Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 89 (1991)

Heft: 3

Artikel: Schätzung der Abflussbeiwerte von Wildbächen mittels Hydrometrie

und Photogrammetrie

Autor: Hodel, H. / Kersten, T. / Hirner, P.

DOI: https://doi.org/10.5169/seals-234572

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schätzung der Abflussbeiwerte von Wildbächen mittels Hydrometrie und Photogrammetrie

H. Hodel, Th. Kersten, P. Hirner

In der Praxis des Wildbachverbaues findet die Gauckler-Manning-Strickler-Formel (kurz: Strickler- oder GMS-Formel) eine weite Verbreitung. Gegen den weiteren Einsatz dieser empirisch hergeleiteten Fliessformel ist nichts einzuwenden, wenn sich der Ingenieur den Grenzen der Anwendbarkeit bewusst bleibt. Zudem fehlen bis heute praxisgerechte Alternativen.

Dieser Artikel beschreibt ein neues Verfahren zur Schätzung der Abflussbeiwerte nach Strickler. Die hier erläuterten Untersuchungen weisen den Vorteil auf, dass synchron hydraulische und gerinnespezifische Kennwerte entwickelt werden.

Im Feld wird die Wasserspiegeloberfläche photogrammetrisch aufgenommen. Das mittlere Sohlengefälle wird durch ein Nivellement bestimmt. Die Durchflussmenge und die mittlere Fliessgeschwindigkeit wird mit der Salzverdünnungsmethode (Tracermessungen) ermittelt. Der hydraulische Radius wird durch ein idealisiertes Trapezgerinne geschätzt.

Dieses Verfahren wurde im Sommer 1989 in zwei Wildbachabschnitten in der Nähe von Simplon-Dorf angewendet. Im Vergleich zu den Hilfstafeln von Schewior/Press ergaben unsere Auswertungen signifikant tiefere Abflussbeiwerte.

Dans le domaine de l'aménagement des torrents la formule deGauckler-Manning-Strickler trouve une large application. Il n'y a aucune objection a faire par rapport à l'utilisation de cette formule d'écoulement de provenence empirique, si l'ingénieur tient compte de ses limites d'application. En plus, des alternatives praticables n'ont pas été développées jusqu'à nos jours.

Cet article décrit une nouvelle méthode d'estimation des coefficients de débit selon Strickler. Le procédé utilisé a l'avantage de développer d'une manière synchrone les caractéristiques hydrauliques et celles spécifiques au lit.

La surface d'eau est mesurée en campagne par photogrammétrie. La pente moyenne du fond du torrent est déterminée par un nivellement. A l'aide de la méthode de dilution nous déterminons le débit et la vitesse moyenne d'écoulement. Le rayon hydraulique est estimé à l'aide d'un lit idéalisé en forme de trapèze. En été 1989 cette méthode a été appliquée à deux sections différentes de torrents dans les environs du village de Simplon-Dorf. En comparaison avec les tables de Schewior/Press nous avons ainsi obtenu des coefficients de débit significativement plus bas.

1. Problemstellung

1.1 Einführung

Die Abflussbeiwerte k_{st} bzw. die Rauheitswerte k für extrem rauhe Oberflächen (z.B. Wildbäche) sind zurzeit unzureichend erforscht (Kaiser, 1984). In der Praxis des Wildbachverbaues finden empirisch hergeleitete Abflussformeln eine weite Verbreitung. Vorallem die Gauckler-Manning-Strickler-Formel (kurz: Strickler- oder GMS-Formel) wird häufig verwendet. Im Gegensatz zur Fliessformel von Darcy-Weisbach ist der Beiwert der Strickler-Formel nicht dimensionslos. Infolgedessen werden die physikalischen Verhältnisse durch die GMS-Formel nicht immer korrekt wiedergegeben.

Die Werte der Strickler-Formel werden in prismatischen Gerinnen (z.B. Kanäle) bestätigt. In Wildbachgerinnen belegen Abflussmessungen in den fünf alpinen bzw. voralpinen Versuchseinzugsgebieten des Institutes für Kulturtechnik (IfK) der ETH Zürich, dass die mit Hilfe der GMS-Formel ermittelten Fliessgeschwindigkeiten weit über den Werten der Naturmessungen liegen.

Die Gründe, dass die GMS-Formel oft verwendet wird, liegt darin, dass einerseits die Strickler-Formel in Berechnungen einfach zu handhaben ist, sowie andererseits in der Tatsache, dass für die anderen Fliessformeln (z.B. Darcy-Weisbach, de Chézy) weniger Erfahrungswerte vorliegen. Zudem verunmöglichen die extrem komplexen Abflussverhältnisse in Wildbächen die exakte hydraulische Berechnung.

Mit Ausnahme der wertvollen Zusammenstellung von korrigierten Strickler-Abflussbeiwerten von Zeller (siehe Tab. 2) berücksichtigen die bis heute publizierten Abflussbeiwerte die grosse Varianz der Gerinnekennwerte und der hydraulischen Kenngrössen der Wildbäche nicht (siehe Tab. 1).

1.2 Kritische Betrachtung der Anwendung der Strickler-Formel auf Wildbachverhältnisse

1.2.1 Ausgangslage

Alle Widerstandsformeln (Fliessformeln) sind in wohldefinierten Gerinnen (Kanäle) ermittelt worden und gelten deshalb strenggenommen nur für den gleichförmigen Abfluss, für den das Gefälle der Energielinie und der Sohle gleich ist. In offenen Gerinnen tritt jedoch gleichförmiger Abfluss nur dann ein, wenn sich die Wassertiefe, die Fliessgeschwindigkeit und die Geschwindigkeitsverteilung in der Strömungsrichtung nicht ändern.

