Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 92 (1994)

Heft: 10

Artikel: Antiquierte Normen behindern Einsatz von Recycling-Baustoffen im

Strassenbau

Autor: Hirt, R.

DOI: https://doi.org/10.5169/seals-235094

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Antiquierte Normen behindern Einsatz von Recycling-Baustoffen im Strassenbau

R. Hirl

Eine umfangreiche Literatur und viele Versuche mit Recycling-Materialien zeigen, dass diese in bodenmechanischer Hinsicht den konventionellen Kiessandmaterialien als Strassenbaustoffe ebenbürtig oder überlegen sind. Ihr Tragfähigkeitspotential liegt im Bereich hochverdichteter gebrochener Materialien mit Werten, die bis zu 40% über denjenigen von hochwertigem Rundkies liegen. Die heute angewandten Produktenormen orientieren sich jedoch weitgehend an den Kiesnormen, liefern aber keine schlüssigen Hinweise auf das Verhalten der Materialien. Die Tragfähigkeitseigenschaften werden damit nur ungenügend beschrieben und deshalb bei der Bemessung des Strassenoberbaus kaum berücksichtigt.

Il est démontré dans une vaste littérature et par de nombreux essais que les matériaux recyclés utilisés pour la construction de routes sont équivalents voire supérieurs aux graviers conventionnels en ce qui concerne leurs propriétés mécaniques du sol. Leur potentiel de portance atteint celui de matériaux concassés hautement compactés dont les valeurs dépassent jusqu'à 40 % celles de graves rondes de haute qualité. Les normes de produits actuellement appliquées tiennent cependant compte dans une large mesure des normes concernant les graviers mais elles ne fournissent aucune indication concluante quant au comportement des matériaux. Les propriétés de portance ne sont ainsi qu'insuffisamment décrites et de ce fait guère prises en compte lors du dimensionnement de la superstructure des routes.

Kies und Sand, Steine und Erden gehören weltweit zu den wichtigsten mineralischen Rohstoffen mit immensen Fördermengen. Das Postulat der nachhaltigen Entwicklung fordert jedoch den sparsamen Umgang mit diesen natürlichen Ressourcen. Das Baugewerbe hat diesem Umstand schon seit geraumer Zeit Rechnung getragen und die Voraussetzungen für eine zweckmässige Kreislaufwirtschaft geschaffen. Hoch- und Strassenbau sind dabei auf der einen Seite die Versursacher der Bauabfälle, andererseits aber auch die potentiellen Abnehmer der daraus aufbereiteten Sekundärbaustoffe.

So wird im Strassenbau neuem bituminösem Belagsgut nach Möglichkeit aufbereitetes Asphaltgranulat beigemischt. Auf schwach belasteten Strassen wird Asphaltgranulat ohne weitere Bindemittelzugabe mit Erfolg auch als Deckschicht kalt eingebaut. Die einfachste und verbreitetste Anwendung ist jedoch der Einsatz der verschiedenen rezyklierten Granulate in nicht gebundenen und zementgebundenen Fundations- und Tragschichten von Strassen, Wegen und Plätzen. In vielen Ländern besteht dazu

ein auf den Kiesnormen basierendes Instrumentarium für die Qualitätsprüfung und die Gütesicherung. Eine zunehmende Zahl von Forschungsarbeiten befasst sich mit den Eigenschaften und dem Verhalten der Sekundärbaustoffe. Die Resultate werden aber nur zögernd bei der Normierung und in der Baupraxis berücksichtigt.

