Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 89 (1991)

Heft: 3

Artikel: Langfristiger Lawinenschutz in der Schweiz: Grundlagen und

Methoden

Autor: Burkard, A.

DOI: https://doi.org/10.5169/seals-234574

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Langfristiger Lawinenschutz in der Schweiz: Grundlagen und Methoden

A. Burkard

Wer mit Bauen im Gebirge zu tun hat, ist oft mit dem Lawinengeschehen konfrontiert. Lawinengefahren wirken sich auch auf die Möglichkeiten der Bodennutzung aus. Zum einen stellen sie Einschränkungen dar, zum anderen erfordern sie die notwendigen Massnahmen, um eine bestimmte Nutzung sicherzustellen. Kenntnisse über die Gebiete, wo Lawinengefahr herrscht, sowie über die Möglichkeiten, dieser Gefahr angemessen zu begegnen, sind bei der Erfüllung planerischer Aufgaben unerlässlich. Die Lawinengefahr im Sinne dieses Beitrags ist die Ursache für das langfristige objektive Lawinenrisiko. Es wird aufgezeigt, wie es erfasst und berücksichtigt wird und durch welche permanenten Schutzmassnahmen baulicher und organisatorischer Art es beeinflusst werden kann.

Celui qui construit en montagne est souvent confronté aux questions soulevées par les avalanches. Le danger d'avalanche a des incidences sur l'utilisation possible du sol. Il implique d'une part des restrictions importantes et exige de l'autre des mesures appropriées en vue d'assurer une utilisation déterminée du sol. Pour accomplir des tâches d'aménagement, il est indispensable de connaître les régions exposées au danger d'avalanche ainsi que les possibilités de prendre convenablement ce dernier en considération. Le danger d'avalanche au sens de cette contribution est la cause du risque objectif à long terme. L'auteur montre comment ce risque fait l'objet de relevés et est pris en considération et par quelles mesures de sécurité permanentes tant au plan de la construction qu'à celui de l'organisation il peut être influencé.

teilweise noch sind. Diese rasche Ausdehnung der Bergdörfer und der damit verbundene Ausbau der Verkehrswege durch das Gebirge stellten die Verantwortlichen vor schwerwiegende Probleme, ist es doch Sache der Gemeinden, für die Sicherheit ihrer Einwohner und Gäste – die sich im allgemeinen um die Lawinengefahr wenig kümmern – zu sorgen und Sache der Kantone, das Nötige für die Lawinensicherheit ihres Strassennetzes zu tun.

Die prekäre Lage war in der Schweiz erstmals offensichtlich geworden, als das Alpengebiet im Januar und Februar 1951 von zwei Lawinenkatastrophen betroffen wurde. Diese Ereignisse waren Zündfunke für die ersten Richtlinien des Bundes von 1952 [1]. In diesen wird verlangt, dass sich die Kantone und Gemeinden um die Lawinenzonung kümmern. Indes waren die Reaktionen in den meisten Gebirgskantonen enttäuschend [2]. Darum machte der Bund 1965 [3] seinen Einfluss im eidgenössischen Forstrecht geltend. Gemäss Artikel 32 sind die Kantone «dafür besorgt, dass in lawinengefährdeten Gebieten keine Gebäude errichtet werden. Zu diesem Zweck sollen Lawinenzonenpläne aufgestellt werden. An Massnahmen zum Schutz von Gebäuden leistet der Bund keine Beiträge, wenn bei der Wahl der Bauplätze keine Rücksicht auf Zonenplan

1. Einleitung

In seinem Buch «Die Lawinen der Schweizeralpen» schrieb der erste eidgenössische Oberforstinspektor Johann Coaz (1822–1918) im Jahre 1881:

«Noch in den ersten Jahrzehnten unseres Jahrhunderts waren die Alpen der Schweiz und ganz besonders das eigentliche Hochgebirge wenig besucht, sehr spärlich erforscht und dabei noch ziemlich unbekannt, beinahe eine terra incognita unmittelbar aus den Ländern emporsteigend, die zu den bevölkertsten und kultiviertesten der Erde gehören. Seither ist dies allerdings anders geworden und heutigen Tags findet jeden Sommer eine kleine Völkerwanderung nach den Schweizeralpen statt, und viele Besucher dringen in die entlegensten Gebiete derselben in Verfolgung der verschiedensten Zwecke vor.»

Coaz erlebte damals den Beginn der Eroberung unserer Alpen. Das Ausmass dieser heute noch nicht abgeschlossenen Entwicklung – mittlerweilen findet die Völkerwanderung auch im Winter statt – konnte er nicht einmal ahnen. Aus kleinen, oft zwischen Lawinenzügen eingeklemmten Bergdörfern sind mondäne Kurorte entstanden. Der damals landwirtschaftlich genutzte Boden wurde zum dringend benötigten Bauland aufgewertet. Bodenspekulation und planlose Überbauung machten sich breit. Es war denn unvermeidlich, dass damit Gebiete beansprucht wurden, die durch Lawinen gefährdet waren und es

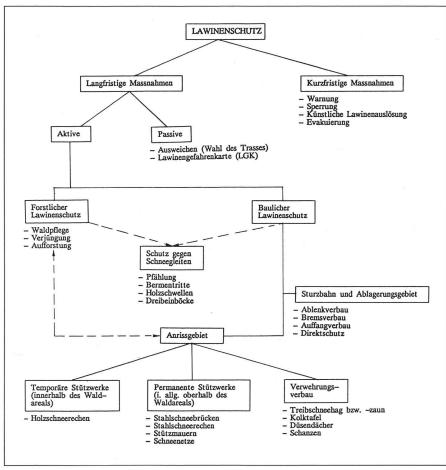


Abb. 2: Mögliche Schutzmassnahmen gegen Lawinen.