Die Wildbäche weisen einen stark ungleichförmigen Abfluss auf, bei dem die Fliessgeschwindigkeiten, das Gefälle, die Linienführung, die Wassertiefe, der Fliesswiderstand der Sohle bzw. der Böschungen, die Morphologie des Gerinnes etc. auf kurzen Strecken stark variieren. Deshalb haben diese Gewässer ein völlig anderes Abflussverhalten als die Versuchsgerinne, in denen Strickler seine Formel entwickelt hat.

1.2.2 Einschränkungen der Anwendung der Strickler-Formel in Wildbächen

Bei der Verwendung der publizierten k_{st}-Werte für Wildbäche muss beachtet werden, dass folgende Einschränkungen gelten:

- a) Der Abflussbeiwert nach Strickler ist eine dimensionsbehaftete Grösse. Es muss deshalb erwartet werden, dass die k_{St} -Werte von der absoluten Grösse der Gerinne abhängen und somit genaugenommen nur für diejenigen Gerinne anwendbar sind, welche die gleichen Dimensionen wie die Versuchsgerinne aufweisen, in denen die Beiwerte der GMS-Formel ermittelt wurden. Die Strickler-Formel ist bis heute für Gerinne mit grossen relativen Rauheiten nicht überprüft worden.
- b) Die GMS-Formel berücksichtigt den Einfluss unterschiedlicher Rauheiten und die Gliederung des Gerinnequerschnittes nicht. Bei Gerinnen mit zusammengesetzten Profilen (z.B. Trapezprofil) kann mit der Methode von Einstein (siehe Dracos, S. 12–19 ff.) ein mittlerer Abflussbeiwert k_{st} ermittelt werden, der unterschiedliche Rauheiten des benetzten Umfanges berücksichtigt. Bei Wildbächen mit stark gegliederten Profilen ist diese Methode kaum praktikabel, denn die Bestimmung der Querprofile ist sehr aufwendig.
- c) Die Abhängigkeit der $k_{\rm Si}$ -Werte von der Wasserführung ist gross. Bei Hochwasser-

Art des Gerinnes	Charakteristik des Gerinnes	k _{St} [m ^{1/3} /s]
Natürliche Wasserläufe	Wildbäche mit grobem Geröll (kopfgrosse Steine) bei ruhendem Geschiebe	25 - 28
	Wildbäche mit grobem Geröll bei in Bewegung befindlichem Geschiebe	19 - 22

Tab. 1: Hilfstafeln von Schewior/Press (Naudascher, 1987, S. 227).

Art des Gerinnes	Charakteristik des Gerinnes	k _{St} [m ^{1/3} /s]
Gebirgsgerinne (keine Vegetation, Steilufer)	Sohle: Kies, Steine und einige Blöcke	20 - 33
	Sohle: Steine und grosse Blöcke	14 - 25
4	Blocksohle, sehr unregelmässig z.T. aus dem Wasser ragend, mit kleinen Schnellen	10 - 15
Wildbäche bei Hochwasser:	Grobkiessohle mit Steinen, gerade	20 - 25
Schätzwerte unverbauter Wildbäche mit max. Wasserspiegelbreite (bei HQ) von 7 m	che mit piegel- gewunden, Sohle und Ufer sehr unregelmässig	
	Steinsohle mit einzelnen Blöcken, "gerade" Sohle und Ufer sehr unregelmässig	12 - 17
	Blocksohle, Ufer und Sohle sehr un- regelmässig, viele Engnisse, Schnellen, Löcher	8 - 15
	Blocksohle, verwachsen mit starken Bäumen und Büschen und viel verklemmtem Altholz	5 - 12

Tab. 2: Abflussbeiwerte nach Zeller (Zeller, 1974, S. 54-55).

abflüssen treten die grössten, bei Niedrigwasser die kleinsten Abflussbeiwerte auf. Bei kleinen Füllhöhen muss mit extrem tiefen $k_{\rm Sr}$ -Werten gerechnet werden.

- d) Der Einfluss des Sedimenttransportes und der Veränderungen der Sohlenform auf das Abflussverhalten wird durch die Strickler-Formel nicht berücksichtigt. Sobald sich die Sohle in Bewegung setzt, entstehen Riffel und Bänke, die den Strömungswiderstand und dadurch die Abflussleistung des Gerinnes stark beeinflussen. Dies hat zur Folge, dass der Abflussbeiwert vor, während und nach einem Extremereignis differieren kann.
- e) Instabilitäten führen zur Bildung von Wellen (z.B. Froude-Wellen), die durch lokale Änderungen der Wassertiefe ausge-

löst werden. Diese Wellen bewirken, dass sich kein stationärer Abfluss einstellen kann. Die dadurch erhöhte Energieumwandlung führt zu einem zusätzlichen Fliesswiderstand, der in der Formel keine Berücksichtigung findet bzw. durch die Verwendung eines reduzierten k_{St}-Wertes ausgeglichen werden muss.

f) Der Einfluss der Luftaufnahme ist bei der GMS-Formel nicht berücksichtigt. Bei steilen Wildbächen mit grossen relativen Bachbettrauhigkeiten ist der Lufteintrag massiv. Um diesen zu berücksichtigen müssen die k_{si}-Werte reduziert werden.

Fazit:

Diese Zusammenstellung der Einschränkungen bei der Verwendung der GMS-Formel bzw. der Einflussgrössen, welchen

der k_{St}-Wert genügen muss, zeigt deutlich die Gefahren auf, die bei der unkritischen Verwendung dieses Ansatzes in Wildbächen auftreten. Gegen den Einsatz der GMS-Formel bei Berechnungen von Steilgerinnen ist nichts einzuwenden, wenn sich der Ingenieur der Grenzen der Anwendbarkeit bewusst bleibt. Zudem fehlen bis heute praxisgerechte Alternativen. Selbst in kürzlich veröffentlichten Hydraulik-Lehrbüchern sind die k_{St}-Werte nach Schewior-Press publiziert, ohne auf die Einschränkungen der Anwendbarkeit hinzuweisen (z.B. Lange/Lecher, 1989, Kap. 3: Hydraulische Grundlagen).

