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Systémes d’information géographique et théorie des erreurs

Ausgleichung geodatischer
Netze mit Verfahren der
robusten Statistik

A. Carosio

Die modernen Methoden der Ausgleichungsrechnung beriicksichtigen, dass die
Beobachtungen nicht ganz normalverteilt sind. Ein L6sungsansatz bieten die Ver-
fahren der robusten Statistik, die gute Schatzungen liefern, auch wenn nicht alle
Beobachtungen richtig sind. Der folgende Bericht beschreibt die neuesten Ent-
wicklungen, die in der schweizerischen Praxis eingesetzt werden.

Les méthodes de compensation modernes tiennent compte du fait que les obser-
vations ne sont pas toutes distribuées normalement. Elles utilisent les méthodes
de la statistique robuste, fournissant de bons résultats, méme dans le cas ou cer-
taines observations sont entachées d’erreur. Le présent article décrit I’état actuel
de développement de ces méthodes, telles qu’elles sont utilisées en pratique en

Suisse.

| metodi moderni di compensazione tengono conto del fatto che le osservazioni
non hanno una distribuzione normale. Una possibile soluzione é data dai metodi
della statistica robusta che forniscono buoni risultati anche se certe osservazio-
ni sono errate. Questo articolo descrive lo stato degli sviluppi piu recenti di que-
sti metodi, come applicati nella pratica svizzera.

1. Einleitung

Die Feststellung, dass die Beobachtungen
fast, jedoch nicht vollst&dndig normalverteilt
sind, wird vermehrt in der Ausgleichungs-
rechnung beachtet. Wahrend man sich in
der Vergangenheit darauf beschrankt hat,
ganz allgemein geeignete Messan-
ordnungen vorzuschreiben, die die Ent-
deckung der groben Fehler erlauben, ist
man heute auf der Suche nach Alternativ-
verfahren. Mehrere Lésungsansatze sind
das Ergebnis einer regen Forschungs-
tatigkeit.

An erster Stelle findet man die Analyse der
Zuverlassigkeit, die zum Ziel hat, die Eig-
nung des vorgesehenen Messsystems
(Messanordnung und Qualitétskontrolle)
fur den Nachweis von Modellfehlern zu
Uberprifen. Die Kombination von Rich-
tungsmessungen,  Distanzmessungen,
Satellitenbeobachtungen und die Aus-
gleichung immer grésserer Netze mit den
verschiedensten Unbekannten (Lotab-
weichungen, Massstabsfaktoren usw.)
machen ein intuitives Urteil zunehmend
schwieriger und haben zur Entwicklung
der modernen numerischen Verfahren
geflhrt [1], [4].

Die zweite Entwicklungsrichtung, die Feh-
lersuche a posteriori hat als Ziel die Iden-
tifikation allfélliger grober Fehler. Nicht
befriedigende Beobachtungen werden
mittels statistischer Tests gesucht, dar-
aufhin entfernt und wenn mdglich wieder-
holt. Diese Suche basiert meistens auf
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einer Prifung der standardisierten
Verbesserungen und bezweckt, eine Rei-
he von Messungen zu erhalten, die dem
klassischen Modell (Normalverteilung)
entsprechen [6].

Die dritte Forschungsrichtung ist das The-
ma des vorliegenden Beitrages und
behandelt die Ausgleichungsverfahren,
robuste Ausgleichungen genannt, die
weniger sensibel auf grobe Fehler reagie-
ren als die Methode der kleinsten Qua-
drate. Sie liefern wirklichkeitsnahe Resul-
tate, auch wenn sich unter den Messun-
gen noch einige grobe Fehler befinden,
das heisst, wenn die Normalverteilung
nicht ganz zutrifft. Den dazu nétigen robu-
sten Schatzfunktionen haben die Statisti-
ker in letzter Zeit ihre Aufmerksamkeit
gewidmet.

