen ergeben sich häufig wie von selbst, wenn ein System erst einmal installiert ist. Darüber hinaus wird auch die bereichsübergreifende Zusammenarbeit in Unternehmen und Verwaltungen gefördert.

ITV steht für unabhängige und praxisorientierte Beratung

Eines der erwähnten herstellerunabhängigen Beratungsunternehmen ist die ITV

AG, die bereits in mehreren Gemeinden, Kantonen und Unternehmen erfolgreich GIS-Lösungen realisiert hat. ITV bietet eine anwenderorientierte Betreuung von Bedarfsanalyse über die Systemimplementation bis hin zur Datennachführung. Als externes Unternehmen steht es ein für fixe Termine und garantierte Qualität. So entstehen massgeschneiderte, offene GIS-Lösungen. Systeme von ITV haben sich bei Bahnen wie der SBB und in Gemeinden bereits bewährt. Besser noch: Durch das «Outsourcing» können GIS zu festen Kosten und ohne zusätzliche Ressourcen realisiert werden - Argumente, die in Zeiten von Lean und New Public Management immer wichtiger werden.

ITV AG CH-8105 Regensdorf-Watt Telefon 01 / 871 21 90 Telefax 01 / 871 21 99

Siemens Nixdorf Informationssysteme AG:

SICAD/open – die GIS-Lösung für die Ver- und Entsorgung

Siemens Nixdorf als führender europäischer Computer- und GIS-Hersteller verfügt mit SICAD/open über ein komplettes Angebot an Geoinformationssystemen für die Ver- und Entsorgungsunternehmen. Die internationale Ausrichtung von SNI ermöglicht es, zentral entwickelte, leistungsfähige Grundkomponenten mit länderspezifischen Zusatzprodukten zu kombinieren und damit sofort einsatzbereite Lösungen anzubieten. Die offene Systemarchitektur und die konsequente Verwendung von Standards z.B. bei Workstations, Datenbanken, Betriebssystemen, Schnittstellen und Ausgabeformaten gewährleisten eine optimale Integration in die Informatikumgebung jeder Unternehmung. Die Unterstützung der Daten der Amtlichen Vermessung nach AV93 und der Schnittstelle AVS gehören zur Grundausstattung von SICAD/open. Neu werden Geoinformationen über den Geo-Desk unter Windows für jedermann zugänglich. Damit wird es möglich, die wertvollen Geo-Daten unternehmensweit an jedem PC-Arbeitsplatz zu nutzen. Die SICAD Produktelinie wird seit einigen Jahren erfolgreich bei der PTT-Telecom im Projekt Grafico eingesetzt. Im Bereich der Versorgungsunternehmen wird gegenwärtig die Fachanwendung Elektrizität von SICAD/open beim Aargauischen Elektrizitätswerk AEW erprobt und eingeführt.

Siemens Nixdorf Firmenprofil

Siemens Nixdorf (SNI) als führender Hersteller von Geoinformationssystemen verfügt mit SICAD/open über ein umfassendes Angebot im Bereich der Netzinformationssysteme. Die in vielen Jahren gewachsene Erfahrung macht es möglich, unseren Kunden ein Produkt mit ausgereifter Technologie anzubieten. Dabei verbinden wir die bei uns traditionell vorhandene Qualität mit einer ausgeprägten Lösungsorientierung. Der modulare Aufbau der verschiedenen Komponenten gewährleistet eine flexible Abstimmung auf die Kundenbedürfnisse. Unser internationales Wirkungsfeld und die Grösse der Operationsbasis erlauben es, Synergien zu nutzen und global einsetzbare Bausteine zu entwickeln. Zusammen mit länderspezifischen Modulen ergeben sich flexible Gesamtlösungen, die mit umfassender Kompetenz beim Kunden implementiert werden.

SICAD/open, das Herz der SICAD Produktefamilie

Die Bedeutung von Geoinformationssvstemen hat sich seit dem früheren Einsatz zum Erstellen von numerischen Kartenwerken wesentlich geändert. Von heutigen Systemen wird erwartet, dass sich Geo-Daten wirtschaftlich und redundanzfrei erfassen, verwalten und nachführen lassen. GIS-Systeme und Applikationen dürfen in den Unternehmen kein Inseldasein führen. Beim Einsatz über die Fachabteilung hinaus müssen sie offen sein gegenüber anderen technischen und kommerziellen Anwendungen. SICAD/open erfüllt diese Ansprüche durch konsequente Unterstützung von Basistechnologien wie offene Client/Server Architektur, verteilte Datenhaltung und die Verwendung von Standardprodukten.