1.3 Ziele der Untersuchungen

Im Rahmen eines Diplomvermessungskurses, der im Juli und August 1989 vom Institut für Kulturtechnik (IfK) und vom Institut für Geodäsie und Photogrammetrie (IGP) der ETH Zürich gemeinsam durchgeführt wurde, führten wir Untersuchungen in Wildbächen über die Abflussbeiwerte nach Strickler durch. Die terrestrische Photogrammetrie lieferte durch Aufnahmen ausgewählter Wildbachabschnitte Daten über die Wasserspiegeloberflächen bei variablen Durchflussmengen. Mit Hilfe der Salzverdünnungsmessungen, die synchron zu den photogrammetrischen Aufnahmen durchgeführt wurden, konnten die Abflussmengen und die mittleren Fliessgeschwindigkeiten ermittelt werden. Das mittlere Sohlengefälle wurde mit einem Nivellement bestimmt.

Fragestellungen:

- a) Können die Rauheiten in Wildbachgerinnen durch einen Abflussbeiwert nach Strickler geschätzt werden, der die Variation der Gerinnekennwerte berücksichtigt?
- b) Werden die publizierten Abflussbeiwerte durch unsere Messungen bestätigt oder treten Differenzen auf?
- c) Wie gross ist der Einfluss der Durchflussmenge auf den Abflussbeiwert?
- d) Welche weiteren Untersuchungen sind zu empfehlen?

2. Photogrammetrisches und geodätisches Messkonzept

An geeigneten Messstellen wurden photogrammetrische Aufnahmen von Gebirgsbachabschnitten bei gleichzeitigen Fliesszeitenmessungen gemacht. Für die Aufnahmen standen als photogrammetrische Ausrüstung zwei Kameras Rolleiflex 6006 mit 50 mm Objektiv zur Verfügung.

Die ausgewählten Messstellen wurden einerseits von einer speziell für den Diplomkurs konzipierten Kameraaufhängevorrichtung (Konstrukteur: Dieter Spörri) senkrecht über dem Bach und anderer-

81

seits mit Kamerastativen von einer erhöhten Uferstelle aus stereo aufgenommen. Um bei der späteren Auswertung der Aufnahmen die Orientierungen der Stereobildpaare im Analytischen Plotter zu erleichtern, wurden in dem aufzunehmenden Bachabschnitt Signaltafeln in den Uferbereichen gestellt und eingemessen. Die Signaltafeln dienten bei der Auswertung als Passpunkte. Sie wurden auf festem Untergrund stabil gesichert und in einem lokalen Netz geodätisch durch kombinierte Richtungs- und Distanzmessungen bestimmt. Für die geodätischen Messungen wurde ein Theodolit Wild T1000 mit DI 1000 benutzt.

Die Koordinaten der Passpunkte wurden mittels Ausgleichung berechnet.

3. Vorbereitung der photogrammetrischen Aufnahmen und geodätischen Messungen

3.1 Fehler und Genauigkeiten

Von der kulturtechnischen Aufgabenstellung wurde eine Genauigkeit von 5% für die Bestimmung der Wasserspiegeloberfläche des Bachabschnittes gefordert, was bei einer Fläche von ~30 m² eine Abweichung von ±1,5 m² zulässt.

Die geforderte Genauigkeit kann erreicht werden, obwohl der grösste und kaum schätzbare Fehlereinfluss die Identifikation der Uferlinien bei der Auswertung am Analytischen Plotter darstellt.

Folgende Fehler haben einen kleineren Einfluss auf die Genauigkeit:

- Messgenauigkeit am Analytischen Plotter für natürliche Punkte: $\sigma=\pm 8~\mu m$, für Bildmassstab von 1:300 folgt $\sigma=\pm 2,4~mm$.
- Genauigkeit eines lokalen Passpunktnetzes: $\sigma_{\rm geod}$ = $<\pm 1~\rm cm$
- Genauigkeit der Signalisierung der Passpunkte: $\sigma_{\rm Sig} = \pm 5~{\rm mm}$
- Kartiergenauigkeit des Plotters: $\sigma_{\text{Kart}} = \pm 3 \text{ mm}.$

3.2 Messstellenauswahl

Geeignete Messstellen müssen aus kulturtechnischer und geodätischer Sicht leicht zugänglich sein, einen festen Untergrund für eine dauerhafte Passpunktvermarkung und für den Instrumentenaufbau aufweisen sowie freie Sichten im Messgebiet gewährleisten.

Ausserdem müssen für die photogrammetrischen Aufnahmen folgende Kriterien erfüllt sein: Für die Senkrechtaufnahmen sollten Möglichkeiten für eine ausreichende hohe, stabile und sichere Installation der Kameraaufhängung gegeben sein. Um die ausgewählten Bachabschnitte im Stereobildpaar abzubilden, musste eine Mindesthöhe von 12 m eingehalten werden.

Für die Schrägaufnahmen müssen stabiler Untergrund für die Kamerastative und gute Sicht auf den Bachabschnitt gewährleistet sein. Ferner soll man darauf achten, dass man die Kameras bei den Aufnahmen nicht zu sehr verschwenkt werden, da zu stark konvergente Aufnahmen (>5°) die stereoskopische Betrachtung der Bilder erschweren.