Als Initiator gilt Tukey mit seiner Statisti-
ker-Forschungsgruppe in Princeton, der
das Problem populéar zu machen begann.
Indenletzten Jahrzehnten haben tGberdies
die Studien des Schweizers Peter J. Huber
zu wesentlichen Fortschritten gefihrt. Die
Verfahren der robusten Ausgleichung
haben in den letzten Jahren stark an
Bedeutung in der Geodésie gewonnen.

8l 9]

2. Das stochastische Modell
der robusten Ausgleichung

Die Hypothese der Normalverteilung flr
die Messungen ist nicht mehr eine abso-
lute Voraussetzung.

Die Messfehler werden als stochastische
Gréssen mit Verteilung:

F=(1-¢)0+cH

betrachtet, ® ist die Normalverteilung, H
die unbekannte Verteilung der groben
Fehler und ¢ die geringe Wahrschein-
lichkeit, mit der grobe Fehler auftreten. Die
Beobachtungen gelten als fast normalver-
teilt, und die angenommenen Standard-
abweichungen stimmen flr die Mehrheit
der Messwerte. Es gibt jedoch Beobach-
tungen, die dem Grundmodell nicht ent-
sprechen (grobe Fehler). lhre Verteilung
ist unbekannt.

3. Funktionale Modelle

Schatzfunktionen sind die mathemati-
schen Beziehungen zwischen den beob-
achteten Grossen L; und den gesuchten
ausgeglichenen Werten (unbekannte
Parameter, ausgeglichene Beobachtun-
gen usw.).

So zum Beispiel flr eine ausgeglichene
Beobachtung:

L =g (Ll, L, .. Ln)

Die Schatzfunktion gi wird robust sein,
wenn L; eine gute Schatzung von E(Li)
auch beinicht ganz normalverteilten Beob-
achtungen ergibt. Solche robuste Schétz-
funktionen kénnen in verschiedenen Arten
aufgebaut werden. [11] Besonders wichtig
sind die folgenden Gruppen:

a) M-Schatzer  (Maximume-Likelihood-
Typ)

b) L-Schéatzer (Linearkombinationen von
Ordnungsstatistiken)

Diese erwahnten Methoden flihren, nach
Annahme von einigen sehr allgemeinen
Bedingungen, zu asymptotisch normal-
verteilten Schéatzungen, so dass in der
Praxis, wenn der Freiheitsgrad genligend
gross und das Netz gut ist, die ausgegli-
chenen Beobachtungen als normalverteilt
betrachtet werden kénnen. Damit sind alle
Ublichen Beurteilungsverfahren verwend-
bar.

Eine wichtige Eigenschaft der robusten
Schatzfunktionen ist der Bruchpunkt, der
als quantitatives Mass fir die Robustheit
eines Schatzers verwendet wird. Dieser
gibt den grésstmdglichen Anteil an (belie-
big grossen) Ausreissern an, der in einer
Stichprobe enthalten sein darf, bevor der
Schatzer «zusammenbricht», d.h. véllig
falsche Resultate ergibt. Fur das arithme-
tische Mittel ist der Bruchpunkt 0 [7], [14].
Ein Erwartungswertschatzer mit hervorra-
genden Bruchpunkteigenschaften ist der
Median. Man kann ihn verwenden, wenn
n direkte Beobachtungen der gesuchten
Grosse vorliegen. Fir m — « strebt der
Anteil der Messungen, die beliebig falsch
sein durfen, gegen n/2. Der Median hat
also einen Bruchpunkt von 0.5.
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4. Die robuste vermitteinde
Ausgleichung nach Huber
4.1 Grundlagen

Eine erste interessante Anwendung in der
Geodéasie war die robuste vermitteinde
Ausgleichung, die mit einem von P.J.
Huber [10] vorgeschlagenen M-Schatzer
aufgebaut wurde [3].

M-Schatzer sind fir die geodatischen
Applikationen besonders geeignet, vor
allem wegen der Ahnlicheit mit der Metho-
de der kleinsten Quadrate und weil damit
auch Probleme mit vielen unbekannten
Parametern gelost werden kénnen. Es
handelt sich hierbei darum, unbekannte
Parameter und Verbesserungen (v) so zu
bestimmen, dass

> p(v)=Min

ist.