SICAD/open, das Herz der neuen SICAD-Produktefamilie, ist das Ergebnis langjähriger Erfahrung im GIS-Anwendungsbereich, kombiniert mit «state-of-the-art» Workstation-, Server- und Datenbanktechnologie. Ausgehend von zentralen Organisationsformen wurde SICAD/open konsequent zur Unterstützung verteilter Strukturen weiterentwickelt. Durch die zukunftsweisende, offene Systemarchitektur schafft SICAD/open die Voraussetzungen zur Verfahrensintegration mit anderen Anwendungen. Es stellt somit ein ideales Bindeglied zwischen den bis anhin getrennten Büroanwendungen und den

zentralen betriebswirtschaftlich-technischen Applikationen dar.

Offene Systemarchitektur

Die Systemarchitektur von SICAD/open basiert auf einer vollständigen Entkoppelung der verschiedenen Systemschichten (siehe Abb.1). Damit wird dem Kunden der grösstmögliche Freiheitsgrad in der Wahl marktgängiger Produktekomponenten gegeben und eine optimale Integration in bereits bestehende Informatik-Umgebungen ermöglicht. Während auf der Hardwareseite eine breite Palette UNIX-basierter Workstations unterstützt wird, kommen auf der Ebene der Datenverwaltung ausschliesslich Standard-Datenbanksysteme zum Einsatz. Das RDBMS wird für die Speicherung der Geodaten und alphanumerischen Fachdaten verwendet. Mit diesem Ansatz stehen alle Konzepte eines RDBMS auch für SICAD/open zur Verfü-

- SQL für Datendefinition, -manipulation und -abfragen
- 3GL und 4GL Datenbankwerkzeuge für Masken und Berichte
- Transaktionsverarbeitung für Geometrie und Sachdaten
- Mehrbenutzer- und Netzwerkfähigkeit
- Client/Server-Architektur; verteilte Datenhaltung und Verarbeitung
- Logging und Recovery, Datensicherung. Durch das neue Systemkonzept wird die Erstellung von GIS-Anwendungen mit SICAD/open wesentlich vereinheitlicht und beschleunigt. Dies wird durch die Bereitstellung wiederverwendbarer Komponenten für alle Anwendungen, die Einführung einer einheitlichen Struktur für die Fachapplikationen und die Auswahl von passenden Standards und modernen Ent-

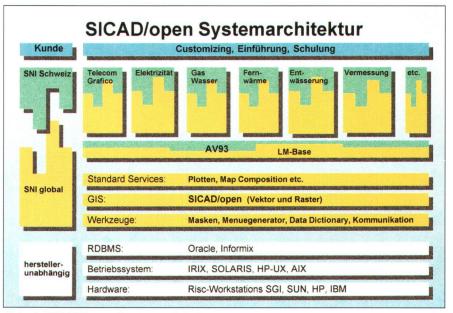


Abb. 1: SICAD/open Systemarchitektur.

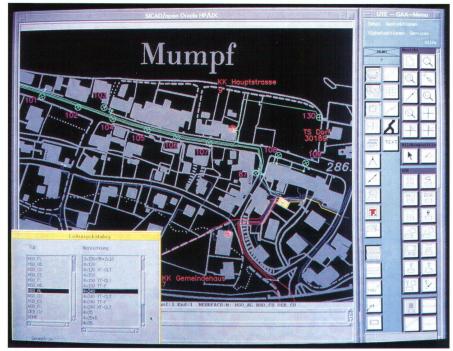


Abb. 2: SICAD/open UT-E: Bearbeitung der öffentlichen Beleuchtung mit Rasterhintergrund.

wicklungswerkzeugen erreicht. Alle Designüberlegungen zur Struktur der SICAD-Anwendungen beruhen auf einem einfachen Grundmodell, welches sich aus wenigen Komponenten zusammensetzt. Die Kernfunktionen für Datenmodellierung, hybride Raster/Vektorverarbeitung, Maskenerstellung, Bildkomposition, Benutzerverwaltung, Plotten, etc. werden zentral und anwendungsneutral erstellt und im Modul SICAD/open gebündelt.