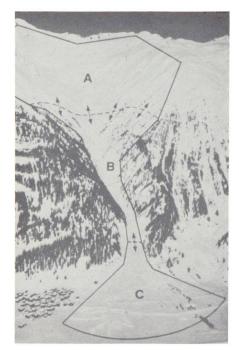


Abb. 1: Typischer Lawinenzug im Goms (Geschinen, VS). Anrissgebiet (A), Sturzbahn (B) und Ablagerungsgebiet (C) (Foto SLF).

oder Lawinenkataster genommen wird, oder wo solche fehlen, Warnungen vor Bauvorhaben missachtet werden». Es brauchte aber eine weitere Lawinenkatastrophe, nämlich jene vom Januar 1968, damit der Zündfunke sich zum Feuer entwickelte und systematisch Lawinengefahrenkarten (LGK) ausgearbeitet wurden. Die Lawinengefahrenkarte, die heute im Nutzungsplan integriert ist, bildet - wie übrigens alle Gefahrenzonen - Fixpunkte für die Raumplanung. Wie wir sehen werden, stellt sie ein zentrales Instrument im Lawinenschutz dar. Sie soll einerseits dazu beitragen, dass bei raumwirksamen Tätigkeiten (d.h. bei der Erarbeitung und Genehmigung von Richt- und Nutzungsplänen, Planung und Errichtung von Bauten und Anlagen jeder Art, Erteilung von Bewilligungen und Konzessionen, Gewährung von Subventionen) von Bund, Kantonen und Gemeinden der Lawinengefahr Rechnung getragen wird. Für bereits bestehende gefährdete Bauten und Verkehrswege dient die LGK als Grundlage für bauliche Schutzmassnahmen und für kurzfristige Massnahmen von Lawinendiensten. Andererseits ist sie Spiegelbild von evtl. realisierten langfristigen Schutzmassnahmen im Anrissgebiet, in der Sturzbahn oder im Ablagerungsgebiet (Abb.1) ist sie doch geänderten Verhältnissen anzupassen, sei dies bei neu erkannten oder neu aufgetretenen Gefahren oder bei Gefahrenverminderung (z.B. Stützverbau im Anrissgebiet). Die LGK bildet also eine wichtige technische Grundlage im langfristigen wie auch kurzfristigen Lawinenschutz (Abb. 2).

Die langfristigen Schutzmassnahmen berücksichtigen extreme Lawinensituationen innerhalb sehr langer Zeiträume (bis zu 300 Jahren). Dabei ist der Grad der potentiellen Gefährdung eine zeitunabhängige Grösse. Dagegen ist die aktuelle Lawinengefahr stark zeitabhängig. Sie bezieht sich nur auf einen kurzen Zeitabschnitt (einige Tage), wobei meistens nicht das ganze potentielle Gefahrengebiet betroffen ist. In der Meteorologie besteht eine Parallele dazu mit Wetter und Klima. Als Klima werden langiährige Mittelwerte und Extremwerte von meteorologischen Parametern bezeichnet, während beim aktuellen Wetter diese Parameter von den Mittelwerten wesentlich abweichen können.

Das Erkennen und Erfassen der Lawinengefahr und der lawinengefährdeten Objekte und Menschen sowie die Beurteilung aller möglichen Schutzmassnahmen sind für die Entwicklung und Sicherheit einer Bergregion von entscheidender Bedeutung. Dies kann durch eine Risikoanalyse systematisch und nachvollziehbar dargestellt werden. Davon soll in den nächsten Abschnitten die Rede sein.

2. Von der Lawinengefahr zum Lawinenrisiko

Für den Standort eines Hauses (a) bedeutet die Lawinengefahr etwas anderes als für den Benützer von Verkehrswegen (b) oder für den Skitourenfahrer (c). Bei herrschender Lawinengefahr besteht das Risiko, das als Wahrscheinlichkeit des Auftretens eines unerwünschten Ereignisses (z.B. die Zerstörung eines Gebäudes, die Erfassung eines Autofahrers oder Skifahrers) definiert werden kann. Genauer betrachtet, lässt sich für eine bestimmte Situation (a), (b), (c) das Lawinenrisiko als Produkt dreier unabhängiger Wahrschein-

lichkeiten darstellen. Es sind dies die Eintretenswahrscheinlichkeit (oder Lawinengefahr!), die Schadenwahrscheinlichkeit und das Schadenausmass von Lawinen. Diese drei Wahrscheinlichkeiten seien jeweils Werte zwischen Null und Eins. Null würde bedeuten, dass während eines vorgegebenen Zeitintervalls kein Unfall bzw. keine Zerstörung zu erwarten sei und Eins, dass mit Sicherheit ein Lawinenunglück eintritt. Ziel muss nun sein, das Lawinenrisiko genügend klein zu halten. Dies kann grundsätzlich auf verschiedene Weise erreicht werden.

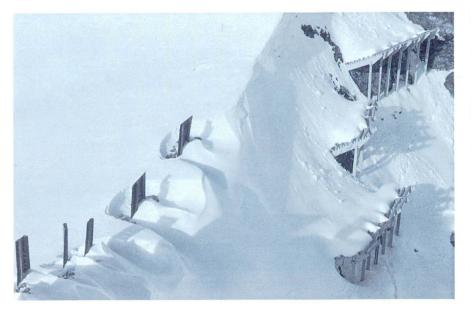
2.1 Die Lawinengefahr

Mit der Lawinengefahr oder Eintretenswahrscheinlichkeit wird ausgedrückt, an welchen zu schützenden Stellen mit welcher Wahrscheinlichkeit Lawinenniedergänge zu erwarten sind. Die gefährdete bzw. die zu sichernde Zone kann den ganzen Lawinenzug oder auch nur Teile davon umfassen (Abb. 1). Als Mass für die Gefährdung werden die Häufigkeit und die Intensität (Lawinendruck) einer Lawine benützt [4]. Die Lawinengefahr ist wesentlich durch die Stabilität der Schneedecke und die Lawinengrösse bestimmt.

Die Lawinengefahr kann verringert werden, indem die Eintretenswahrscheinlichkeit in der zu sichernden Zone verkleinert wird. Dies kann zum einen durch Ablenkwerke (Abb. 3) erreicht werden, welche die natürlichen Lawinenbahnen verändern sowie durch Brems- und Auffangwerke (Abb. 4) in Ablagerungsgebieten, welche die Ablagerungsstrecke verkürzen. Zum anderen kann das Entstehen von Lawinen verhindert werden, indem die Stabilität der Schneedecke in Anrissgebieten durch permanente oder temporäre Stützverbauungen künstlich erhöht wird (Abb. 5) und – wo möglich – unterstützt durch einen Ver-

Abb. 3: Ablenkwerke bei Disentis; Schutz vor Sogn Placi-Lawine. Ereignis vom 10.2.1984 (siehe Abb. 8).