Die Uferkanten und Gleithänge des Baches dürfen an den Messstellen keine verdeckten Bereiche aufweisen und die Lichtverhältnisse sind bei der Aufnahmeplanung zu berücksichtigen, denn Schattenwürfe von Bäume oder Sträuchern verursachen zu starke Kontraste (Hell-Dunkel-Bereiche) in den Bildern, welche Schwierigkeiten bei der Auswertung bereiten können. Im Gebiet zwischen Simplon-Pass und Simplon-Dorf konnten zwei Messstellen gefunden werden, welche die oben erwähnten Kriterien weitestgehend erfüllten.

Die erste Messstelle (MS Photo 1) lag am Chrummbach nahe der Chlusmatte, zirka 5 km nordwestlich von Simplon-Dorf entfernt.

Hier wurden die Kameras für die Aufnahmen wie folgt installiert: Ein Drahtseil wurde zwischen Bäumen über den Chrummbach gespannt, auf dem eine Alu-

miniumleiter mit zwei Rollen absturzsicher gehängt wurde. Die beiden Kameras konnten in frei wählbarem Abstand (Basis bis zu 3,8 Metern) durch zwei Metallgestänge stabil an die Leiter montiert werden. Auf den Rollen konnte die Leiter in die gewünschte Aufnahmeposition über dem Bach gezogen werden, wo sie zusätzlich mit zwei Seilen an jedem Ende am Boden fixiert wurde, um die Kameras vor zu grossen Schwankungen durch den Wind zu schützen.

Die zweite Messstelle (MS Photo 2) befand sich am Walibach nahe Homatta, etwa 3 km nördlich von Simplon-Dorf. Bei dieser Messstelle erleichterte das steile, enge V-Tal des Walibachs die Installation des Drahtseils in erforderlicher Höhe.

3.3 Photogrammetrische Aufnahmeplanung

Erste Aufnahmen nach Installation der Kameras sollten wichtige Anhaltspunkte für die weiteren photogrammetrischen Aufnahmeplanungen geben. Dabei müssen neben den in Kapitel 3.2 erläuterten Kriterien noch einige andere Aspekte beachtet werden:

Wahl der Basislänge

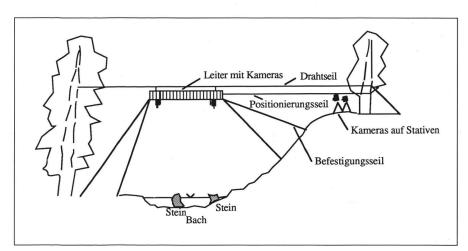


Abb. 1: Messstelle 1 am Chrummbach bei Chlusmatten (Skizze).

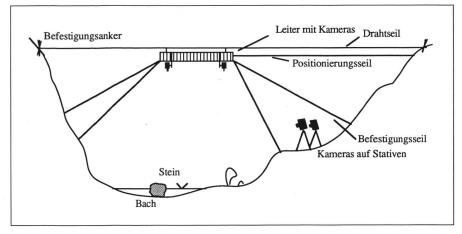


Abb. 2: Messstelle 2 am Walibach bei Homatta (Skizze).

- Bereich der Tiefenschärfe
- Kriterien für Signalisierung.

a) Basislänge

Für die Wahl einer optimalen Basislänge ist hauptsächlich ein günstiges Basishöhenverhältnis (zwischen 1:4 bis 1:20) massgebend, das für topographische Geländeaufnahmen geeignet ist und gute Objekteinsicht, ungestörte Stereoskopie und hinreichende Genauigkeit gewährleistet. Durch die Leiterlänge war bei Senkrechtaufnahmen ein Limit für die Basislänge gegeben. Bei der Messstelle 1 waren wir wegen der geringen Aufnahmehöhe von 10 m gezwungen, eine sehr kurze Basis (ca. 1.5 m) zu wählen, um den aufzunehmenden Bachabschnitt im Modellbereich vollständig abgebildet zu bekommen. Bei den übrigen Aufnahmen wurde eine Basis von ~3,70 m gewählt, was einem Basishöhenverhältnis von ~1:4 entspricht.

b) Schärfentiefe

Die aufzunehmenden Objekte mussten im Schärfentiefenbereich liegen, damit sie scharf abgebildet werden. Bei einer Brennweite von f = 50 mm, einer Gegenstandsweite von G \approx 15 m, der kleinsten Blendenzahl B = 2.8 lässt sich der Schärfentiefebereich im ungünstigsten Fall zwischen 10 m und 30 m schätzen.

c) Punktsignalisierung

Für die Passpunktsignalisierung wurden schwarz-weisse Signaltafeln mit einem Durchmesser von 10 cm verwendet, welche auf Rohren gesteckt wurden, die im Boden verankert waren. Für die Schräg-

Abb. 3: Kameras mit Aufhängevorrichtung (Senkrechtaufnahmen).

Abb. 4: Kameras auf Stativen am Walibach (Schrägaufnahmen).

aufnahmen wurden die Signaltafeln senkrecht und für die Senkrechtaufnahmen zentrisch horizontal aufgesteckt.

Ferner musste für die spätere Auswertung eine erforderliche Signalgrösse eingehalten werden und die Signaltafeln sollten durch einen klaren Kontrast zur Umgebung gut zu erkennen sein. Probleme ergaben sich manchmal durch Reflexion des Sonnenlichtes, so dass man besser Signale in gelb-weisser oder orange-roter Farbe verwenden sollte, da sie günstigere Reflexionseigenschaften aufweisen.

Zusätzlich wurden neben den Signaltafeln auch grosse Steine im Bachabschnitt signalisiert, so dass sie ebenso als Passpunkte im Netz mit einbezogen werden konnten.