Geo-Daten Management und Amtliche Vermessung AV93

Für die Gliederung der Daten hat der Anwender die Möglichkeit, sich entweder für das Ebenenkonzept, das Objektklassenkonzept oder für eine Kombination der beiden Konzepte zu entscheiden. Die enge Verknüpfung zwischen Geometrieund Sachdaten eines Geo-Objektes durch Speicherung in derselben Datenbank gewährleistet eine permanente umfassende Konsistenz auch bei komplexen Analysen wie z.B. Flächenverschneidungen. Geometriedaten werden als BLOBS (Binary Large Objects) blattschnittfrei verwaltet, so dass eine hohe Performance jederzeit unabhängig von der Datenmenge gewährleistet ist.

Die Basisanwendung «AV93» bietet eine umfassende Unterstützung für das Management der Daten der amtlichen Vermessung gemäss den Anforderungen der AV93. Die Datenübernahme erfolgt dabei über die AVS-Schnittstelle, welche die INTERLIS Datenbeschreibungssprache interpretiert. Weiter werden auch die Formate DXF/Geobau für Import und Export unterstützt. Die Generierung von AV93-

Daten erfolgt über das separate Modul «AV93pro». Als herausragendes Merkmal kann die vorgesehene Durchführung von automatischen Perimeter- oder Differenzmutationen über die AVS-Schnittstelle bezeichnet werden, die eine aufwendige Übertragung des gesamten Datenbestandes überflüssig macht.

SICAD/open Elektrizität, die Lösung für Energieversorger

Mit SICAD/open UT-E (Elektrizität) steht jetzt neu eine Fachlösung für die Energieversorgung zur Verfügung, welche die

SICAD/open, la solution GIS pour la distribution et l'élimination

Siemens Nixdorf, leader européen de l'informatique et des systèmes d'infordispose mations géocodés, SICAD/open d'une gamme complète de systèmes GIS pour les entreprises de distribution et d'évacuation. La vocation internationale de SNI permet de combiner des composants de base performants conçus de façon centralisée avec des produits suplémentaires spécifiques aux différents pays et de proposer ainsi des solutions immédiatement opérationnelles. L'architecture ouverte et l'utilisation de normes, par exemple pour les stations de travail, les bases de données, les systèmes d'exploitation, les interfaces et les formats de sortie garantissent une intégration optimale dans l'environnement informatique de entreprise. En standard, SICAD/open est prévu pour accepter les données de base des mensurations officielles conformes à la norme MO93 et l'interface IMO. Nouveauté: les informations géocodées sont accessibles via GeoDesk sous Windows. Ainsi, il est enfin possible d'exploiter les précieuses données à n'importe quel poste de travail de l'entreprise. Depuis quelques années, le produit SICAD est utilisée avec succès chez PTT Télécom dans le cadre du projet GRAFICO ainsi que chez des clients du secteur de la distribution et de l'élimination. Pour ce qui est des entreprises de distribution, l'application spécialisée électrique de SICAD/open est actuellement introduite dans l'AEW (Aargauisches Elektrizitätswerk).

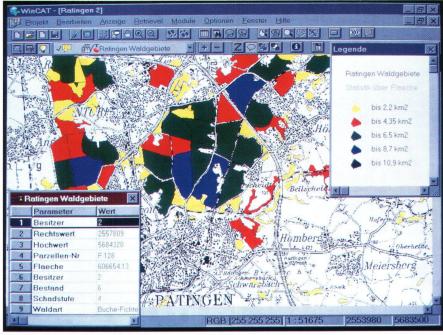


Abb. 3: WinCAT der GeoDesk von Siemens Nixdorf.

Anforderungen an die Dokumentation und Betriebsmittelverwaltung für elektrische Verteilungsnetze erfüllt. Als Standardlösung ist sie sofort produktiv einsetzbar. Es entfallen kostenträchtige Anpassungen. SICAD/open UT-E erlaubt das Bearbeiten von Werkplan und Schemaplan. Beide Planwerke sind in derselben RDBMS gespeichert und verwenden identische Sachdaten.

