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Systèmes d'information géographique et théorie des erreurs

Ausgleichung geodätischer
Netze mit Verfahren der
robusten Statistik
A. Carosio

Die modernen Methoden der Ausgleichungsrechnung berücksichtigen, dass die
Beobachtungen nicht ganz normalverteilt sind. Ein Lösungsansatz bieten die
Verfahren der robusten Statistik, die gute Schätzungen liefern, auch wenn nicht alle
Beobachtungen richtig sind. Der folgende Bericht beschreibt die neuesten
Entwicklungen, die in der schweizerischen Praxis eingesetzt werden.

Les méthodes de compensation modernes tiennent compte du fait que les
observations ne sont pas toutes distribuées normalement. Elles utilisent les méthodes
de la statistique robuste, fournissant de bons résultats, même dans le cas où
certaines observations sont entachées d'erreur. Le présent article décrit l'état actuel
de développement de ces méthodes, telles qu'elles sont utilisées en pratique en
Suisse.

I metodi moderni di compensazione tengono conto del fatto che le osservazioni
non hanno una distribuzione normale. Una possibile soluzione è data dai metodi
della statistica robusta che forniscono buoni risultati anche se certe osservazioni

sono errate. Questo articolo descrive lo stato degli sviluppi più recenti di questi

metodi, come applicati nella pratica svizzera.

1. Einleitung
Die Feststellung, dass die Beobachtungen
fast, jedoch nicht vollständig normalverteilt
sind, wird vermehrt in der Ausgleichungsrechnung

beachtet. Während man sich in
der Vergangenheit darauf beschränkt hat,

ganz allgemein geeignete
Messanordnungen vorzuschreiben, die die
Entdeckung der groben Fehler erlauben, ist
man heute auf der Suche nach Alternativverfahren.

Mehrere Lösungsansätze sind
das Ergebnis einer regen Forschungstätigkeit.

An erster Stelle findet man die Analyse der
Zuverlässigkeit, die zum Ziel hat, die
Eignung des vorgesehenen Messsystems
(Messanordnung und Qualitätskontrolle)
für den Nachweis von Modellfehlern zu
überprüfen. Die Kombination von
Richtungsmessungen, Distanzmessungen,
Satellitenbeobachtungen und die
Ausgleichung immer grösserer Netze mit den
verschiedensten Unbekannten
(Lotabweichungen, Massstabsfaktoren usw.)
machen ein intuitives Urteil zunehmend
schwieriger und haben zur Entwicklung
der modernen numerischen Verfahren
geführt [1], [4].
Die zweite Entwicklungsrichtung, die
Fehlersuche a posteriori hat als Ziel die
Identifikation allfälliger grober Fehler. Nicht
befriedigende Beobachtungen werden
mittels statistischer Tests gesucht,
daraufhin entfernt und wenn möglich wiederholt.

Diese Suche basiert meistens auf

einer Prüfung der standardisierten
Verbesserungen und bezweckt, eine Reihe

von Messungen zu erhalten, die dem
klassischen Modell (Normalverteilung)
entsprechen [6].
Die dritte Forschungsrichtung ist das Thema

des vorliegenden Beitrages und
behandelt die Ausgleichungsverfahren,
robuste Ausgleichungen genannt, die
weniger sensibel auf grobe Fehler reagieren

als die Methode der kleinsten
Quadrate. Sie liefern wirklichkeitsnahe Resultate,

auch wenn sich unter den Messungen

noch einige grobe Fehler befinden,
das heisst, wenn die Normalverteilung
nicht ganz zutrifft. Den dazu nötigen robusten

Schätzfunktionen haben die Statistiker

in letzter Zeit ihre Aufmerksamkeit
gewidmet.
Als Initiator gilt Tukey mit seiner
Statistiker-Forschungsgruppe in Princeton, der
das Problem populär zu machen begann.
In den letzten Jahrzehnten haben überdies
die Studien des Schweizers Peter J. Huber
zu wesentlichen Fortschritten geführt. Die
Verfahren der robusten Ausgleichung
haben in den letzten Jahren stark an
Bedeutung in der Geodäsie gewonnen.
[8], [9]

2. Das stochastische Modell
der robusten Ausgleichung
Die Hypothese der Normalverteilung für
die Messungen ist nicht mehr eine absolute

Voraussetzung.