Überholte Produkte- und Ausführungsnormen

Ein Strassenoberbau hat seine Qualität in bezug auf Dauerhaftigkeit, Stabilität, Nutzungssicherheit und Umweltverträglichkeit unter Beweis zu stellen. Da das Erreichen dieser Ziele sich nicht unmittelbar nachweisen lässt, wird die Qualität des Produktes «Strasse» durch geeignete Massnahmen im Bereich der Baustoffe, des Einbaus sowie der materialgerechten Bemessung des gesamten Strassenaufbaus gesichert (Abb. 1). Für die Herstellung von Fundations- oder Tragschichten aus Kies und gebrochenen Felsmaterialien bestehen daher Normenwerke, welche die Eigenschaften der Einzelkörner und Korngemische in der Produktenorm und den Einbau dieser Materialien in der Ausführungsnorm regeln. Diese Spezifikationen basieren in allen Ländern auf ähnlichen Grundlagen. Es war zudem naheliegend, die Prüf- und Einbauvorschriften für Kiesmaterialien und die entsprechenden Bemessungsnormen auch auf die Recycling-Materialien anzuwenden

Die Versuchstechnik und die Normen für Kiesmaterialien basieren allerdings auf Erkenntnissen, die über 50jährig sind und weder dem Baustoff Kies noch den granulierten Recycling-Baustoffen gerecht werden. Bei neueren Bemessungskonzepten liegt die Zielsetzung in der Erreichung einer hinreichenden Gebrauchsfähigkeit des Bauwerks. Darunter versteht man das qualitativ einwandfreie Verhalten während der vorgesehenen Nutzungsdauer (Performance-Konzept). Wegen vermeintlicher Unerschöpflichkeit und relativ niedriger Kosten der mineralischen Rohstoffe bestand jedoch keine ökonomische Notwendigkeit die entsprechenden Normen zu überprüfen.

Fehlender Praxisbezug der Produktenormen

Die im Schichtsystem des Strassenbaus auftretenden mechanischen Beanspruchungen durch die Verdichtung, den Verkehr und die klimatischen Einwirkungen sind grundsätzlich massgebend für die geforderten Eigenschaften granulierter Materialien. Bei den Kiesnormen und den daraus abgeleiteten Vorschriften für die Recycling-Materialien handelt es sich aber um Produktenormen, welche die Materialqualität mehr oder weniger unabhängig vom Verwendungszweck «am Werktor» festlegen. Sie sind daher auf ein ganzes Spektrum möglicher Anwendungen und nicht auf die zu erwartende Beanspruchung im Strassenoberbau ausgerichtet. Dies führt tendenziell zu hohen Qualitätsansprüchen, die vielfach nicht notwendig sind und in den Bemessungsnormen nicht oder nur ungenügend berücksichtigt wer-

Luxusmaterialien für den Strassenbau?

Die Normen der meisten Länder sind bezüglich des Kornverteilungsbereichs und des Gehalts an Feinanteilen der granulierten Strassenbaumaterialien sehr ähnlich und restriktiv, so dass nur relativ luxuriöse Materialien die Anforderungen für Tragschichtmaterialien erfüllen. Technisch stellen sich keine Probleme, die Recycling-Materialien derart aufzubereiten, dass sie in den vorgeschriebenen Bereich zu liegen kommen. Die Kenndaten der normierten Test-Materialien der American Association of State Highway and Transportation Officials (AASHTO) zeigen allerdings, dass die Kornverteilung allein kein aussagekräftiges Mass für die Tragfähigkeitseigenschaften der Materialien darstellt. Obwohl sich die AASHTO-

Referat anlässlich des Internationalen Baustoff-Recycling-Forums in Mayrhofen (A) vom April 1994.

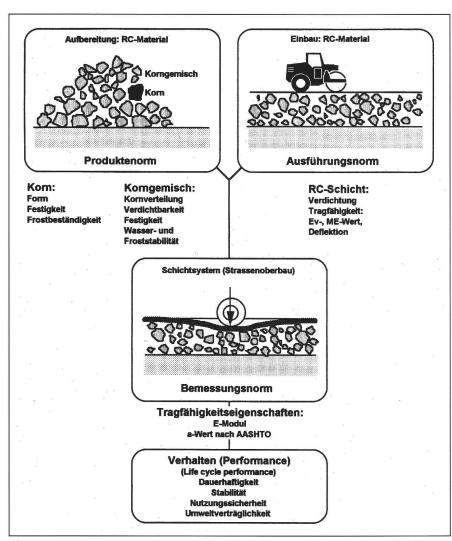


Abb. 1: Qualitätssicherung und Verhalten (Performance-Konzept).