Partie rédactionnelle


Abb. 4: Bremshöcker und Auffangdamm im Dorftäli – Lawinenzug zwischen Weissfluhjoch und Davos (Foto SLF).

wehungsverbau. Dadurch soll sich der windverfrachtete Schnee an einem bestimmten gewünschten Ort ablagern (Abb. 6). Aber auch Schutzwälder im Gebirge bilden einen aktiven Lawinenschutz. Ihre zugeschriebene Wirkung besteht im Verhindern von Lawinenanrissen in ihren eigenen Beständen, sofern sie selber nicht von höher gelegenen, über 28° geneigten potentiellen Anrissgebieten, gefährdet sind. Die wesentlich höhere natürliche Stabilität der Schneedecke in wirkungsvollen Beständen ist die Folge der grösseren Variabilität vom Schneedeckenaufbau und von der Schneehöhe als im Freiland. Schliesslich ermöglicht die kurzfristige Massnahme der künstlichen Lawinenauslösung das Loslösen von bedrohlichen Schneemassen aus Anrissgebieten zu gewünschten Zeiten [5]. Damit wird die Stabilität des verbleibenden Schnees stark erhöht und die Lawinengefahr vermindert.

Abb. 5: Stützverbauung (Schneebrücke); die Druckkräfte werden über Stütze und Riegel auf die talseitige Fundation übertragen. Diese besteht aus einem Zuganker und mindestens einem Mikropfahl (Foto SLF).

Abb. 6: Verwehungsverbau im Anrissgebiet; Kolktafeln verhindern die Bildung einer Gwächte. Darunter etwa 30-jährige Stützwerke aus Betonelementen (Foto SLF).

2.2 Die Schadenwahrscheinlichkeit

Die Schadenwahrscheinlichkeit drückt aus, mit welcher Wahrscheinlichkeit Menschen, Bauten, Wald etc. einer möglichen Lawinenwirkung ausgesetzt sind und welche Folgen zu erwarten sind. Beim Auftreffen einer Lawine auf Unbewegliches wie Bauten, Verkehrswege oder Wald, ist deren Schadenwahrscheinlichkeit immer Eins. Menschen können aus der Gefahrenzone evakuiert werden, so dass deren Schadenwahrscheinlichkeit grundsätzlich auf Null gesenkt werden kann. Ist eine vollständige Evakuierung oder Sperrung nicht möglich, kann die Schadenwahrscheinlichkeit erheblich gesenkt werden, indem die Aufenthaltszeit von Menschen in besiedelten Gebieten und auf Verkehrswegen beschränkt wird, indem z.B. die gefährdeten Zonen möglichst schnell durchfahren werden (Warntafeln wie sie auf

Abb. 7: Direktschutz; Spaltkeil, Weiler Ramsa im Val Madris (GR) (Foto A. Burkard).

amerikanischen Gebirgsstrassen anzutreffen sind).

Die Schadenwahrscheinlichkeit kann mit Hilfe von Lawinengefahrenkarten (LGK) und der Lawinenwarnung reduziert werden. Die eingangs erwähnte LGK unterteilt ein potentielles Lawinengelände in Zonen unterschiedlicher Gefahrenstufen [4]. In Zonen hoher Gefährdung (rote Zone) ist jegliche Überbauung untersagt; in Zonen geringer Gefährdung (blaue Zone) ist das Bauen nur mit baulichen Auflagen [6] und mit der Evakuierungspflicht im Falle zu bestimmender aktueller Gefahr gestattet. Zur Beurteilung der aktuellen Gefahr bedarf es allerdings einer gut eingespielten Lawinenwarnung (siehe Beitrag Meister). Die Schadenwahrscheinlichkeit ist also wesentlich durch die lang- und kurzfristige Nutzungsart der zu sichernden Zone bestimmt; sie ist im wesentlichen proportional zur Aufenthaltsdauer gefährdeter Personen, also z.B. proportional zu einer Zugs- und Fahrzeugsfrequenz gefährdeter Verkehrswege.

2.3 Das Schadenausmass

Das Schadenausmass quantifiziert die Grösse des möglichen Personen- und Sachschadens. Es kann langfristig wesentlich verringert werden, wenn Bauten und feste Objekte auf Lawinenkräfte dimensioniert werden, bzw. mit einem Direktschutz (Galerie, Ebenhöch, Spaltkeil, siehe Abb. 7, Wand etc.) versehen und wenn kurzfristig gefährdete Menschenansammlungen vermieden werden.

Die Überlebenschance von Lawinenverschütteten kann in besiedelten Gebieten, auf Verkehrswegen und Skipisten durch einen sehr gut organisierten Rettungsdienst erhöht werden. Für Verschüttete im Gebirge ausserhalb gesicherter Pisten stellt die unmittelbare Kameradenhilfe mit tragbaren Suchgeräten (z.B. LVS) ebenfalls eine Erhöhung der Überlebenschance dar. Die Beurteilung des Schadenausmasses ist teilweise subjektiv. Sie beruht auf einer Werteskala, in der materielle Schäden mit Verletzungen und dem Verlust von Menschenleben ausgedrückt werden [7].

3. Zur Analyse des Lawinenrisikos

Jedes Sicherheitsproblem im Lawinenbereich beinhaltet vereinfachend zwei Fragestellungen. Mit der Risikoanalyse kann man die Frage «was ist passiert und was kann noch passieren?» beantworten. Sie zeigt also auf, wie gross die Risiken in einem betrachteten System sind. Mit der zweiten Frage «was darf passieren?» wird durch eine Risikobewertung die Akzeptanz von Risiken angesprochen, die somit auch von - sich ändernden - gesellschaftlichen Wertvorstellungen abhängen. Aus diesen beiden Risikobestandteilen lässt sich eine Massnahmenplanung aufbauen. Im weiteren beschränken wir uns auf die technisch-wissenschaftliche Risikoanalyse. Für umfassende Angaben siehe etwa [7], [8].