Die Kunst liegt in der geschickten Wahl der
Funktion p(v). Fir p(v) = v? erhélt man die
Schatzung nach der Methode der klein-
sten Quadrate. P. J. Huber schlagt vor, die
folgende stetige und konvexe Funktion zu
verwenden:

a) Die direkte L6sung des Minimums-
problems

In &hnlicher Art wie bei der Methode der
kleinsten Quadrate bildet man zuerst die
Zielfunktion

Ep(vi) , die minimal sein soll.

Die partiellen Ableitungen nach allen
Unbekannten missen fir die Lésung null
werden. Daraus entsteht ein Gleichungs-
system.

Fur die Schatzfunktion nach Huber muss
man beachten, dass

ap(vi)

a p(vi) ~ 2
x 0x

ist, das heisst, man kann die Ableitung fur
jede einzelne Beobachtung bestimmen
und daraus entstehen die Normalglei-
chungsanteile, die man zum Schluss
addiert.

Die meisten Beobachtungen erhalten
durch die Ausgleichung Verbesserungen
innerhalb des Intervalls (—k, k). Ihre Nor-
malgleichungsanteile sind gleich wie bei
der Methode der kleinsten Quadrate. Die

]
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wobei k ein Vielfaches der Standard-
abweichung der Messung ist. In geodati-
schen Netzen mit nicht besonders grosser
Uberbestimmung kann z.B.

k = 3-0i oder 3.5-0i gewahlt werden.
Die vorgeschlagene Schatzung ist fir k

— identisch mit derjenigen der Methode
der kleinsten Quadrate. (Abb. 1).

.- T T w—

v
|

- 0
kg k

Y
<t

1

Abb. 1: Die Zielfunktion fiir den M-
Schatzer nach Huber. Im Intervall (-k,
k) eine Parabel, ausserhalb Geraden.

4.2 Berechnungsverfahren

Es gibt mehrere numerische Methoden,
um zu den geschatzten Unbekannten zu
kommen. Alle sind iterative Verfahren.
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wenigen Beobachtungen, die hingegen
ausserhalb des Intervalls (—k, k) liegen,
missen andere Anteile erhalten, die nur
Konstanten beinhalten [3].

Da die Grosse der Verbesserungen erst
nach der Lésung des Normalgleichungs-
systems bekannt wird, muss man iterativ
nach folgendem Verfahren vorgehen:

— 1. lteration
Ausgleichung nach der Methode der
kleinsten Quadrate

— i-te Iteration
Zuteilung der Verbesserungen der da-
zugehdrigen Intervalle (—, k), (—k, k),
(k, +o)
Bildung der neuen Normalgleichungen
Lésung des Systems usw.
Wiederholen, bis alle Verbesserungen
dem richtigen Intervall zugeteilt sind.

Jede lteration enthélt die Lésung eines
Gleichungssystems. Die Rechenzeit kann
gross werden.

Die folgenden Lésungsanséatze erlauben
aber das Verfahren wesentlich zu be-
schleunigen.

b) Die Ausgleichung mit reduzierten
Gewichten

Man kann das Minimum der Zielfunktion
der robusten Ausgleichung auch anders
bestimmen. Man erhalt die gleichen Resul-
tate, wenn die Normalgleichungen mit der

Formel der Methode der kleinsten Qua-
drate, aber mit modifizierten Gewichten
gebildet werden. Die Beobachtungen, die
eine Verbesserung ausserhalb des Inter-
valls (-k, k) hatten, erhalten ein kleine-
res Gewicht (d.h. eine gréssere Standard-
abweichung).

Die modifizierte Standardabweichung ist
so zuwahlen, dass nach der Ausgleichung
die Verbesserungen dieser Beobachtun-
gen die Bedingung

[vi|=k

genau erfiillen. Es ist zu bemerken, dass
eine grossere Standardabweichung eine
Vergrésserung des Grenzwertes k be-
wirkt.

c) Ausgleichung mit angepassten
Beobachtungen

Die robuste Ausgleichung ergibt auch die
gleichen Unbekannten, wenn, anstatt die
Normalgleichungen zu verandern, die
Beobachtungen derart modifiziert werden,
dass sie nach der Ausgleichung die Bedin-

gung
[vil=k

genau erflillen, wenn sonst ihre Verbes-
serungen ausserhalb des Intervalls (—k, k)
fallen wirden.