Im Werkplan werden hauptsächlich die baulichen Objekte eines E-Netzes verwaltet. Dies sind unter anderem Stationen, Kabinen, Schächte, Trassen, Rohre etc. Im Trassenguerschnitt werden die inliegenden Hüllschutz-Objekte wie Rohre, Decksteine etc. eingebracht. Innerhalb dieser Hüllschutz-Objekte können die Kabel eingetragen, mit ihren Daten verknüpft und innerhalb der Trassen dargestellt werden. Im Schemaplan werden dieselben Objekte (Stationen, Kabinen, etc.) erfasst und dargestellt wie im Werkplan. Diese Darstellung kann streng schematisch, pseudoschematisch oder im Sinne eines Übersichtsplanes pseudogeographisch sein.

SICAD/open UT-E bietet alle Voraussetzungen zur Verfahrensintegration mit anderen Anwendungen im Bereich der Energieversorgung, der Betriebswirtschaft (z.B. SAP), Netzplanung und Netzberechnung (z.B. SINCAL), Netzsteuerung (z.B. SINAUT Spectrum) und Anlagenverwaltung. Die Anwendung lässt sich problemlos in bestehende Informatikumgebungen einpassen und ist hervorragend für die Entwicklung umfassender und vorgangsorientierter Gesamtlösungen geeignet

Desktop Mapping mit SICAD/WinCAT

Das Kapital der mit viel Aufwand erfassten Geo-Daten kann nur wirtschaftlich genutzt werden, wenn die Daten einfach zugänglich sind - und zwar über jeden PC-Arbeitsplatz. Hier setzt WinCAT, der Geo-Desk von SNI an, der GIS-Funktionalität mit den traditionellen Aufgaben der Büromatik verbindet. Durch die Einbettung in die MS-Windows Umgebung wird die Bedienung kinderleicht. WinCAT integriert die verschiedensten Daten wie Planausschnitte, Rasterkarten, Bilder und Sachdaten. Alle Daten können kombiniert, ausgewertet, weiterverarbeitet und in andere MS-Windows Programme übernommen werden. Die Integration erfolgt über die bekannten Standards DLL, OLE2 und ODBC. Win-CAT kann allein oder mit SICAD/open als Geo-Server verwendet werden. Neben dem Einsatz bei Ver- und Entsorgungsunternehmen ist es auch ein ideales Werkzeug für Ingenieurbüros, Universitäten, im Umweltmanagement, für demographische Untersuchungen, im Marketing und in der Planung.

SICAD-Referenzprojekte

SICAD/open im Aargauischen Elektrizitätswerk (AEW)

Im AEW wird seit einigen Jahren am Aufbau eines Technischen Informations-Systems (TIS) gearbeitet. Dabei soll auf der Basis eines digitalen Leitungskatasters schrittweise unter Einbezug der Anlagendokumentation ein umfassendes Informationssystem geschaffen werden. Auch beim AEW führt der Weg über die Datenersterfassung. Dabei gilt es primär das Leitungsnetz, bestehend aus rund 1'200 km 16-kV-Kabel- und Freileitungen, 2'200 km Niederspannungsleitungen und 750 Transformatorenstationen, zu erfassen. Die geographische Lage und die Topologie wird dem bestehenden Planwerk entnommen. Die zugehörigen Sachdaten werden im ersten Erfassungsschritt nur soweit manuell aus der Technischen Anlagendatei übernommen, als sie für die Plandarstellung und für die spätere Verknüpfung mit den Daten in SAP-PM (Instandhaltung) zwingend erforderlich

Die aus verschiedenen Quellen stammenden Informationen werden im Rahmen der Datenersterfassung bereinigt. Geographische und Sachdaten werden zusammen abgelegt. Für die geographische Orientierung werden soweit bereits vorhanden, numerische Pläne der Amtlichen Vermessung verwendet.

Aufbau und Betrieb des TIS erfolgen unter Einsatz des Netzinformationssystems SICAD/open der Firma Siemens Nixdorf. Dieses erfüllt mit den Modulen AV93 und UT-E (Elektrizität) die Anforderungen des AEW.