Die Messfehler werden als stochastische
Grössen mit Verteilung:

F (1 - e)<D + eH

betrachtet, * ist die Normalverteilung, H

die unbekannte Verteilung der groben
Fehler und e die geringe Wahrscheinlichkeit,

mit der grobe Fehler auftreten. Die
Beobachtungen gelten als fast normalverteilt,

und die angenommenen
Standardabweichungen stimmen für die Mehrheit
der Messwerte. Es gibt jedoch Beobachtungen,

die dem Grundmodell nicht
entsprechen (grobe Fehler). Ihre Verteilung
ist unbekannt.

3. Funktionale Modelle
Schätzfunktionen sind die mathematischen

Beziehungen zwischen den
beobachteten Grössen Lj und den gesuchten
ausgeglichenen Werten (unbekannte
Parameter, ausgeglichene Beobachtungen

usw.).
So zum Beispiel für eine ausgeglichene
Beobachtung:

g,(V <¦)

Die Schätzfunktion gi wird robust sein,
wenn Li eine gute Schätzung von E(Li)
auch bei nicht ganz normalverteilten
Beobachtungen ergibt. Solche robuste
Schätzfunktionen können in verschiedenen Arten
aufgebaut werden. [11] Besonders wichtig
sind die folgenden Gruppen:

a) M-Schätzer (Maximum-Likelihood-
Typ)

b) L-Schätzer (Linearkombinationen von
Ordnungsstatistiken)

Diese erwähnten Methoden führen, nach
Annahme von einigen sehr allgemeinen
Bedingungen, zu asymptotisch
normalverteilten Schätzungen, so dass in der
Praxis, wenn der Freiheitsgrad genügend
gross und das Netz gut ist, die ausgeglichenen

Beobachtungen als normalverteilt
betrachtet werden können. Damit sind alle
üblichen Beurteilungsverfahren verwendbar.

Eine wichtige Eigenschaft der robusten
Schätzfunktionen ist der Bruchpunkt, der
als quantitatives Mass für die Robustheit
eines Schätzers verwendet wird. Dieser
gibt den grösstmöglichen Anteil an (beliebig

grossen) Ausreissern an, der in einer
Stichprobe enthalten sein darf, bevor der
Schätzer «zusammenbricht», d.h. völlig
falsche Resultate ergibt. Für das arithmetische

Mittel ist der Bruchpunkt 0 [7], [14].
Ein Erwartungswertschätzer mit hervorragenden

Bruchpunkteigenschaften ist der
Median. Man kann ihn verwenden, wenn
n direkte Beobachtungen der gesuchten
Grösse vorliegen. Für n —* «= strebt der
Anteil der Messungen, die beliebig falsch
sein dürfen, gegen n/2. Der Median hat
also einen Bruchpunkt von 0.5.
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4. Die robuste vermittelnde
Ausgleichung nach Huber
4.1 Grundlagen
Eine erste interessante Anwendung in der
Geodäsie war die robuste vermittelnde
Ausgleichung, die mit einem von P.J.
Huber [10] vorgeschlagenen M-Schätzer
aufgebaut wurde [3].

M-Schätzer sind für die geodätischen
Applikationen besonders geeignet, vor
allem wegen der Ähnlicheit mit der Methode

der kleinsten Quadrate und weil damit
auch Probleme mit vielen unbekannten
Parametern gelöst werden können. Es
handelt sich hierbei darum, unbekannte
Parameter und Verbesserungen (v) so zu
bestimmen, dass

a) Die direkte Lösung des Minimumsproblems

In ähnlicher Art wie bei der Methode der
kleinsten Quadrate bildet man zuerst die
Zielfunktion

IpW Min

ist.
Die Kunst liegt in der geschickten Wahl der
Funktion p(v). Für p(v) v2 erhält man die
Schätzung nach der Methode der kleinsten

Quadrate. P. J. Huber schlägt vor, die
folgende stetige und konvexe Funktion zu
verwenden:

^P\vi/ die minimal sein soll.

Die partiellen Ableitungen nach allen
Unbekannten müssen für die Lösung null
werden. Daraus entsteht ein Gleichungssystem.