Diese letzte Variante ist besonders inter-
essant, da bei nicht zu schlechten
Naherungskoordinaten nur einmal die
Matrixinversion berechnet werden muss.

5. Modernere funktionale
Modelle

5.1 Das Verfahren der
schweizerischen Landesvermessung

Das bisher geschilderte Verfahren von P.
Huber begrenzt den Einfluss der Ver-
besserungen.

Die Zielfunktion (auch Verlustfunktion
genannt) der Methode der kleinsten Qua-
drate

E pv’ =min
wird ersetzt durch
2 pp(v) = min

In beiden Fallen erhalt man die Losung
einer vermittelnden Ausgleichung mit den
folgenden Bedingungen

n
izl piaijw (vi) =0 j=1,...u

Yy (v) nennt man die Einflussfunktion der
Verbesserungen. Sie ist die Ableitung der
Zielfunktion.

Y V)=p"(V)
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Der Schatzer nach Huber hat die folgen-
de Ziel- und Einflussfunktion (Abb. 2).
Wenn eine Verbesserung die Grosse k =
¢ - o] erreicht hat, bleibt ihr Einfluss kon-
stant.

-k +k v

Abb. 2: Zielfunktion (oben) und Ein-
flussfunktion (unten) fiir den Schéatzer
nach P. Huber.

In geodatischen Netzen ist die Uberbe-
stimmung nicht sehr gross und man weiss,
dass bei schwacher Uberbestimmung
bereits kleine Verbesserungen gefahrlich
sein kénnen. Es wére daher vorteilhaft,
wenn die Grenze der Einflussfunktion von
der Standardabweichung der Verbesse-
rung abhangig ware, damit auch bei gerin-
ger Uberbestimmung der Einfluss eines
Ausreissers klein gehalten wird.

Zu diesem Zweck schlagt F. Wicki [15] vor,
die Zielfunktion von Huber weiter zu ver-
wenden, die Grenze k aber zu modifizie-
ren, damit der Einfluss der standardisier-
ten Verbesserung (anstatt der Verbesse-
rung) begrenzt wird. Die folgende Grenze
k wird verwendet:

k=c-|ovil
mit o, Standardabweichung der Verbes-

serung und c = konstant (z.B. 2.5 oder 3.0)
(Abb. 3).

b p

|
I I
|

co, v

Abb. 3: Modifizierte Zielfunktion. Das
mittlere Intervall ist von oy, abhéangig.

190

Dieses Verfahren, das neben der Grésse
der Verbesserung auch die geodatische
Messanordnung berticksichtigt, hat sich in
der Praxis bewahrt und wird in der schwei-
zerischen Landesvermessung eingesetzt.
[14]

5.2 Andere moderne Verfahren

In der Literatur werden die robusten Schat-
zer vor allem bei Regressionsproblemen
angewandt. Daraus ist auch die Termino-
logie entstanden. Moderne Verfahren wer-
den daher oft fir diese Anwendung
beschrieben.

Die folgenden Beispiele zeigen die Ent-
wicklung von robusten M-Schétzern [7].

a) Die Huber-Schétzer

Die robuste Ausgleichung nach Huber
begrenzt den Einfluss der Verbesserun-
gen (Abb. 4). Stark abweichende Beob-
achtungen (Y) werden bis zum gestrichel-
ten Streifen verschoben.

Abb. 4: Eine Regressionsgerade nach
Huber mit dem maximalen Einflussbe-
reich der Verbesserungen.

Die Lésung des Gleichungssystems

v ()5

ist die Schatzung der Regressionspara-
meter, die in v; durch die Verbesserungs-
gleichung enthalten sind.

X ist der Vektor der Koeffizienten der i-
ten Verbesserungsgleichung (in der Ebe-
ne: 1, xj).