Rund 5'000 rasch alternde Planpausen sind abzulösen und die Auskunftsbereitschaft soll effizienter werden. Ein umfassender Nutzen der Daten (Planwerke) ergibt sich erst, wenn die digitalen Daten durchgängig für den ganzen Arbeitsprozess (Planung, Projektierung, Realisierung, Instandhaltung) zur Verfügung stehen und das Netzinformationssystem die einzelnen Arbeitsschritte optimal unterstützt. Auch dafür ist in Zukunft der Einsatz von SICAD/open vorgesehen.

SICAD/open im Projekt GRAFICO-GIS der TELECOM PTT

Das ursprüngliche Projekt GRAFICO wurde ab 1988 in den Telecomdirektionen eingeführt. Mit diesem System sollten die bestehenden, analogen Situations- und Werkleitungspläne zu einem digitalen, blattschnittlosen Gesamtplanwerk zu-

sammengeführt werden. Eine 1994/95 durchgeführte Projektanalyse hat zu einer Neuausrichtung des GRAFICO-Projektes geführt, mit welcher dem Technologiewandel der letzten Jahre Rechnung getragen wird. Eine neue Systemarchitektur kommt zum Tragen und das PTT-Planwerk wurde einer Neukonzeption unterworfen. Nach dem Systementscheid für SICAD/open wurde Siemens Nixdorf mit der Erstellung der Anwendung GRAFI-CO-GIS beauftragt. Aus Gründen der Integration des GIS in die PTT-Verfahrensketten sind die Datenmodellierungen der Nachbarprojekte stärker berücksichtigt. Insbesondere im Hinblick auf die grössere Informationstiefe, bis hinunter auf die logische Verbindungsebene, die das neue GRAFICO-GIS bietet, wurde auch das Datenmodell erweitert.

Neben der Neuausrichtung des Telecom-Planwerkes und der zugehörigen Applikation, gilt angesichts der enormen Datenvolumina der PTT das Hauptaugenmerk des Projektes der Optimierung der Erstdatenerfassung und der Integration der grafischen und nichtgrafischen Daten aus den verschiedenen Datenquellen.

Das System wird in einer ersten produktiven Ausbaustufe bereits im Frühjahr 96 fertiggestellt und unter der Projektleitung der Telecomdirektion Zürich wird ab Mai/Juni 1996 der Pilotbetrieb aufgenommen. Nach erfolgreichem Pilotbetrieb ist der Einsatz des GRAFICO-GIS auf Basis SICAD/open zunächst für die komplexen Netze der Telecomdirektionen in den grossen Agglomerationen vorgesehen.

Le SIE et la géomatique sur SICAD

Le Service Intercommunal de l'Electricité (SIE) fondé en 1936 compte 36 collaborateurs. Il transporte et distribue de l'énergie électrique ainsi que des signaux audio-visuels pour le téléréseau. Son réseau couvre 2000 ha répartis sur le territoire des communes de Chavannesprès-Renens, Crissier, Ecublens et Renens, et il alimente plus de 37'000 usagers.

Toute la schématique des réseaux électriques et du téléréseau est gérée avec le logiciel SICAD. La base de données cadastrale, avec les aménagements extérieurs, couvre les 82% à ce jour du territoire. Actuellement nous mettons en service les plans des réseaux électriques avec le logiciel SICAD-EW que nous pouvons éditer avec les traces ou au besoin avec le détail des câbles.

Siemens Nixdorf Informationssysteme AG Obstgartenstrasse 25 CH-8302 Kloten Telefon 01 / 816 84 48 Telefax 01 / 816 82 11

Geosystem SA:

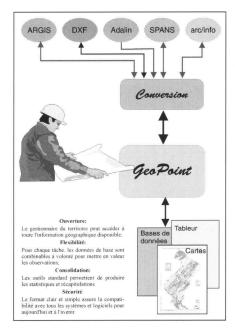
Mit dem richtigen Werkzeug macht die Arbeit wieder Spass

Seit mehreren Jahren ist auf allen Stufen des Forstdienstes des Kantons Waadt ein einfaches raumbezogenes Informationssystem mit grossem Erfolg im Einsatz. Diesen Erfolg verdankt es der Einsicht, dass nicht bloss die Zentrale über ein leistungsfähiges GIS (Geographisches Informationssystem) verfügen soll, sondern dass auch die Praktiker, also Gemeinde-, Revier- und Kreisförster, heute ein taugliches Werkzeug brauchen, womit sie ihre Beobachtungen erfassen und selbständig in klaren Plänen und Karten darstellen können. Die Behörden des Kantons Waadt haben also konsequenterweise jeden Revier- und Kreisförster mit einem PC und Programmen für die Textverarbeitung, Tabellenkalkulation, Präsentation und eben für die raumbezogene Datenverwaltung ausgerüstet.