Für die Schätzfunktion nach Huber muss
man beachten, dass

a?,p(v.) v aP(v,)

dx L dx

ist, das heisst, man kann die Ableitung für
jede einzelne Beobachtung bestimmen
und daraus entstehen die
Normalgleichungsanteile, die man zum Schluss
addiert.
Die meisten Beobachtungen erhalten
durch die Ausgleichung Verbesserungen
innerhalb des Intervalls (-k, k). Ihre
Normalgleichungsanteile sind gleich wie bei
der Methode der kleinsten Quadrate. Die

P(v)
1 2 für | v <k

k.| V | -J-k2 für | v a k

wobei k ein Vielfaches der
Standardabweichung der Messung ist. In geodätischen

Netzen mit nicht besonders grosser
Überbestimmung kann z.B.

k= 3-0. oder 3.5-a. gewählt werden.

Die vorgeschlagene Schätzung ist für k

-*oo identisch mit derjenigen der Methode
der kleinsten Quadrate. (Abb. 1).

P(v)

Abb. 1: Die Zielfunktion für den M-
Schätzer nach Huber. Im Intervall (-k,
k) eine Parabel, ausserhalb Geraden.

4.2 Berechnungsverfahren
Es gibt mehrere numerische Methoden,
um zu den geschätzten Unbekannten zu
kommen. Alle sind iterative Verfahren.

wenigen Beobachtungen, die hingegen
ausserhalb des Intervalls (-k, k) liegen,
müssen andere Anteile erhalten, die nur
Konstanten beinhalten [3],
Da die Grösse der Verbesserungen erst
nach der Lösung des Normalgleichungssystems

bekannt wird, muss man iterativ
nach folgendem Verfahren vorgehen:

- 1. Iteration
Ausgleichung nach der Methode der
kleinsten Quadrate

- i-te Iteration
Zuteilung der Verbesserungen der
dazugehörigen Intervalle (-oo, -k), (-k, k),
(k, +oo)

Bildung der neuen Normalgleichungen
Lösung des Systems usw.
Wiederholen, bis alle Verbesserungen
dem richtigen Intervall zugeteilt sind.

Jede Iteration enthält die Lösung eines
Gleichungssystems. Die Rechenzeit kann

gross werden.
Die folgenden Lösungsansätze erlauben
aber das Verfahren wesentlich zu
beschleunigen.

b) Die Ausgleichung mit reduzierten
Gewichten
Man kann das Minimum der Zielfunktion
der robusten Ausgleichung auch anders
bestimmen. Man erhält die gleichen Resultate,

wenn die Normalgleichungen mit der

Formel der Methode der kleinsten
Quadrate, aber mit modifizierten Gewichten
gebildet werden. Die Beobachtungen, die
eine Verbesserung ausserhalb des Intervalls

(-k, k) hätten, erhalten ein kleineres

Gewicht (d.h. eine grössere
Standardabweichung).

Die modifizierte Standardabweichung ist

so zu wählen, dass nach der Ausgleichung
die Verbesserungen dieser Beobachtungen

die Bedingung

| Vi | k

genau erfüllen. Es ist zu bemerken, dass
eine grössere Standardabweichung eine
Vergrösserung des Grenzwertes k

bewirkt.

c) Ausgleichung mit angepassten
Beobachtungen
Die robuste Ausgleichung ergibt auch die

gleichen Unbekannten, wenn, anstatt die

Normalgleichungen zu verändern, die
Beobachtungen derart modifiziert werden,
dass sie nach der Ausgleichung die Bedingung

I vi | k

genau erfüllen, wenn sonst ihre
Verbesserungen ausserhalb des Intervalls (-k, k)

fallen würden.
Diese letzte Variante ist besonders
interessant, da bei nicht zu schlechten
Näherungskoordinaten nur einmal die
Matrixinversion berechnet werden muss.

5. Modernere funktionale
Modelle
5.1 Das Verfahren der
schweizerischen Landesvermessung
Das bisher geschilderte Verfahren von P.

Huber begrenzt den Einfluss der
Verbesserungen.

Die Zielfunktion (auch Verlustfunktion
genannt) der Methode der kleinsten
Quadrate

pv min

wird ersetzt durch

\ pp(v) min

In beiden Fällen erhält man die Lösung
einer vermittelnden Ausgleichung mit den

folgenden Bedingungen

T p.a..^ (v.)
i=i ' 'J

j l,..

i|> (v) nennt man die Einflussfunktion der
Verbesserungen. Sie ist die Ableitung der
Zielfunktion.

i|> (v) p' (v)
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Der Schätzer nach Huber hat die folgende
Ziel- und Einflussfunktion (Abb. 2).