So einfach das Lawinenrisiko in drei voneinander unabhängige Wahrscheinlichkeiten aufgeteilt werden kann, so schwierig ist es im allgemeinen, numerisch genau zu berechnen. Es ist aber möglich, das vorhandene Wissen präzise auszudrücken und damit in einer offenliegenden, disku-

Abb. 8: 70-jähriges Gebäude von einer Jahrhundertlawine erfasst. Die Bewohner hielten sich beim Lawinenniedergang im stehengebliebenen Hausteil auf! (Disentis, 10.2.1984. Foto SLF).

tierbaren Form darzustellen. Verhältnismässig einfach bestimmbar ist es, wenn ein System zu betrachten ist, in welchem einerseits die potentielle Gefährdung gut bekannt und erfasst ist und die gefährdeten Objekte und Personen bestimmbar sind. Solche Systeme sind etwa gefährdete Bahnabschnitte mit bekannter Verkehrsfrequenz [7] oder gefährdete Bauten und Wälder mit festem Standort. Für andere Systeme, in denen die Gefährdung und das Gefährdete (noch) nicht quantitativ bestimmbar sind, muss man sich vorderhand mit qualitativen Angaben über das Lawinenrisiko begnügen (z.B. Skitouren ausserhalb gesicherter Pisten).

Was bedeutet das nun für unsere eingangs erwähnten Risikogruppen (a), (b) und (c)?

Die Gefährdung eines Gebäudes ist hinsichtlich der Wahrscheinlichkeit zu beurteilen, mit der das Gebäude in einer gewissen Zeitspanne, z.B. in einem Jahrhundert, von einer Lawine überflossen oder gar zerstört wird (Abb. 8). Es kommt dabei nicht darauf an, wie oft sie anreisst - im Gegensatz etwa beim Skitourenfahrer -, sondern wie oft sie den Standort des Hauses erreicht. Es sind in der Regel seltene, aber grosse Katastrophenlawinen, die solche Standorte erreichen können. In den letzten 50 Jahren sind in den Schweizer Alpen 203 Menschen in zerstörten Gebäuden umgekommen [9], im Mittel etwa 4.5 Personen pro Lawinenniedergang mit tödlichen Folgen.

Für den Benützer von Verkehrswegen – sei es mit der Bahn, mit dem Auto oder als Skifahrer – ist die Wahrscheinlichkeit, sich beim Lawinenereignis gerade im Gefahrenbereich aufzuhalten, in der Regel sehr klein. Die Schadenwahrscheinlichkeit ist also nahe bei Null. Eine am SLF durchgeführte Untersuchung [9] über Lawinenniedergänge auf Verkehrswege mit tödlichem Ausgang kommt in den letzten 50 Jahren auf 280 tödlich Erfasste. Folgende Unterteilung dürfte von Interesse sein:

- A) beim Unterhalt von Verkehrswegen starben 171 (!) Personen in 111 Lawinen (im Mittel etwa 1.5 Tote pro solche Lawine);
- auf geschlossenen Verkehrswegen wurden 28 Personen von 18 Lawinen tödlich erfasst (im Mittel etwa 1.5 Tote);
- auf geöffneten Verkehrswegen 81 Tote in 44 Lawinen (im Mittel 1.8 Tote).

Diese Übersicht verdeutlicht das zeitweise grosse Lawinenrisiko beim Unterhalt von Verkehrswegen.

Der Skifahrer ausserhalb gesicherter Pisten fragt nach der Möglichkeit, an einem von ihm – zu einem bestimmten Zeitpunkt – aufzusuchenden Hang von einer Lawine erfasst zu werden [10], wobei er sie in der Mehrzahl auch selbst auslöst und dabei verschüttet wird. Damit verbunden ist eine

Partie rédactionnelle

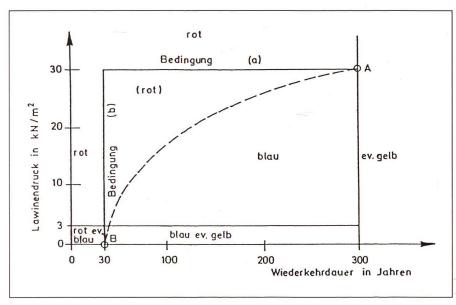


Abb. 9: Kriterien der Gefahrenzonen für Siedlungen, nach [4].

Durch die beiden Forderungen (a) und (b) sind zwei extreme Bedingungen für die rote Zonengrenze festgelegt (Punkt A und B). Die lawinentechnische Analyse zeigt, dass auch das Gebiet oberhalb einer Verbindungslinie zwischen A und B – deren Verlauf im einzelnen von den örtlichen Verhältnissen abhängt – notwendigerweise zur roten Zone gehört. Eine allfällige Befürchtung, dass ein «blauer Standort» alle 30 Jahre einmal einem Druck von 30 kN/m² ausgesetzt sein könnte, ist also unbegründet. Die Bedingung (b) gilt bei Fliesslawinen bis zu beliebig kleinen Druckwirkungen. Handelt es sich hingegen um Staublawinen mit kleineren Drücken als 3 kN/m², so kann das betreffende Gebiet mit blau bezeichnet werden.

Für die empfohlenen Mindestanforderungen in den verschiedenen Gefahrenstufen sei auf [4] hingewiesen.

grosse Schadenwahrscheinlichkeit und ein grosses Schadenausmass, weil im Mittel von 10 ganz verschütteten Personen etwa 5 umkommen. In dieser Risikogruppe starben in den letzten 50 Jahren in den Schweizer Alpen etwa 800 Menschen; im Mittel 1.5 Tote pro Lawinenniedergang mit Todesopfern [9].