Test-Materialien bezüglich Kornverteilung und Feinsteingehalt nur wenig unterscheiden, weisen sie ein signifikant unterschiedliches Tragfähigkeitsverhalten auf. Der Vorteil der Kornverteilungskurve liegt darin, dass sie leicht bestimmt und überprüft werden kann. Es stellt sich allerdings die Frage, ob damit auch die wesentlichen Aussagen gewonnen werden können.

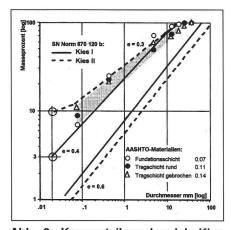


Abb. 2: Kornverteilungsbereich Kies und AASHTO-Test-Materialien.

Fragwürdige Übertragung von Laboranalysen

Hinlänglich bekannt sind die Schwierigkeiten, welche sich bei der Bestimmung der Verdichtungseigenschaften bieten. Es ist zwar möglich, die entsprechenden Eigenschaften (optimales Raumgewicht, Wassergehalt, Auswirkungen einer veränderten Verdichtungsenergie) im Labor zu bestimmen, deren Umrechnung auf die Gesamtfraktion ist hingegen problembehaftet. Es ist leicht einzusehen, dass dieses Verfahren angesichts der unterschiedlichen Rohdichte und Porosität der Körner bei Recycling-Materialien noch problematischer ausfällt als bei Kies. Ein im Labor ermitteltes Raumgewicht ist deshalb als Vorschrift für eine Ausführungsnorm ungeeignet.

Demgegenüber kann das potentielle Volumen- und Festigkeitsverhalten eines granulierten Materials bei Wasser- und Frosteinwirkung durch die CBR-Versuchstechnik im Labor recht gut (Abb. 3) beschrieben werden. Dies gilt insbesondere dann, wenn Vergleichswerte für bekannte Materialien (z.B. AASHTO-Test-Materialien,

örtliche Kiese) zur Verfügung stehen. Die CBR-Werte liefern auch Hinweise auf das Tragfähigkeitspotential (a-Werte) eines Materials. Mit der CBR-Versuchstechnik kann zudem nachgewiesen werden, dass die Festigkeits- und Stabilitätseigenschaften granulierter Materialien deutlich vom erreichten Verdichtungsgrad abhängen, was durch Feldversuche bestätigt wird. Hohe CBR-Werte – im Bereich von 100% und mehr – sind mit allen Recycling-Materialien auch nach Wasserlagerung und Befrostung meist problemlos zu erreichen.

Unterbewertete Recyclingmaterialien

In verschiedenen Ausführungsnormen (Proctor, Proctor modified) wird der Verdichtungsgrad vorgeschrieben. Trotz einiger Mängel in der Messtechnik (Raumgewichtsbestimmung, Umrechnung von Laborwerten auf die Gesamtfraktion) ist unbestritten, dass eine hohe Verdichtung die grundlegende Voraussetzung darstellt, um die Tragfähigkeit granulierter Materialien optimal zu nutzen. Dies gilt speziell auch für die verdichtungsunwilligen gebrochenen Recycling-Materialien. Die Hilflosigkeit bei der Raumgewichtsbestimmung hat dazu geführt, dass anstelle des Raumgewichts die Zusammendrückbarkeit bzw. die Tragfähigkeit einer verdichteten Schicht gemessen wird. Für die verbreiteten Plattenversuche schreiben viele Normen Minimalwerte vor (ME-, EV1-, EV2-Werte), die bei guter Verdich-

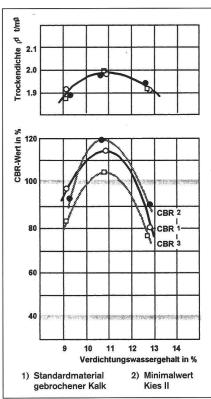


Abb. 3: CBR-Versuch Mischabbruch.