Beobachtungen mit grossen x;-Werten
(Hebelarmpunkte) beeinflussen die Aus-
gleichungsresultate stark .

b) Die Schéatzer nach Mallows

Um das zu vermeiden, hat Mallows [7]
vorgeschlagen, die Beobachtungen mit
einem zusétzlichen Gewicht zu versehen,
in welchem die «Distanz» vom Schwer-
punkt der Beobachtungen bericksichtigt
wird. Die Koeffizienten der Regres-
sionsgeraden werden mit dem folgenden
Gleichungssystem berechnet:

Do

das Zusatzgewicht w; = min (1, b/d;) ist
Funktion von d; (robuste Mahalanobis-
Distanz zwischen X; und Mittelpunkt der
Stichprobe).

Damit werden alle Beobachtungen, die
aussergewo6hnlich entfernt vom Mittel-
punkt der anderen Messungen sind, in
ihrer Wirkung begrenzt (Abb. 5).

Abb. 5: Eine Regressionsberechnung
nach Mallows begrenzt den Einfluss
der entfernten Punkte.

c) Der Schatzer nach Schweppe

Eine Alternative, um die Wirkung der
Hebelarmpunkte (leverage points) zu
reduzieren, wird von Schweppe vorge-
schlagen [7]. Der Einfluss der Verbesse-
rungen wird in Funktion der Grdsse der
Verbesserung und der Position der Beob-
achtung auf der X-Achse (A-Matrix)
gesteuert (Abb. 6).

Abb. 6: In einer Regressionsberech-
nung nach Schweppe wird der Einfluss
der Verbesserung und der Entfernung
beriicksichtigt.

Schweppe berechnet die Gerade mit dem
Gleichungsystem:

s, (&) % =9
i 1

Die Einflussfunktion v,y ist von den zu-
satzlichen Gewichten w; abhangig, die
den Einfluss der Verbesserungen bei gros-
ser Entfernung reduzieren.

Wahrend bei der Methode von Huber eine
falsche Beobachtung mit einer stark
abweichenden X-Koordinate zu einer
falschen Regressionsgeraden fiihrt, sind
die Methoden von Mallows und Schwep-
pe auch in diesem Fall robust.

Mensuration, Photogrammeétrie, Génie rural 4/95
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Das Modell der schweizerischen Landes-
vermessung [15] ist ein Spezialfall der
robusten Regression nach Schweppe.

d) Die balancierte Ausgleichung nach
Kampmann

G. Kampmann [12] schlagt vor, zuerst die
Konfiguration zu balancieren, indem man
neue Gewichte bestimmt, die alle Beob-
achtungen zur gleichen Teilredundanz
fuhren. Dann wird ein robustes Aus-
gleichungsverfahren (z.B. L1-Norm) ein-
gesetzt. Man erkennt hier ebenfalls eine
grosse Ahnlichkeit mit dem Verfahren
nach Schweppe.

6. Robuste
Ausgleichungsverfahren und
Zuverlassigkeit

Robuste Ausgleichungsmodelle nehmen
von Anfang an in Kauf, dass die Beob-
achtungen nicht genau normalverteilt sind
und dass grobe Fehler oder sonst stark
abweichende Messwerte vorhanden sein
kénnen. Das Ausgleichungsmodell erfor-
dert im Prinzip keine besondere Analyse
a posteriori der Beobachtungen.

Die Definition der Zuverlassigkeit, die man
fir die gewdhnliche Ausgleichung nach
der Methode der kleinsten Quadrate ver-
wendet [1], stitzt sich auf die Wahr-
scheinlichkeit, mit welcher allfallige grobe
Fehler gefunden werden. Da bei robusten
Verfahren keine groben Fehler gesucht
werden, kann keine Wahrscheinlichkeit fir
das Finden berechnet werden. Die her-
kémmliche Definition der Zuverlassigkeit
ist daher nicht mehr anwendbar und der
Begriff der inneren Zuverlassigkeit hat kei-
ne Bedeutung.