Wenn eine Verbesserung die Grösse k
c • a\ erreicht hat, bleibt ihr Einfluss
konstant.

: P

-k

-k

+k v

^T 1

\/ +k v

Abb. 2: Zielfunktion (oben) und
Einflussfunktion (unten) für den Schätzer
nach P. Huber.

In geodätischen Netzen ist die Uberbe-
stimmung nicht sehr gross und man weiss,
dass bei schwacher Überbestimmung
bereits kleine Verbesserungen gefährlich
sein können. Es wäre daher vorteilhaft,
wenn die Grenze der Einflussfunktion von
der Standardabweichung der Verbesserung

abhängig wäre, damit auch bei geringer

Überbestimmung der Einfluss eines
Ausreissers klein gehalten wird.
Zu diesem Zweck schlägt F. Wicki [15] vor,
die Zielfunktion von Huber weiter zu
verwenden, die Grenze k aber zu modifizieren,

damit der Einfluss der standardisierten

Verbesserung (anstatt der Verbesserung)

begrenzt wird. Die folgende Grenze
k wird verwendet:

k c »vi

mit ov Standardabweichung der Verbesserung

und c konstant (z.B. 2.5 oder 3.0)
(Abb. 3).

i

l^k

[p

cav v

Dieses Verfahren, das neben der Grösse
der Verbesserung auch die geodätische
Messanordnung berücksichtigt, hat sich in

der Praxis bewährt und wird in der
schweizerischen Landesvermessung eingesetzt.
[14]

5.2 Andere moderne Verfahren
In der Literatur werden die robusten Schätzer

vor allem bei Regressionsproblemen
angewandt. Daraus ist auch die Terminologie

entstanden. Moderne Verfahren werden

daher oft für diese Anwendung
beschrieben.
Die folgenden Beispiele zeigen die
Entwicklung von robusten M-Schätzern [7].

a) Die Huber-Schätzer
Die robuste Ausgleichung nach Huber
begrenzt den Einfluss der Verbesserungen

(Abb. 4). Stark abweichende
Beobachtungen (Y) werden bis zum gestrichelten

Streifen verschoben.

î
Abb. 4: Eine Regressionsgerade nach
Huber mit dem maximalen Einflussbereich

der Verbesserungen.

Die Lösung des Gleichungssystems

2>, &)v
ist die Schätzung der Regressionsparameter,

die in v, durch die Verbesserungsgleichung

enthalten sind.
Xj ist der Vektor der Koeffizienten der i-

ten Verbesserungsgleichung (in der Ebene:

1, Xj).

Beobachtungen mit grossen Xj-Werten
(Hebelarmpunkte) beeinflussen die
Ausgleichungsresultate stark

b) Die Schätzer nach Mallows
Um das zu vermeiden, hat Mallows [7]

vorgeschlagen, die Beobachtungen mit
einem zusätzlichen Gewicht zu versehen,
in welchem die «Distanz» vom Schwerpunkt

der Beobachtungen berücksichtigt
wird. Die Koeffizienten der
Regressionsgeraden werden mit dem folgenden
Gleichungssystem berechnet:

das Zusatzgewicht Wj min (1, b/dj) ist
Funktion von dj (robuste Mahalanobis-
Distanz zwischen Xj und Mittelpunkt der
Stichprobe).
Damit werden alle Beobachtungen, die
aussergewöhnlich entfernt vom Mittelpunkt

der anderen Messungen sind, in
ihrer Wirkung begrenzt (Abb. 5).

1/
U-V
+V.f

'/1
Abb. 5: Eine Regressionsberechnung
nach Mallows begrenzt den Einfluss
der entfernten Punkte.

c) Der Schätzer nach Schweppe
Eine Alternative, um die Wirkung der
Hebelarmpunkte (leverage points) zu
reduzieren, wird von Schweppe
vorgeschlagen [7]. Der Einfluss der Verbesserungen

wird in Funktion der Grösse der
Verbesserung und der Position der
Beobachtung auf der X-Achse (A-Matrix)
gesteuert (Abb. 6).

X-Yl syyy
Abb. 6: In einer Regressionsberechnung

nach Schweppe wird der Einfluss
der Verbesserung und der Entfernung
berücksichtigt.