Das grosse Vertrauen des Kantonsforstamts in die Urteilskraft und Kompetenz der Praktiker zeigt sich darin, dass es den letzteren viele wertvolle Grunddaten in computergerechter Form zur Verfügung stellt, z.B. den Übersichtsplan und bestehende kantonale Inventare, Schutz- und Gefahrenzonen, Biotope und Rutschgebiete, Vegetationskarten und vieles mehr. Damit ist auch Gewähr, dass die ausführenden Organe eine umfassende Kenntnis der bestehenden Auflagen über die Bewirtschaftung erhalten.

Natürlich soll das nicht heissen, dass nun alle Entschlüsse bloss noch am PC gefasst werden! Der Förster weiss jedoch, wenn eine geplante Massnahme im Bereich eines Biotops oder einer archäologischen Fundstelle liegt, dass er mit Vorteil mit den zuständigen Fachleuten Rücksprache nimmt, worauf die definitiven Entschlüsse gemeinsam im Wald getroffen werden.

Die Revierförster kontrollieren selbständig die durchgeführten waldbaulichen Massnahmen, d.h. sie digitalisieren die behandelten Flächen direkt im Wald, oder im Büro aus der Karte, und tragen deren Merkmale im entsprechenden Datenblatt ein. Damit sind sie in der Lage, dem Waldbesitzer jederzeit mit Plänen und Statistiken Rechenschaft abzulegen. Ausserdem entsteht dabei ohne Mehrarbeit eine äusserst wertvolle Waldgeschichte, die später dem Nachfolger das Einarbeiten erleichtert und auch bei der holzverarbeitenden Industrie willkommen ist.


Die waldbauliche und betriebliche Planung wird vom Revierförster in Zusam-

menarbeit mit dem Kreisförster und dem Waldbesitzer, d.h. in der Regel mit den Gemeindebehörden, durchgeführt. Auch hier kann er die geplanten Massnahmen direkt am PC mit Lage, Ausdehnung, Art und Zeitrahmen usw. erfassen. Der Kreisförster übernimmt in der Regel eine Kopie dieser Daten zu seiner Orientierung, doch bleibt die Verantwortung beim Revierförster. Diese zweckmässige Arbeitsteilung erhöht das gegenseitige Vertrauen. Die Kreisförster arbeiten hingegen auf dem Hektometer-Raster des kantonalen Forstinventars und gewinnen eine willkommene Übersicht dank der systematischen Ansprache jedes Rasterpunktes auf die Hauptfunktionen: Holzproduktion, Schutzfunktionen (technisch, biologisch, landschaftlich) sowie Erholungsfunktion. Damit ein raumbezogenes Informationssystem durch Praktiker auf allen Stufen einsetzbar ist, muss es gewisse Voraussetzungen erfüllen: Es muss so einfach zu bedienen sein, dass die Praktiker selbst in kurzer Zeit neue Anwendungen erstellen oder abändern können. Ferner muss der Datenaustausch mit den gängigen Formaten gewährleistet sein, besonders mit dem zentralen GIS, aber auch mit dem Geometer, mit GEOSTAT oder mit dem Amt für Raumplanung. Dann sollen die Daten zukunftssicher gespeichert sein, denn die Daten müssen auch noch in über hundert Jahren lesbar sein. Die Anzeige umfangreicher Datenmengen soll zügig erfolgen, und die Pläne müssen sowohl auf herkömmlichen Druckern als auch auf grossformatigen Plottern in guter Qualität ausdruckbar sein.

GeoPoint

GeoPoint erfüllt diese Anforderungen und hat sich in der Praxis bewährt. Es wird heute nicht nur im Forstwesen, sondern immer mehr auch von Gemeinden und Verwaltungen eingesetzt. Einige Geometerbüros – seit jeher die bewährten Partner der Gemeinden für räumliche Datenerfassung – sehen darin eine neue Möglichkeit der Zusammenarbeit mit den Gemeinden und stellen diesen die Katasterdaten als Grundlage für die Leitungsverwaltung oder andere Aufgaben auf der äusserst günstigen Abfrageversion GeoView zur Verfügung

GeoPoint kann aber auch überall dort eingesetzt werden, wo ein neues Konzept

noch in Erarbeitung steht. Damit gewinnen alle Beteiligten wertvolle praktische Erfahrung und können besser abwägen, was wirklich nötig ist und wo der teure Luxus beginnt.