4. Messungen und Aufnahmen

4.1 Vermessung der PasspunktnetzeAus den Probeaufnahmen wurde ersicht-

lich, wie die Passpunkte verteilt und posi-

tioniert werden mussten, damit sie mit dem aufzunehmenden Bachabschnitt im Stereobildpaar auch abgebildet wurde. Das einzumessende Netz einer Messstelle bestand aus neun Passpunkten (sechs Punkte mit Signaltafeln und drei markierte Punkten auf Steinen im Bach) und den beiden Kamerastandorten für die Schrägaufnahmen. Die Kamerastandorte wurden auch vermarkt und im Netz mit eingemessen, um später bei der Auswertung durch Näherungswerte der Projektionszentren die Schrägaufnahmen im Auswertegerät leichter orientieren zu können. Beide Netze wurden mit kombinierten Richtungs- und Distanzmessungen be-

stimmt. Dabei wurden von vier Netzpunk-

ten die Richtungen, Distanzen und Zenitdistanzen zu allen anderen Punkten gemessen. Mit Hilfe eines Schleifennivellements wurden die Punkthöhen kontrolliert. Die Koordinaten der Netzpunkte wurden durch eine dreidimensionale Ausgleichung mit einer Genauigkeit von $s_{xy}=\pm 2$ mm für die Lage und von $s_z=1,5$ mm für die Höhe in beiden Netzen bestimmt.

4.2 Photogrammetrische Aufnahmen

Von jeder Aufnahmestation wurden bei unterschiedlichen Wasserständen je zwei bis drei Stereobilder gemacht. Das Auslösen des Aufnahmevorganges wurde durch eine Infrarot-Fernauslösung synchronisiert.

Für die Aufnahmen verwendeten wir jeweils lichtempfindliche 6×6-Diapositiv-Filme (Kodak Ektachrom 400 ASA) mit 12 Bildern, um auch bei schlechten Lichtverhältnissen eine genügend kurze Verschlusszeit wählen zu können. Um das fliessende Wasser scharf abzubilden, wählten wir die kürzeste, verfügbare Belichtungszeit von 1/500 Sekunde. Bei den Aufnahmen war die Blendenautomatik immer eingeschaltet, da es gerade bei den Senkrechtaufnahmen unmöglich war, die Blenden manuell einzustellen. Für die vorhandenen Aufnahmedistanzen wurde immer die unendliche Fokussierung gewählt. Für spätere Vergleiche wurden auch Aufnahmen mit Schwarz-Weiss-Filmen (Ilford 125 ASA) gemacht.

Zeitgleich zu den photogrammetrischen Aufnahmen erfolgten Fliesszeitenmessungen mit der Salzverdünnungsmethode zur Bestimmung der Abflussmenge und der mittleren Fliessgeschwindigkeit. Eine eindeutige zeitliche Zuordnung der Messungen und Aufnahmen war für die spätere Auswertung sehr wichtig.

5. Einzelmodellauswertungen

Für die Auswertung lagen 60 Farb- und 12 Schwarz-Weiss-Stereobildpaare vor. Für die Auswertungen wurden nur die besten Bildpaare ausgewählt, die bestimmten Kriterien genügten.

5.1 Bildauswahl

Massgebende Kriterien für eine Auswahl geeigneter Bilder waren:

- keine zu starken Kontraste zwischen hellen und dunklen Stellen
- gut messbare Rahmenmarken in jedem Bild
- genügend Passpunkte im Modellbereich
- scharfe Abbildung der Passpunktsignaltafeln und des Objektes.

Es wurden für die Auswertung 10 Stereobildpaare von Senkrechtaufnahmen (Farbbilder), ein Stereobildpaar von Senkrechtaufnahmen (Schwarz-Weiss-Aufnahme) und vier Stereobildpaare von Schrägaufnahmen (Farbbilder) ausgewählt. Dadurch konnten wir die Ergebnisse von Senkrecht- und Schrägaufnahmen, die Auswertung von Farb- und Schwarz-Weiss-Aufnahmen sowie die Ergebnisse von Senkrechtaufnahmen bei gleichen und variablen Durchflussmengen vergleichen.

5.2 Messungen und Auswertung

Die Bilder wurden am Analytischen Plotter Wild Aviolyt AC1 ausgewertet. Die Bildauswertung lief in folgenden Schritten ab:

Zuerst wurden Kalibrierungsdaten beider Kammern und die genäherten Orientierungsdaten (Koordinaten des Projektionszentrums und grob abgeschätzt die Rotationswinkel) für die Schrägaufnahmen in den Rechner des AC1 eingegeben.

Nach Herstellung der inneren Orientierung (Messung der Rahmenmarken und deren Transformation auf die Sollwerte) sowie der äusseren Orientierung (Messung der Passpunkte mit anschliessender Ausgleichung) konnte die eigentliche Messung der Uferpunkte beginnen. Zuvor wurden die Passpunkte auf dem Plotter TA2 geplottet und der Zeichenstift in diesem Passpunktnetz orientiert. Danach wurden die Uferlinien punktweise gemessen und durch Bachabschnitte wurden zuletzt digitalisiert und berechnet.