Schweppe berechnet die Gerade mit dem
Gleichungsystem:

2X ,ft>v

Abb. 3: Modifizierte Zielfunktion. Das
mittlere Intervall ist von ov abhängig. 2*.^ wA-6

Die Einflussfunktion a|)cw ist von den
zusätzlichen Gewichten Wj abhängig, die
den Einfluss der Verbesserungen bei grosser

Entfernung reduzieren.
Während bei der Methode von Huber eine
falsche Beobachtung mit einer stark
abweichenden X-Koordinate zu einer
falschen Regressionsgeraden führt, sind
die Methoden von Mallows und Schweppe

auch in diesem Fall robust.
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Das Modell der schweizerischen
Landesvermessung [15] ist ein Spezialfall der
robusten Regression nach Schweppe.

d) Die balancierte Ausgleichung nach
Kampmann
G. Kampmann [12] schlägt vor, zuerst die
Konfiguration zu balancieren, indem man
neue Gewichte bestimmt, die alle
Beobachtungen zur gleichen Teilredundanz
führen. Dann wird ein robustes
Ausgleichungsverfahren (z.B. L1-Norm)
eingesetzt. Man erkennt hier ebenfalls eine

grosse Ähnlichkeit mit dem Verfahren
nach Schweppe.

6. Robuste
Ausgleichungsverfahren und
Zuverlässigkeit
Robuste Ausgleichungsmodelle nehmen
von Anfang an in Kauf, dass die
Beobachtungen nicht genau normalverteilt sind
und dass grobe Fehler oder sonst stark
abweichende Messwerte vorhanden sein
können. Das Ausgleichungsmodell erfordert

im Prinzip keine besondere Analyse
a posteriori der Beobachtungen.
Die Definition der Zuverlässigkeit, die man
für die gewöhnliche Ausgleichung nach
der Methode der kleinsten Quadrate
verwendet [1], stützt sich auf die
Wahrscheinlichkeit, mit welcher allfällige grobe
Fehler gefunden werden. Da bei robusten
Verfahren keine groben Fehler gesucht
werden, kann keine Wahrscheinlichkeit für
das Finden berechnet werden. Die
herkömmliche Definition der Zuverlässigkeit
ist daher nicht mehr anwendbar und der
Begriff der inneren Zuverlässigkeit hat keine

Bedeutung.
Trotzdem besteht eine Beziehung
zwischen allfälligen groben Fehlern und
geschätzten Parametern (Koordinaten
usw.). Es ist interessant zu wissen, wie
gross die Verfälschung der Koordinaten
sein kann, wenn eine Messung grob falsch
ist. [5]
Der Einfluss eines unendlich grossen
Messfehlers Aj (Aj -* oo) auf die Koordinaten

und anderen Parameter kann nach
der folgenden Methode berechnet werden.

Ein unendlich grosser Fehler hat einen
Einfluss wie eine Beobachtung, für welche

Ivi k.

ist.
Man ist so in der Lage, für jede Beobachtung

den kleinsten groben Fehler Vlj
(reduzierter grober Fehler) zu bestimmen,
der sich wie ein unendlich grosser Fehler
in einer Ausgleichung ohne zufälligen Fehler

auswirkt.
Man kann also für jede Beobachtung den
Einfluss eines unendlich grossen Fehlers
auf die Erwartungswerte der in der Aus¬

gleichung berechneten oder später
hergeleiteten Grössen berechnen.
Diesen Einfluss verwendet man in ähnlicher

Art wie bei der Ausgleichung nach der
Methode der kleinsten Quadrate, um
Indikatoren der äusseren Zuverlässigkeit (VX,
VY) für die Koordinaten zu definieren.
Ergebnisse VX, VY bei der robusten
Berechnung wären mit den entsprechenden

Indikatoren der Methode der kleinsten
Quadrate nur vergleichbar, wenn für die
übliche Ausgleichung das Risiko ß

50% gewählt wird und man damit die
Verteilung der zufälligen Messfehler
ausschaltet.

Um auch bei den üblichen Risikogrenzen
(ß 5%, 1% usw.) vergleichbare VX, VY
zu erhalten, muss man auch im robusten
Modell den Einfluss der zufälligen Fehler
berücksichtigen. Dies kann man mit einer
empirisch festgelegten Vergrösserung
des Einflusses eines unendlich grossen
Fehlers auf die Ausgleichung erzielen. Der

vergrösserte grobe Fehler, mit welchem
man die Wirkung eines unendlichen Fehlers

berechnet, ist:

VI

Er ist vom Verschiebungsfaktor

Ô* c + xw

abhängig.
t,., wird so bestimmt, dass die Verschie-
bung ô des Erwartungswertes der
standardisierten Verbesserung Wj bei der
Methode der kleinsten Quadrate gleich dem
Verschiebungsfaktor bei der entsprechenden

robusten Ausgleichung wird [14].