GeoPoint läuft auf jedem heute gängigen PC und unterstützt die meisten Digitalisiertabletts und Drucker. Es wird vollständig in der Schweiz in Modula-2 entwickelt und belegt mit allen Hilfsprogrammen und den Beispielen nur etwa 3 MB auf der Harddisk. Sein Preis kann dank der Einsparungen meist innert kurzer Zeit amortisiert werden.

Der Schulungsaufwand von zwei Tagen und etwa einer Woche Übung lohnt sich für all jene, die neue Anwendungen selbst erstellen wollen; die Bedienung einer bestehenden Anwendung kann selbst ein Neuling innert Stunden erlernen.

Geosystem SA CH-1042 Assens (VD) Telefon 021 / 886 22 30 Telefax 021 / 886 22 31

Geometra AG:

LocatorGIS die Komplettlösung für die Datenerfassung und Datenbearbeitung im Feld

Daten werden einmal vor Ort erfasst (z.B. mit Totalstation, manuell, usw.) und brauchen im Büro nicht mehr auf Papier übertragen zu werden, wodurch Zeit gespart und Fehler vermieden werden.

- Direkte graphische Kontrolle im Feld. LocatorGIS zeigt alle Informationen sofort bei der Erfassung an, so dass Sie direkt kontrollieren können, ob Ihre Daten richtig und vollständig sind.
- Attribute können grafischen Elementen

LocatorGIS für Windows von Sokkia nutzt die Pen-Computer-Technologie, um Ihnen eine einfache, präzise und erschwingliche Möglichkeit zur Erfassung Ihrer GIS-Daten im Feld zu geben. Der bisher übliche Weg - Erfassung der Daten im Feld, Übertragung dieser Daten in den PC und Erstellung der Karte - wird durch LocatorGIS auf einen einzigen Arbeitsschritt reduziert. Durch diese Arbeitsweise kann die Karte unmittelbar im Feld fortgeführt werden. Eventuell auftretende Messfehler bei der Erfassung der Daten werden nicht erst bei der Auswertung im Büro erkannt, sondern sind direkt im Feld in der Karte «ersichtlich» und korrigierbar. Ein erneutes Anfahren ins Gelände kann so vermieden werden.

LocatorGIS höchste Produktivität und **Datensicherheit**

- LocatorGIS macht Schluss mit der doppelten Verarbeitung der Daten. Die

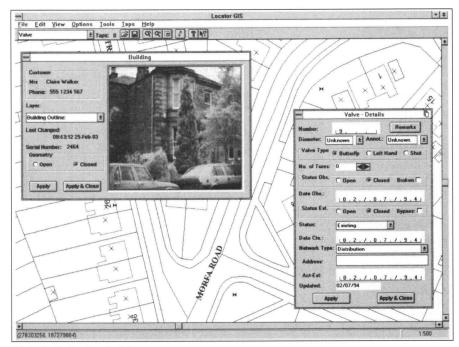


Abb. 1: Datenbankabfrage.

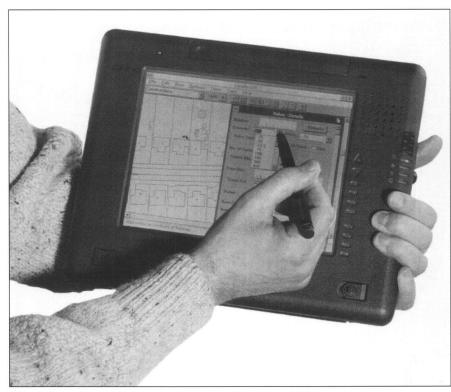


Abb. 2: Pen-Computer LocatorGIS.