Partie rédactionnelle

Baustoff	a -Wert	Tragfähigkeit pro 1 cm	Autor
Kiese Kies I rund Kies II Kies gebrochen	0.11 0.07 0.14	1 0.6 1.3	AASHTO (1986)
Recycling-Baustoffe Müllverbrennungsschlacke Stahlwerkschlacke Asphalt-Granulat Mischabbruch-Granulat Beton-Granulat Recycling-Zementstabi	0.10 0.11 0.11 0.14 0.17 0.25 - 0.30	0.9 1 1 1.2 1.5 2.3 - 2.7	Hirt (1993)

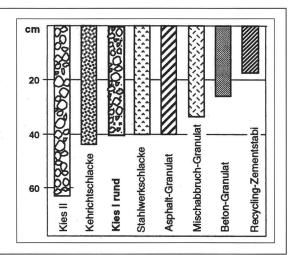


Abb. 4: Tragfähigkeitswerte nach AASHTO.

tung mit den Recycling-Materialien problemlos erreicht werden können.

Die mögliche Verkehrsbelastung z.B. für eine Schichtdicke von 50 cm variiert je nach der Tragfähigkeit des granulierten Baustoffs (a-Wert) um den Faktor 100-1000 (Abb. 5). Die Bemessungsrichtlinien der meisten Länder, welche auf Norm- oder Regelaufbauten basieren, werden jedoch diesem unterschiedlichen Tragfähigkeitsvermögen der Recycling-Materialien und der Kiese nicht gerecht. Bei einer materialgerechten Bemessung des Strassenoberbaus müssen die Recycling-Materialien entsprechend ihrer relativen Tragfähigkeit (Abb. 4) eingesetzt werden, welche bei guter Verdichtung im Bereich der gebrochenen Felsmaterialien oder darüber liegt. Dies führte zu Kosteneinsparungen durch kleinere Erdabträge und geringeren Materialverbrauch.

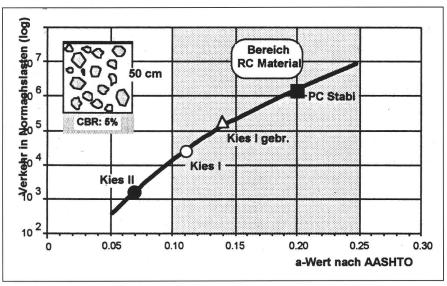


Abb. 5: Tragfähigkeitswerte und mögliche Verkehrsbelastung.

Forschung gefordert

Die Analyse zeigt, dass die heute verwendeten Normen für den Bau von Strassenoberbauten nur begrenzt zielkonform sind. Wegen vermeintlicher Unerschöpflichkeit und relativ niedriger Kosten der mineralischen Rohstoffe wurden nur wenige Forschungsarbeiten über das mechanische Verhalten von Kies ausgeführt, so dass eine eher antiquierte Versuchs- und Prüftechnik zur Verfügung steht, was sich auch im gesamten Bereich der Prüfung der

Recycling-Baustoffe niederschlägt. Die Einbettung der Produktevorschriften und der Ausführungs- und Bemessungsnormen in ein kohärentes Performance-Konzept ist nur ansatzweise vorhanden. Hochschulen und Forschungsinstitute wären diesbezüglich noch vermehrt gefordert. Trotz des immensen Verbrauchs an mineralischen Rohstoffen fehlt immer noch eine einfache und doch ausreichend genaue Methodik, um das mechanische Verhalten

körniger Materialien zu bestimmen und zu beschreiben. Im heutigen Zeitpunkt gilt somit für Kiese und Recycling-Materialien die Feststellung, dass man misst, was man kann und nicht, was man soll!

Adresse des Verfassers: Prof. Dr. Ing. Richard Hirt Professur für forstliches Ingenieurwesen ETH Zürich CH-8092 Zürich