Im Gebirge lauern neben der Lawinengefahr noch andere Gefahren, wie z.B. Steinschlag, Felsstürze oder Wildbäche. Das Restrisiko - das nach den getroffenen Sicherheitsmassnahmen verbleibende Risiko - bezüglich Lawinen soll genügend klein gehalten werden; es soll nach [4] «kleiner sein als die Summe aller übrigen akzeptierten Risiken», «Lawinensicher» charakterisiert daher meist eine Situation, die ein vernachlässigbares, aber trotzdem bestehendes Risiko in sich birgt. Gemäss [4] ist das Risiko eines Todesfalles in lawinengefährdeten besiedelten Gebieten etwa 100mal kleiner als das Risiko beim Autofahren.

4. Die Erfassung der langfristigen Lawinengefahr

Der Grad der Lawinengefährdung wird in besiedelten Gebieten durch die Druckwirkung und Wiederkehrdauer von Lawinen bestimmt (Abb. 9). In einem bestimmten Lawinenzug sind Lawinen mit einem grossen Ausmass seltener als solche mit einem kleinen. Wie wir noch sehen werden, lässt sich deshalb ein direkter Zusammenhang zwischen Wiederkehrdauer und Ausmass herstellen. Aus einer gegebenen Wiederkehrdauer kann damit das zugehörige Ausmass abgeschätzt werden. Lawinentechnische Berechnungen führen vom Ausmass direkt auf den entsprechenden Lawinendruck. Der an einem bestimmten Ort auftretende Druck ist daher mit der Wiederkehrdauer gekoppelt.

Lawinendrücke und -frequenzen lassen sich grundsätzlich messen und beobachten. Zur Erfassung grosser Wiederkehrdauern sind aber grosse Beobachtungszeiträume – bis in die Grössenordnung von Jahrhunderten – nötig. Es können also nur verhältnismässig häufig niedergehende Lawinen aufgrund direkter Beobachtungen zuverlässig analysiert werden. Diese sind aber für langfristige Schutzmassnahmen nicht problematisch. Für die seltenen und massgebenden Niedergänge müssen die Drücke und die Frequenzen daher meist rechnerisch bestimmt werden können.

In der Schweiz, und vermehrt in anderen Ländern, wird das deterministisch-statistische Voellmy-Salm-Modell verwendet [11]. In diesem Modell sind die berechneten Auslaufstrecken und Druckwirkungen etwa proportional zur Anrissmächtigkeit dodes anreissenden Schneebrettes. Andererseits ist die Anrissmächtigkeit domit der Wiederkehrdauer verknüpft, was die Auslaufstrecken zu einer statistischen Grösse mit einer bestimmten Eintretenswahrscheinlichkeit macht. Je mächtiger die losbrechende Schicht do, desto intensiver die Lawine und desto länger ihre Auslaufstrecke. Als potentielle Anrisszonen kommen Hänge mit Neigungen zwischen 28° und 50° in Frage.

Die für die Ausarbeitung von langfristigen Schutzmassnahmen zu berücksichtigenden Lawinenereignisse, also in erster Linie solche mit einer bis zu 300-jährigen Wiederkehrdauer sind erfahrungsgemäss mit sehr intensiven Schneefällen innerhalb 2-4 Tage verbunden und daher mit grossen Anrissmächtigkeiten verknüpft, die von Klimaregion zu Klimaregion verschieden sind. Es wird also angenommen, dass grosse und seltene Lawinen - im Gegensatz zu sogenannten Skifahrerlawinen immer durch Niederschläge verursacht werden und dass im wesentlichen nur der Neuschnee abgleitet. Im Hinblick auf eine obiektive Gefahrenkartierung und Dimensionierung baulicher Schutzmassnahmen

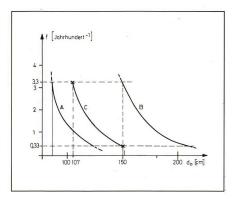


Abb. 10: Anzahl der 3-tägigen Schneefallperioden, die in einem Anrissgebiet (Hangneigung $\phi_o=28^\circ$) einen Zuwachs der Schneemächtigkeit d $_o$ in den Klimaregionen A, B und C erbringen.

Klimaregion A

(z. B. Teil des Engadins)

f = 3.3 (Wiederkehrdauer

T = 30 Jahre): $d_0 = 90 \text{ cm}$

f = 0,33 (Wiederkehrdauer

T = 300 Jahre): $d_o = 125 \text{ cm}$

Klimaregion B

(z.B. Gotthardgebiet)

f = 3.3 (Wiederkehrdauer

T = 30 Jahre): $d_0 = 150 \text{ cm}$

f = 0.33 (Wiederkehrdauer

T = 300 Jahre): $d_o = 210 \text{ cm}$

18	01	11	21	31	41	51	61	71 8	31 9	1 16	901	11	2	I	31 4	1	51 (٠	1 8		Joh
WESTL. ALPENNORDHANG ZENTRALSCHWEIZ ÖSTL. ALPENNORDHANG	;				1		1		:	1			!	!] [2×	120		:		•	15
UNTERWALLIS OBERWALLIS GOTTHARDGEBIET	1 1		11						3×1	ı	1				1	!	2× 2×		1		3
MITTELBÜNDEN NORDBÜNDEN ENGADIN	"						ı	1	1	1	1							1	1		1 2
ALPENSÜDHANG	1		1			•	1		2×	1		T	11	1			•		1		1

Abb. 11: Die Lawinenkatastrophen in der Schweiz seit 1800 aufgeteilt in die regionalen Wiederkehrperioden T, nach [21].

mit Ausnahme des Stützverbaus – interessiert somit der Zusammenhang zwischen einem dreitägigen Neuschneezuwachs und seiner Wiederkehrdauer in verschiedenen Klimagebieten in der Schweiz.

Man ist heute in der Lage, zwischen schneearmen und -reichen Klimaregionen eine quantitative Abstufung vorzunehmen [12]. Auf diese Weise kann durch die angemessene Wahl der Anrissmächtigkeit do in verschiedenen Klimaregionen der Schweizer Alpen die gleiche Risikoskala in allen Gefahrenkarten und baulichen Lawinenschutzmassnahmen erreicht werden. Man kann also in allen Klimaregionen eine Abstufung in der Anrissmächtigkeit von Lawinen gleicher Wiederkehrdauer vornehmen oder innerhalb einer Klimaregion Lawinen verschiedener Häufigkeit behandeln (Abb. 10).