Trotzdem besteht eine Beziehung zwi-
schen allfdlligen groben Fehlern und
geschétzten Parametern (Koordinaten
usw.). Es ist interessant zu wissen, wie
gross die Verfalschung der Koordinaten
sein kann, wenn eine Messung grob falsch
ist. [5]

Der Einfluss eines unendlich grossen
Messfehlers Aj (Aj— «) auf die Koordi-
naten und anderen Parameter kann nach
der folgenden Methode berechnet wer-
den.

Ein unendlich grosser Fehler hat einen
Einfluss wie eine Beobachtung, fur welche

NEE

ist.

Man ist so in der Lage, fir jede Beobach-
tung den kleinsten groben Fehler Vi;
(reduzierter grober Fehler) zu bestimmen,
der sich wie ein unendlich grosser Fehler
in einer Ausgleichung ohne zufélligen Feh-
ler auswirkt.

Man kann also fur jede Beobachtung den
Einfluss eines unendlich grossen Fehlers
auf die Erwartungswerte der in der Aus-
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gleichung berechneten oder spéter her-
geleiteten Grossen berechnen.

Diesen Einfluss verwendet man in &hnli-
cher Art wie bei der Ausgleichung nach der
Methode der kleinsten Quadrate, um Indi-
katoren der dusseren Zuverlassigkeit (VX,
VY) fir die Koordinaten zu definieren.
Ergebnisse VX, VY bei der robusten
Berechnung wéaren mit den entsprechen-
den Indikatoren der Methode der kleinsten
Quadrate nur vergleichbar, wenn fir die
Ubliche Ausgleichung das Risiko f =
50% gewahlt wird und man damit die
Verteilung der zufalligen Messfehler aus-
schaltet.

Um auch bei den Ublichen Risikogrenzen
(B = 5%, 1% usw.) vergleichbare VX, VY
zu erhalten, muss man auch im robusten
Modell den Einfluss der zufélligen Fehler
berlicksichtigen. Dies kann man mit einer
empirisch festgelegten Vergrésserung
des Einflusses eines unendlich grossen
Fehlers auf die Ausgleichung erzielen. Der
vergrosserte grobe Fehler, mit welchem
man die Wirkung eines unendlichen Feh-
lers berechnet, ist:

6*
* ) 0vi
Vli = zi

Er ist vom Verschiebungsfaktor

*
s} =c+T,

abhéangig.

t,, Wwird so bestimmt, dass die Verschie-
bung & des Erwartungswertes der stan-
dardisierten Verbesserung w; bei der Me-
thode der kleinsten Quadrate gleich dem
Verschiebungsfaktor bei der entsprechen-

den robusten Ausgleichung wird [14].

7. Schlussbemerkungen

Es gibt eine unbeschrankte Anzahl robu-
ster Schatzverfahren, die flir Anwendun-
gen in der Geodasie zur Auswahl stehen.
Die Ausgleichung geodatischer Netze
erfordert Verfahren mit folgenden Eigen-
schaften:

Fir normalverteilte Beobachtungen muss
die Schatzung eine kleine Varianz haben,
Messanordnungen mit Hunderten von
Koordinaten miissen auswertbar sein, ein-
zelne grobe Fehler miissen die Schatzung
nicht verfalschen, dies auch, wenn die
Uberbestimmung lokal schwach sein soll-
te.

Das Verfahren, das fiir die schweizerische
Landesvermessung entwickelt wurde,
stutzt sich auf einen M-Schatzer, der die
erwahnten Eigenschaften besitzt. Seit sei-
nem Einbau in der Triangulationssoftware
LTOP 1992 wird es in der Praxis mit Erfolg
eingesetzt.

Der Hauptvorteil der Robusten Ausglei-
chungsverfahren ist ihre Wirtschaftlich-
keit: Sie erlaubt, die Beobachtungen voll
(oder mindestens weitgehend) automa-

tisch zu bereinigen und fiihrt sehr schnell
zum gewtlnschten Resultat. Die robuste
Statistik leistet daher einen wesentlichen
Beitrag an die Reduktion der Kosten bei
der Auswertung geodatischer Messun-
gen.
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