7. Schlussbemerkungen
Es gibt eine unbeschränkte Anzahl robuster

Schätzverfahren, die für Anwendungen

in der Geodäsie zur Auswahl stehen.
Die Ausgleichung geodätischer Netze
erfordert Verfahren mit folgenden
Eigenschaften:

Für normalverteilte Beobachtungen muss
die Schätzung eine kleine Varianz haben,
Messanordnungen mit Hunderten von
Koordinaten müssen auswertbar sein,
einzelne grobe Fehler müssen die Schätzung
nicht verfälschen, dies auch, wenn die
Überbestimmung lokal schwach sein sollte.

Das Verfahren, das für die schweizerische
Landesvermessung entwickelt wurde,
stützt sich auf einen M-Schätzer, der die
erwähnten Eigenschaften besitzt. Seit
seinem Einbau in der Triangulationssoftware
LTOP 1992 wird es in der Praxis mit Erfolg
eingesetzt.
Der Hauptvorteil der Robusten
Ausgleichungsverfahren ist ihre Wirtschaftlichkeit:

Sie erlaubt, die Beobachtungen voll
(oder mindestens weitgehend) automa¬

tisch zu bereinigen und führt sehr schnell

zum gewünschten Resultat. Die robuste
Statistik leistet daher einen wesentlichen
Beitrag an die Reduktion der Kosten bei
der Auswertung geodätischer Messungen.

Literatur:

[1] W. Baarda:ATestingProcedureforUse
in Geodetic Networks. Delft 1968.

[2] W.K. Bachmann: Estimation stocha¬

stique de la précision des mesures.
Vermessung, Photogrammetrie,
Kulturtechnik, Fachblatt 4-73.

[3] A. Carosio: Robuste Ausgleichung.
Vermessung, Photogrammetrie,
Kulturtechnik, 11-79.

[4] A. Carosio: Verfahren der multivariaten
Statistik zur Beurteilung der Resultate
und der Zuverlässigkeit geodätischer
Messsysteme. Mitteilung Nr. 35, IGP-
ETH, Zürich 1983.

[5] A. Carosio: Die Zuverlässigkeit in der
schweizerischen Landesvermessung.
In: Ingenieurvermessung 92. Beiträge
zum XI. Internationalen Kurs für
Ingenieurvermessung. Hrsg. von H.J.
Matthias/A. Grün. Dümmler Verlag
1992.

[6] P. Gerber: Das Durchschlagsnetz zur
Gotthard-Basislinie. Schweizerische
Bauzeitung Nr. 13, 1974.

[7] F.R. Hampel, E.M. Ronchetti, P.J.
Rousseuw, WA. Stahel: Robust Statistics,

The Approach Based on
Influence Function. Wiley and Sons, New
York 1986.

[8] P.J. Huber: Robust Estimation of a
Location Parameter. Zürich 1963.

[9] P.J. Huber: Robust Estimation. Zürich
1968.

[10] P.J. Huber: Robust Regression. Zürich
1972.

[11] P.J. Huber: Robust Statistics. Wiley and
Sons, New York 1981.

[12] G. Kampann: Robuste Deformations-
analyse mittels balancierter
Ausgleichung. AVN 1/1994.

[13] A. Marazzi: An introduction to robust
regression. Vortrag an der Universität
Zürich, 1981.

[14] F. Wicki (a): Robuste Ausgleichung
geodätischer Netze. IGP-Bericht Nr.

189, Zürich, Februar 1992.

[15] F. Wicki (b): M-Schätzer. IGP-Bericht
Nr. 190, Zürich, März 1992.

Adresse des Autors:
Prof. Dr. Alessandro Carosio
Institut für Geodäsie und
Photogrammetrie
Geo-Informationssysteme und
Fehlertheorie
ETH Hönggerberg
CH-8093 Zürich

Vermessung, Photogrammetrie, Kulturtechnik 4/95 191


	Ausgleichung geodätischer Netze mit Verfahren der robusten Statistik