Neben den erwähnten klimatologischen und lawinendynamischen Betrachtungen müssen für die Ausarbeitung und Dimensionierung langfristiger Schutzmassnahmen noch weitere Grundlagen herangezogen werden. Ausserordentlich wertvolle Informationen enthält der über eine lange Zeit geführte Lawinenkataster. Mit dem Lawinenkataster werden drei Ziele verfolgt, nämlich die wissenschaftliche Erforschung des gesamten Lawinengesche-

hens (Abb. 11), die Erstellung und Nachführung einer umfassenden Schadenstatistik (Abb. 12) und schliesslich die Erfassung und Kartierung aller lawinengefährdeten Zonen. Die erste Lawinenkarte der Schweiz (M 1:100 000) wurde schon 1910 von J. Coaz (siehe Einleitung) publiziert. 1981 wurde vom Forstdienst des Kantons Uri ein Lawinenatlas im Massstab 1:25 000 herausgegeben. Erst kürzlich präsentierten die Walliser Kantonsbehörden ihren Lawinenkataster: mehr als 10 Prozent der 3200 Lawinenzüge bedrohen Dörfer und Verkehrswege. Betroffen sind rund 4.3 Millionen Quadratmeter überbaute Fläche oder Bauland, 102 km Kantonsstrasse und 20 km Zuglinie, aber auch Skilifte und Pisten.

Im weiteren helfen gelegentlich «stumme Zeugen» wie Spuren alter Waldschäden, mitgeführte Felsbrocken u.a., die Vergangenheit etwas auszuleuchten. Auch können kompetente ortsansässige Leute nützliche Hinweise erbringen.

Zur Ausarbeitung von Lawinengefahrenkarten sowie für die Dimensionierung von baulichen Schutzmassnahmen dienen zusammenfassend folgende Grundlagen:

- Lawinenkataster (falls vorhanden),
- Geländebeurteilung anhand Karten (1:5000, 1:10 000, 1:25 000) und Luftaufnahmen

	То	desopfer	Geb	äudesch	Vieh- schäden	Wald- schaden		
Jahr	Total	davon Katastrophen- opfer	Häuser	Ställe	andere		[m³]	
1950/51	98	75	187	999	303	884	170 000	
1953/54	33	. 11	63	440	131	228	10300	
1967/68	37	26	97	148	159	23	25400	
1969/70	56	30	21	77	39	3	41 000	
1974/75	27	9	72	233	153	172	146000	
1977/78	44		107	32	49	7	12500	
1983/84	41	6	124	94	229		42000	

Abb. 12: Die Lawinenkatastrophen in der Schweiz von 1950/51 bis 1983/84. Katastrophenopfer sind tödlich Verunglückte in dauernd bewohnten Bauten.

- Geländebegehung (u.a. vorhandene Lawinenspuren),
- klimatische Verhältnisse,
- zu erwartende Lawinenarten,
- lawinentechnische Berechnungen (Anrisshöhen und lawinendynamische Parameter).

5. Planung von Schutzmassnahmen

5.1 Ausarbeitung von Lawinengefahrenkarten (LGK)

Zur Erstellung von Lawinengefahrenkarten (LGK) dienen, neben oben Erwähntem und der Erfahrung noch folgende Unterlagen: [4], [11] und etwa [12].

5.2 Projektierung von Stützverbauungen

Bei den Entwicklungen des baulichen Lawinenschutzes stehen Neuentwicklungen im Stützverbau im Vordergrund [13]. Die Entwicklung manifestiert sich etwa in den «Richtlinien für den Lawinenverbau im Anrissgebiet» [14], welche kürzlich in ihrer sechsten Auflage erschienen ist. Neben der Beeinflussung der Fundamentkräfte durch die Art der Tragkonstruktion machte vor allem die Übertragung der Zug- und Druckkräfte auf den Untergrund eine wesentliche Entwicklung durch. Anstatt der lange Zeit erfolgten Fundation mit Ortsund Fertigfundamenten, werden heute Anker und Mikropfähle angewendet [15]. Die entscheidenden Vorteile sind die Verbilligung der Fundationskosten (ca. 20%) und die Ausdehnung von Stützverbauungen auf Lockergesteinsböden. Eine eidgenössische Expertengruppe für den Stützverbau überprüft alle Neukonstruktionen bezüglich der Werkdimensionierung, Statik, Fundation etc. Für die Planung von Stützverbauungen verweisen wir auf die Unterlagen [11], [14], [16]. Für Projektierende von temporären Stützverbaumassnahmen (Holzwerke) im Zusammenhang mit Gleitschneeproblemen und Aufforstungen sei auf das Handbuch [17] verwiesen.

5.3 Dimensionierung von baulichen Schutzwerken

Zur Projektierung von Verwehungsverbauungen in Anrissgebieten und zum Schutz von Verkehrswegen können etwa [11], [16], [18] weiterhelfen. Für die Dimensionierung von Ablenk- und Auffangwerken sowie die Beanspruchung von Lawinengalerien einerseits und die Berechnung von Lawinenkräften auf grosse und kleine Hindernisse (Wände, Masten etc.) anderseits mögen folgende Grundlagen dienen: [11], [12] und [19].

Partie rédactionnelle

6. Schlussbemerkungen

Die Bedeutung der Lawinen für die Berggebiete sollte in der Zukunft kaum nachlassen. Das Berggebiet, mit kaum mehr als einer halben Million dauernd ansässigen Einwohnern, beherbergt pro Jahr zwischen 2 und 3 Mio Touristen aus fern und nah, welche insbesondere im Winter zunehmen. Immer mehr Menschen begeben sich somit in lawinengefährdete Gebiete oder in deren Nähe. Abgesehen von periodischen Schwankungen steigt nicht die Zahl der Lawinen, sondern diejenige der gefährdeten Menschen. Es ist der Mensch selber, der das Lawinenrisiko erhöht. Dem gegenüber stehen stets immer erfahrenere und besser ausgerüstete Lawinendienste und eine Zunahme der Bundesbeiträge für die besprochenen langfristigen Lawinenschutzmassnahmen. Einige Zahlen mögen die wachsenden Anstrengungen des Bundes und der Kantone beleuchten. Von 1926 bis 1938 9 Mio Franken, von 1938 bis 1951 16 Mio. In der fünfjährigen Periode, die dem Katastrophenwinter 1951 folgte, wurden allein 36,4 Mio für Lawinenverbauungen ausgegeben, das sind rund 6 Mio Fr. pro Jahr. 1989 betrugen diese Ausgaben von Bund und Kantonen rund 50 Mio Franken. Zählt man die Ausgaben der kurzfristigen operationellen Massnahmen dazu, also jene zur Sicherung von Verkehrswegen und Skigebieten, kommt man auf einen jährlichen Betrag von mehr als 100 Mio Franken.