5.3 Probleme bei der Auswertung

Das grösste Problem bei der Auswertung bestand darin, die Uferlinie eindeutig zu erkennen und damit zu messen. Die Grenze zwischen Wasser, nassen Steinen und Uferstellen war schwierig zu bestimmen. Weitere Schwierigkeiten ergaben sich bei der Auswertung von verdeckten und unterbelichteten Stellen im Modellbereich. Insbesondere bei den Schrägaufnahmen wurde die diesseitige Uferkante weitestge-

Lfd. Nr.	Messstrecke Nr.	Aufnahmeart	Filmart	Durchflussmenge Q [l/s]	Wasserspiegelfl. A [m ²]
1	2	senkrecht	farbe	220	30.15
		senkrecht	farbe	220	30.32
2	2	senkrecht	farbe	241	29.50
4	2	senkrecht	s/w	242	29.27
5		senkrecht	farbe	247	30.02
6	2 2	schräg	farbe	247	29.81
7	2	senkrecht	farbe	247	29.81
8	2	schräg	farbe	247	29.64
9	2 2	senkrecht	farbe	342	38.56
10		schräg	farbe	342	36.96
11	2	senkrecht	farbe	392	33.58
12	1	senkrecht	farbe	519	44.49
13	1	senkrecht	farbe	529	44.86
14	1	senkrecht	farbe	549	45.60
15	1	schräg	farbe	549	39.28

Tab. 3: Ergebnisse der Flächenbestimmung.

hend verdeckt, so dass man als Auswerter die Wasserspiegelgrenze schätzen musste. Diese Faktoren führen dazu, dass verschiedene Operateure durch unterschiedliche Interpretation der Uferlinien zu unterschiedlichen Resultaten gelangen können

Die Grobkörnigkeit des Filmmaterials – gegeben durch die hohe Lichtempfindlichkeit des Filmes (400 ASA) – wirkte sich bei der Messung mit hoher Vergrösserung durch unscharfe Bereiche störend aus. Ausserdem erschwerten die konvergenten Aufnahmerichtungen bei den Schrägaufnahmen das stereoskopische Sehen.

Der Informationsgehalt der Farbaufnahmen war deutlich höher als in den Schwarz-Weiss-Bildern.

5.4 Ergebnisse

Die ermittelten Wasserspiegeloberflächen sind in Tabelle 3 zusammengefasst.

Aus den vorliegenden Ergebnissen können die folgenden Aussagen gemacht werden.

Die Auswertung für Messstrecke 2 zeigen:

- Das Auswerteverfahren ist relativ genau, da mehrere Auswerter bei ähnlich grossen Durchflussmengen (siehe Nr. 1–8) annähernd die gleichen Flächen bestimmen konnten. Dennoch beeinflusst die Interpretation der Uferlinie bei den Messungen das Ergebnis.
- Grössere Variationen der Durchflussmengen lassen sich durch Flächenänderungen des Wasserspiegels eindeutig feststellen.
- Die Flächendifferenz ist bei einem Vergleich von Schräg- und Senkrechtaufnahmen gering (siehe Nr. 5–8), wenn

der Auswerter die verdeckte Wassergrenze abschätzt. Hierbei beeinflusste allerdings die vorherige Auswertung des gleichen Wasserstandes in einer Senkrechtaufnahme die Schätzung der verdeckten Wassergrenze.

 Die Auswertungen von Farb- und Schwarz-Weiss-Aufnahmen im Vergleich bringen das gleiche Resultat, doch die Messungen im Schwarz-Weiss-Modell sind wegen des geringeren Informationsgehaltes aufwendiger und in einem noch höherem Masse von der Identifizierung und Abschätzung der Wassergrenze abhängig.

Für Messstrecke 1 bringen die Auswertungen folgende Resultate:

- Vom gleichen Auswerter können schon bei geringer Schwankung der Durchflussmenge Flächenänderungen festgestellt werden (siehe Nr. 12–14), wenn man davon ausgeht, dass die Änderungen grösser als die erzielte Genauigkeit liegen und die Resultate richtig sind.
- Die Flächendifferenz wird bei einem Vergleich von Schräg- und Senkrechtaufnahmen bei gleichem Abfluss zu gross, wenn die sichtbare Wasserspiegelgrenze gemessen wird und man den Verlauf im verdeckten Bereich nicht schätzt (siehe Nr. 14 und 15).

5.5 Schlussfolgerungen

Die Ergebnisse der Auswertungen zeigen, dass das photogrammetrische Verfahren sich für Flächenbestimmungen eignet und den kulturtechnischen Anforderungen genügt, da für die weitere kulturtechnische Verarbeitung der Daten nur die Flächenänderungen und nicht die absoluten Flächen

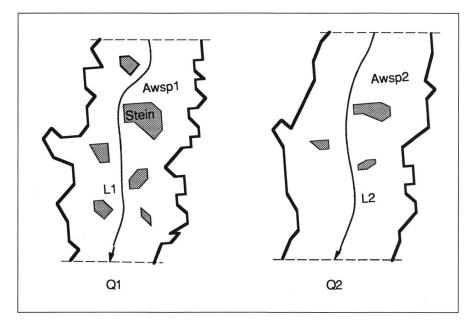


Abb. 5: Wasserspiegeloberfläche bei unterschiedlichen Durchflussmengen (Skizze, Q1 <Q2).

interessieren. Die Genauigkeit der Messungen und Auswertungen ist noch stark von Unsicherheiten bei Interpretationen und Definitionen der Wassergrenze abhängig. Wenn allerdings immer der gleiche Auswerter die Messungen am Analytischen Plotter durchführt, sollte sich Definitionsunsicherheit der Uferlinien bei allen Modellen gleich auswirken.

Es sollten auf jeden Fall Farb- den Schwarz-Weiss-Filmen vorgezogen werden.

Der Arbeitsaufwand für Senkrechtaufnahmen ist wesentlich grösser als für Schrägaufnahmen, doch die Auswertung ist einfacher.

Die Wasserspiegeloberfläche des Bachabschnittes lässt sich möglicherweise bei der Auswertung besser bestimmen, wenn man das Wasser bei den Aufnahmen färbt oder für die Aufnahmen Infrarot-Filme verwendet, die das Wasser schwarz abbilden.