- der geladenen digitalen Karte zugeordnet werden.
- Mit Hilfe der «Suchfunktion» bringt Sie der LocatorGIS automatisch an die Stelle der Karte, die Sie bearbeiten wollen, z.B. eine bestimmte Strasse.
- Sämtliche Unterlagen, die Sie ansonsten im Feld dabei haben müssen (z.B. Formulare, Karten, usw.) stellt Ihnen der LocatorGIS digital zur Verfügung, so dass die umständliche Handhabung mit den verschiedenen Unterlagen enffällt.
- Durch Anschluss einer Totalstation können die Punkte online erfasst werden. Durch Anschluss einer Digitalkamera können Fotos von Objekten im LocatorGIS als visuelle Informationen hinterlegt werden.

LocatorGIS für Windows eine flexible Software, die sich Ihrer Anwendung anpasst

LocatorGIS setzt neue Massstäbe hinsichtlich der Flexibilität von GIS im Feld. Sie sind es gewohnt, Ihre Fachdaten in

Typische Anwendungen sind unter anderem:

 Öffentliche und private Versorgungseinrichtungen

Wasser Gas Elektrizität

- Vermessungswesen

 archäologische / historische /
 geologische Vermessungen
 Aufbau von Fachkatastern
 Gebäudeeinmessung
 Topographische Vermessung
- Einzelhandel
 Standorte
 Verkehrsströme
- Industrieanlagen- und Immobilienverwaltung
 Instandhaltung und Bestände Akquisition
- Umwelt
 Umweltkataster
 Biotopkartierung
 Fusswege
 Sondermülldeponien

- Ressourcen-Erfassung Forstwirtschaft Grundbau
- Transportwesen
 Strassenverkehrswege
 Eisenbahn
 U-Bahn
- FernmeldewesenKabel
- Katastrophenschutz

 Feuergefahren und
 Hydrantenstandorte
 Rettungswagenstandorte
 Unfallaufnahme durch
 die Polizei

 Verkehrsinformationen
- GewerbeÖl-/Chemiefirmen

einem speziell dafür zugeschnittenen Formular zu erfassen? Im LocatorGIS können individuell für Ihre Anwendungen spezielle Formulare definiert und gestaltet werden. Die Formulare dienen dann als Eingabemaske für Attribute zu bestimmten grafischen Objekten, die in der LocatorGIS-Datenbank gespeichert werden.

- Einfache grafische Werkzeuge zur Erstellung von Formularen stehen Ihnen im LocatorGIS zur Verfügung.
- Definieren Sie Menüs, wählen Sie die Funktionen, die Ihnen im Feld zur Ver-

fügung stehen sollen und richten Sie häufig benötigte Funktionen für die Stiftbedienung ein.

- Fügen Sie Ihre eigenen Kartenbearbeitungsroutinen, Import- und Exportfilter und Verwaltungsfunktionen hinzu.
- Bauen Sie nahtlose Verbindungen zu anderen Windows-Anwendungen auf.
- «Verstecken» Sie die gesamte Komplexität von Windows und LocatorGIS hinter einer einfach gestalteten Bedieneroberfläche, deren Bedienung keine PC-Spezialkenntnisse verlangt.

Einfacher Im- und Export von Dateien

LocatorGIS ist kompatibel mit den gängigen CAD- und GIS-Systemen.

- Datenbankformate wie z.B. dBase und Microsoft Access sowie Systeme wie Oracle werden unterstützt.
- Schnittstellen zu den gängigen Geographischen Informationssystemen.

Variable Datenerfassung

Neben der herkömmlichen manuellen Erfassung der Daten (z.B. Messband) kann LocatorGIS mit anderen Eingabeinstrumenten wie z.B. Digital-/Standbild-kamera, den SOKKIA SET-Totalstationen und GPS verbunden werden. LocatorGIS ist das Herzstück, das die Informationen überwacht, speichert und verarbeitet. Durch die Kombination all dieser Disziplinen erhalten Sie ein äusserst leistungsfähiges Werkzeug.

LocatorGIS ist das System für Ihre Anwendung

LocatorGIS bietet Ihnen, unabhängig von Ihrer Anwendung, eine einfache und wirksame Methode zur Erfassung, Änderung und Verwaltung Ihrer Daten. Mit der Benutzerschnittstelle von LocatorGIS kann das System entsprechend Ihren Anforderungen angepasst werden.

Geometra AG Muhenstrasse 11 CH-5036 Oberentfelden Telefon 062 / 723 42 22 Telefax 062 / 723 45 05