Abschliessend sei noch bemerkt, dass der Lawinenschutz eng mit der Entwicklung des Waldes verbunden ist. Oft ist der Wald von hohen waldfreien Lagen her bedroht und ist selbst des Schutzes bedürftig. Er kann so Teilhaber und Nutzniesser von Verbauungsprojekten sein (Abb. 13). In welchem Ausmass die gegenwärtige Verschlechterung des Waldzustandes die Bergregionen erfasst und damit den Lawinen, aber auch dem Steinschlag und der Erosion neue Bahnen öffnet, ist noch nicht gut abschätzbar. Es ist nicht auszuschliessen, dass damit der Besiedelung von Berggebieten neue Einschränkungen und dem Verbauungswesen neue Dimensionen erwachsen. Mit Anrissverbauung werden heute vor allem alte Ortsteile und wichtige Verkehrsadern geschützt. Die Gewinnung von neuem Bauland dürfte kaum in Frage kommen, es sei denn, sie falle in einem derartigen Projekt gleichsam als Nebenprodukt an. Die Verbauung dient also vornehmlich dazu, alte Fehler zu korrigieren (siehe Einleitung), während die im Nutzungsplan integrierte Lawinengefahrenkarte dafür zu sorgen hat, dass keine neuen mehr begangen werden.

Um ein optimales Sicherungskonzept zu erarbeiten, was nicht rein objektiv-wissenschaftlich erfolgen kann, bietet sich die Risikoanalyse als systematische Methode an [20]. Sie erweist sich als wertvolle

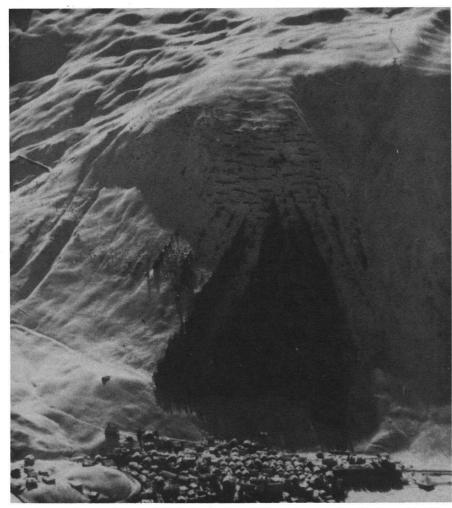


Abb. 13: Schutzwald geschützt durch eine Stützverbauung im Anrissgebiet (Andermatt, Foto SLF, E. Wengi).

Grundlage für eine möglichst transparente Analyse und Darstellung der Zusammenhänge. Von ihr sollte vermehrt Gebrauch gemacht werden. Allerdings ist dazu noch einige Grundlagenarbeit notwendig. Pakken wir's an!

Literatur:

- [1] Eidg. Departement des Innern (EDI): Richtlinien betreffend Aufforstungsund Verbauungsprojekte in lawinengefährdeten Gegenden, Bern, Juni 1952.
- [2] Frutiger, H.: Rechtliche Aspekte der Nutzungsbeschränkung des Grundeigentums wegen Lawinengefährdung. Internationales Symposium «Interprävent», Band 1, 1980, S. 33 ff.
- [3] Erlass einer Vollziehungsverordnung zum Bundesgesetz betreffend die eidg. Oberaufsicht über die Forstpolizei, Bern, Oktober 1965.
- [4] Bundesamt für Forstwesen und Eidg. Institut für Schnee- und Lawinenforschung: Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten, EDMZ Bern 1984, 21 S.

- [5] Gubler, H.: Künstliche Auslösung von Lawinen durch Sprengungen. Eine Anleitung für den Praktiker. Mitteilung Nr. 36 des Eidg. Instituts für Schnee- und Lawinenforschung, Weissfluhjoch/Davos 1983, 39 S.
- [6] Gebäudeversicherungsanstalt des Kantons Graubünden: Vorschriften für bauliche Massnahmen an Bauten in der blauen Lawinenzone, Chur 1979, 12 S.
- [7] Troxler, Ch. u.a.: Schutz vor Naturgefahren. «Schweizer Ingenieur und Architekt» Nr. 39, September 1989, S. 1035 ff.
- [8] Basler & Partner: Sicherheitsbeurteilung zur Erfassung von Naturgefahren im Berggebiet. Zollikon (ZH) 1986, 109 S.
- [9] Meister, R.: Lawinenniedergänge mit Todesopfern in der Schweiz. Eine statistische Zusammenstellung der Ereignisse in den 50 Jahren 1936/37 bis 1985/86. Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch/Davos. Winterbericht Nr. 50 1987, S. 195 ff.
- [10] Salm, B.: Möglichkeiten und Grenzen bei der Einschätzung des Lawinenrisikos. Jahrbuch «Sicherheit im Berg-

- land», Österreichisches Kuratorium für alpine Sicherheit, Wien 1986, S. 161 ff.
- [11] Salm, B. u.a.: Vorlesung über Schnee, Lawinen und Lawinenschutz. Eidg. Technische Hochschule Zürich, Assistenz Wasserbau ETH Hönggerberg Zürich, S. 277.
- [12] Salm, B. u.a.: Berechnung von Fliesslawinen. Eine Anleitung für Praktiker mit Beispielen. Eidg. Institut für Schneeund Lawinenforschung, Weissfluhjoch/ Davos Mitteilung Nr. 47, 1990, S. 37.
- [13] Schwarz, W.: Entwicklung von Werktypen in Stahl. «Bündner Wald» 41. Jhg. August 1988, Chur, S. 13 ff.
- [14] Eidg. Forstdirektion (BUWAL) und Eidg. Institut für Schnee- und Lawinenforschung: Richtlinien für den Lawinenverbau im Anbruchgebiet. EDMZ Bern 1990, S. 76.