6. Prinzipielle Methode zur Schätzung der **Abflussbeiwerte**

Aus der GMS-Formel lässt sich der kst-Wert berechnen, sofern man die Fliessgeschwindigkeit, das Sohlengefälle und den hydraulischen Radius kennt. In Wildbächen stellt die Schätzung des hydraulischen Radius die grösste Schwierigkeit dar. Mit der folgenden Methode wird ein schwierig zu erfassender Bachabschnitt mit inhomogenem Querschnitt einem Gerinne mit regelmässigem Profil angenähert, um daraus den hydraulischen Radius näherungsweise berechnen zu können. Mittels Auswertung der beschriebenen

photogrammetrischen Aufnahmen wird

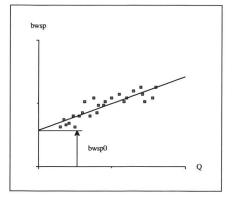


Abb. 6: Funktion der mittleren Wasserspiegelbreiten und der Durchflussmengen (Skizze).

die Ausdehnung der Wasserspiegeloberfläche Awsp, bei verschiedenen Abflussmengen Q bestimmt (Abb. 5).

Aus dem Quotienten der Wasserspiegeloberfläche und der gemessenen mittleren Fliessweglänge L, kann eine mittlere Wasserspiegelbreite bwsp, berechnet werden. Die mittleren Wasserspiegelbreiten und die Abflussmengen weisen eine funktionale Verknüpfung auf, die mittels Regression genähert bestimmt werden kann (Abb. 6). Der v-Achsenabschnitt stellt die fiktive Grösse einer minimalen Wasserspiegelbreite bwsp, dar.

Durch Umformung der Kontinuitätsgleichung lassen sich daraus die mittleren Wassertiefen in Funktion der Abflussmenge berechnen:

$$h(Q) = \frac{2 Q}{v (bwsp + bwsp_0)}$$

Stellt man die mittleren Wasserpiegelbreiten und die zugehörigen mittleren Wasser-

tiefen einander graphisch gegenüber (Abb. 7), lässt sich daraus die Gerinneform idealisieren und der hydraulische Radius berechnen. Die ausführliche Beschreibung und Herleitung kann der Dissertation von H. Hodel entnommen werden, die höchstwahrscheinlich in diesem Jahr publiziert wird.

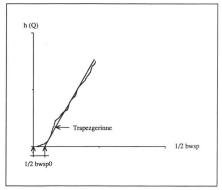


Abb. 7: Idealisiertes Trapezgerinne zur Schätzung des hydraulischen Radius (Skizze).

7. Hydrologische und morphologische Parameter der Messstellen

Die Pilotuntersuchungen wurden an zwei Wildbachabschnitten im Simplongebiet durchgeführt. Die beiden Bachabschnitte weisen bezüglich Morphologie, Rauheit, Gefälle und Breite der Gerinne sowie Grösse und Retensionsvermögen des Einzugsgebietes (Gletschereinfluss) trächtliche Unterschiede auf (siehe Tab. 4).

7.1 Messstrecke 1

Es handelt sich bei dieser Messstrecke des Chrummbaches beim Weiler Chlusmatten (in unmittelbarer Nähe der Simplonpassstrasse zwischen Simplon-Dorf und Simplon-Pass) um einen flachen Bachabschnitt. Der obere Teil der Messstrecke weist einige kleinere Abstürze auf. Die Gesteine bestehen aus Glimmerschiefer und Serizit-Chlorit-Gneis.

7.2 Messstrecke 2

Diese Messstrecke befindet sich 2,5 km nördlich von Simplon-Dorf. Es handelt sich um einen steilen Gebirgsbach, dessen Abflussregime deutlich durch den Homattugletscher beeinflusst wird. Während der Schneeschmelze kann ein deutlicher Tagesgang bei den Durchflussmengen beobachtet werden. Über die ganze Messstrecke sind zahlreiche kleinere und grössere Abstürze vorhanden. Die Steine des Bachbettes weisen im Gegensatz zu Messstrecke 1 einen geringeren Rundungsgrad auf. Die Gesteine bestehen aus Glimmerschiefer und Glimmer-Biotit-Gneis.

8. Resultate

Die Abflussmengen variierten während der sechswöchigen Messkampagne wegen den ausgebliebenen Gewittern nur um den Faktor 2 (siehe Tab. 5: Messstrecke 2). Die Resultate bestätigen die Vermutung, dass die k_{st}-Werte in Wildbächen zu hoch geschätzt wurden.

9. Ausblick

Um Messungen bei grösserer Variation der Durchflussmengen zu erhalten, sollten einerseits Langzeitmesskampagnen und andererseits Messungen während der wasserreichen Schneeschmelze durchgeführt werden. Untersuchungen in anderen Wildbächen könnten aufschlussreiche Vergleiche liefern und Auskunft über gerinnespezifische Parameter sowie ihren Einfluss auf den Abflussbeiwert geben.

Die photogrammetrischen Auswertungen zeigten, dass Schrägaufnahmen wegen zu grossen Verdeckungen nicht zu empfehlen sind. die Installationen für die Senkrechtaufnahmen sind aufwendig. Objektive mit kürzeren Brennweiten benötigen eine geringere Aufnahmehöhe und reduzieren dadurch den Installationsaufwand. Die Autoren des Artikels hoffen, dass weitere Messkampagnen ermöglicht werden, denn die Resultate zeigen deutlich, dass die Tabellen für Abflussbeiwerte von Wildbächen zu hohe Werte angeben.

Dank:

Wir danken Dieter Spörri, Andreas Kohler, Daniel Moll und Adrian Schori für die Unterstützung.

Literatur:

Chow, V. T., 1959: Open channel hydraulics. Mc Graw-Hill Book Company, London.