- [15] Heimgartner, M.: Fundation im Lawinenverbau. «Internationales Symposium über die Bildung, Bewegung und Wirkung von Lawinen». Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch/Davos, Nr. 43 1987, S. 19 ff.
- [16] «Bündner Wald»: 50 Jahre Schneeund Lawinenforschung auf Weissfluhjoch, Separatdruck 5/1986 Chur, 44 S.
- [17] Leuenberger, F.: Handbuch/Bauanleitung Temporärer Stützverbau und Gleitschneeschutz. Eidg. Institut für Schnee- und Lawinenforschung Weissfluhjoch/Davos, Juni 1989, 81 S.
- [18] Campell, E.: Verwehungsverbau. Beiheft Nr. 9 zum «Bündner Wald». Dezember 1972, Chur, S. 144 ff.
- [19] Sommerhalder, E.: Ablenkverbau. Beiheft Nr. 9 zum «Bündner Wald». Dezember 1972, Chur, S. 155 ff.

- [20] Gubler, H.: Temporäre und permanente Lawinenschutzmassnahmen für touristische Anlagen. Mitteilung Nr. 45 des Eidg. Instituts für Schnee- und Lawinenforschung Weissfluhjoch/Davos 1986, 10 S.
- [21] Föhn, P.: Die Lawinenkatastrophe vom Februar 1984. Winterbericht Nr. 48 des Eidg. Instituts für Schnee- und Lawinenforschung 1985, S. 186 ff.

Adresse des Verfassers: André Burkard dipl. Kulturing. ETH Eidgenössisches Institut für Schnee- und Lawinenforschung CH-7260 Weissfluhjoch/Davos

Erdwissenschaften heute: Ist GAIA endotherm?

K.J. Hsü

GAIA ist ein Leitbild oder Konzept für die Gesamtheit der terrestrischen Prozesse in Atmosphäre, Hydrosphäre, Biosphäre und Lithosphäre, die als unentbehrliche Elemente jeder organischen Aktivität derart zusammenwirken, dass Leben auf der Erde möglich ist. Die Erde wurde zur GAIA, als Leben auf ihr entstand, GAIA war krank während Zeiten biologischer Krisen mit ihren Massensterben, und GAIA wird sterben, wenn das gesamte Leben ausgerottet wird.

Endotherm bezieht sich hier auf die Fähigkeit eines Organismus, seine Körpertemperatur innerhalb der für sein Überleben notwendigen Grenzen halten zu können, wie es bei den Säugetieren allgemein der Fall ist. Wenn GAIA endotherm ist, was ist der temperaturregulierende Mechanismus?

GAIA est un concept pour l'ensemble des processus terrestres dans l'atmosphère, l'hydrosphère, la biosphère et la lithosphère. Ces processus constituent, de par leur interaction, les éléments indispensables à toute activité organique et permettent de créer ainsi les conditions nécessaires à la vie sur terre. La terre est devenue GAIA lorsque la vie y est apparue. GAIA a été malade lors des périodes de crise biologique marquées par des disparitions en masse, et GAIA s'éteindra lorsque toute vie aura cessé.

Dans le cas particulier, endothermique signifie l'aptitude d'un organisme à maintenir la température de son corps à la limite nécessaire pour sa survie, comme c'est généralement le cas chez les mammifères. Si GAIA est endothermique, quel est le mécanisme régulateur de température?

«Wir leben in einem tragischen Zeitalter», klagte D. H. Lawrence (Lady Chatterly). Dass es so weit kam, ist zwei ideologischen Revolutionen zu verdanken, die ihrerseits in wissenschaftlichen Entdeckungen gründen. Die Menschheit wähnte sich nahe bei Gott, denn dieser entsandte sei-

nen einzigen Sohn, um uns zu retten; wir waren also auserwählt, ebenso wie die Welt, in der wir leben. Erste Revolution: Kopernikus lehrte uns etwas anderes. Es gibt weder Himmel noch Hölle, die Erde ist nur ein kleiner Planet unter unzähligen andern und umkreist einen Stern unter Mil-

liarden seinesgleichen. Die Revolution durch Darwin tat den Rest: Wir Menschen sind nur Homo sapiens, eine Spezies unter Millionen anderer Spezies. Die Menschheit fühlte sich verraten, denn Gott hatte kaum Zeit für uns, er hatte sich um zuviele andere Sterne und um zuviele andere Lebewesen zu kümmern; er war so weit weg.

Wir leben am Ende des 20sten Jahrhunderts, und eine dritte Revolution zeichnet sich ab. Die Erde ist nicht nur ein Planet unter unzähligen, es ist ein spezieller Planet, es gibt keine Anzeichen einer anderen «Erde» im ganzen Universum. Auch sind wir nicht eine Spezies unter Millionen, wir wissen von keinen anderen intellektuellen Wesen im Weltraum. Die Unzufriedenheit mit dem «Zeitalter der Intrigen» wächst, Rousseau gewinnt an Boden mit Greenpeace, WWF etc., und alles deutet auf eine Renaissance der Religion hin.

Ist GAIA endotherm? Was ist GAIA? Was heisst endotherm? Was wissen wir über die Klimageschichte der Erde? Hilft uns derartige Information weiter?

GAIA ist eine Metapher für die einen, eine Theorie für die anderen. Ich brauche es als Leitbild oder Konzept für die Gesamtheit der terrestrischen Prozesse in Atmosphäre, Hydrosphäre, Biosphäre und Lithosphäre, die als unentbehrliche Elemente jeder organischen Aktivität derart zusammenwirken, dass Leben auf der Erde möglich ist. Die Erde wurde zur

ETH-Bulletin, Januar 1991