Dracos, Th., 1990: Hydraulik. Verlag der Fachvereine, Zürich.

Fehr, R., 1987: Geschiebeanalysen in Gebirgsbächen. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Nr. 92.

Grubinger, H., Hodel, H., 1988: Messung und Auswertung von Fliesszeiten in Steilgerinnen bei geomorphologisch verschiedenen Einzugsgebieten. Internationales Symposium Interpraevent, 1988, Graz.

Hirner, P., Kohler, A., Moll, D., Schori, A., 1989: Photogrammetrische Bestimmung der Wasserspiegeloberflächen in Wildbächen. Diplomarbeiten am Institut für Geodäsie und Photogrammetrie, Betreuung: Prof. Dr. A. Grün, Assistent: Th. Kersten.

Hirner, P., Kohler, A., Moll, D., Schori, A., 1989: Fliessverhalten von Wildbächen im Simplon-Gebiet. Diplomarbeit am Institut für Kulturtechnik, Betreuung: Prof. DDr. H. Grubinger, Assistent: H. Hodel.

	Messstrecke 1	Messstrecke 2
Koordinaten Eingabestelle	119.290/644.560	118.920/647.510
Höhe Eingabestelle [m.ü.M.]	1782	2039
Koordinaten Messstelle	119.250/644.620	118.905/647.475
Höhe Messstelle [m.ü.M.]	1778	2031
Fliessweglänge [m]	74	56
Mittlere Breite [m]	7	2.5
Mittleres Sohlengefälle [%]	5.2	13.5
Einzugsgebietsgrösse [km²] davon Gletscher [km²]	20.48 0.55	3.39 0.73
Charakt. Korndurchmesser (Anzahl untersuchter Steine:600) d ₅₀ [cm] d ₇₀ [cm] d ₉₀ [cm]	7.5 18.8 44.0	8.0 18.4 54.5
Geschiebeanalyse (Anzahl untersuchter Steine:100) Rundungsklassen [%] (Klassen nach Reichelt) kantig kantengerundet gerundet stark gerundet	0 12 69 19	0 29 59 12
Einregelungsmessung [%] (nach Poser/Hövermann) (Leser, 1977, S. 226 - 236) Sektor I Sektor II Sektor III	8 42 50	23 42 35

Tab. 4: Hydrologische und morphologische Parameter der Messstrecken.

Messstrecke	Abflussmenge Q [m³/s]	mittl. Fliessgeschw. v [m/s]	k _{st} -Werte [m¹/3/s]
1	0.52 - 0.55	0.34 - 0.35	5 - 6
2	0.21 - 0.22 0.34 - 0.39	0.55 - 0.58 0.67 - 0.68	9 -10 10 -11

Tab. 5: Die ermittelten k_{st}-Werte der untersuchten Wildbachgerinne.

Kaiser, W., 1984: Fliesswiderstandsverhalten in Gerinnen mit durchströmten Ufergehölzen (Theoretische Grundlagen zum Abfluss in wandrauhen Gerinnen). Wasserbau-Mitteilungen der Technischen Hochschule Darmstadt, Nr. 23.

Kraus, K., 1986: Photogrammetrie, (Band 1 und 2). Dümmler Verlag, Bonn.

Lange, G., Lecher, K., 1989: Gewässerregelung, Gewässerpflege (Naturnaher Ausbau und Unterhaltung von Fliessgewässern). Verlag Paul Parey, Berlin–Hamburg.

Leser, H., 1977: Feld- und Labormethoden der Geomorphologie. Walter de Gruyter, Berlin–New York.

Naudascher, E., 1987: Hydraulik der Gerinne und Gerinnebauwerke. Springer-Verlag, Wien-New York.

Reichelt, G., 1955: Untersuchungen zur Deutung von Schuttmassen des Südschwarzwaldes durch Schotteranalysen. Beiträge zur naturkundlichen Forschung in Südwestdeutschland, XIV, H1, S. 34–42.

Storchenegger, I., 1984: Orts- und ereignisbeschreibende Parameter für Niederschlag-Abfluss-Modelle. Dissertation Nr. 7479, ETH Zürich.

Strickler, A., 1923: Beiträge zur Frage der Geschwindigkeitsformeln und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen. Mitteilungen des Eidgenössischen Amtes für Wasserwirtschaft, Bern.

Zeller, J., 1974: Starkniederschläge und ihr Einfluss auf Hochwasserereignisse. Berichte der Eidgenössischen Anstalt für das forstliche Versuchswesen, Nr. 126. Adressen der Verfasser:

Hanspeter Hodel, dipl. Kulturing. ETH Institut für Kulturtechnik

Peter Hirner, dipl. Kulturing. ETH Institut für Kulturtechnik

Thomas Kersten, Dipl.-Ing. Institut für Geodäsie und Photogrammetrie ETH-Hönggerberg, CH-8093 Zürich

Bachbettgewebe

- naturreine Kokosfaser
- hohe Reissfestigkeit
- dauerhaft

Fritz AG · Hofstrasse 70 · 8032 Zürich · 01/2512704

GRANITECH AG MÜNSINGEN

Stegreutiweg 2 3110 Münsingen Telefon 031/721 45 45

Depot Willisau Telefon 045/81 1057

Unser Lieferprogramm:

Granit-Marchsteine

Abmessungen und Bearbeitung gem. Ihren Anforderungen

Gross-, Klein- und Mosaikpflaster

Diverse Grössen und Klassen grau-blau, grau-beige, gemischt

Gartentische und -bänke

Abmessungen und Bearbeitung gem. Ihren Anforderungen

Spaltplatten

(Quarzsandsteine, Quarzite, Kalksteine) für Böden und Wände, aussen und innen

Verlangen Sie eine Offerte, wir beraten Sie gerne!