Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 89 (1991)

Heft: 10

Artikel: Météorologie industrielle : évaluation des paramètres liés aux

mouvements spatiaux d'un objet le long d'un axe développement-

software et applications

Autor: Grussenmeyer, P. / Jäger, R. / Klumb, F.

DOI: https://doi.org/10.5169/seals-234607

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Partie rédactionnelle

Métrologie industrielle

Evaluation des paramètres liés aux mouvements spatiaux d'un objet le long d'un axe, développement-software et applications

P. Grussenmeyer, R. Jäger, F. Klumb

L'estimation des paramètres géométriques relatifs à la description du mouvement spatial d'un corps indéformable le long d'un axe comporte de nombreuses applications dans le domaine de la métrologie industrielle. L'observation à des instants différents d'un semis de points matérialisés finement sur l'objet suivi à partir d'un système de mesures adéquat (couple de théodolites en observations simultanées, installation photogrammétrique…) fournit les informations brutes initiales, traitées à l'aide d'un logiciel de compensation de réseaux tridimensionels. Pour la description d'un mouvement relatif à un axe et l'écriture du programme AXE, le modèle classique de Gauss-Helmert est transformé en modèle de Gauss-Markov. Pour celà on introduit de nouvelles inconnues dans la compensation, qui sont les coordonnées compensées des points-objets issus de l'une des époques arbitrairement choisie. Cette dernière est appelée époque de référence et tous les paramètres de rotation ω et de translation t sont toujours définis par rapport à la position spatiale qu'occupe l'objet dans cette époque.

Der Artikel befasst sich mit der Parameterschätzung zur Bewegung eines starren Objekts um eine räumliche Achse. Als Beobachtungen fungieren die dreidimensionalen Objektpunktkoordinaten verschiedener Bewegungszustände. Im theoretischen Abschnitt werden die Überführung der zunächst in aufeinanderfolgenden Epochen verketteten Gauss-Helmert-Modelle in ein einheitliches Gauss-Markov-Modell, der iterative Ausgleichungsprozess der Berechnung der Achsbewegungsparameter sowie die vorausgehende Beschaffung genäherter Startparameter mittels Eigenwertproblem zur Fixgeraden der kardanischen Drehung behandelt. Danach werden das zum Gauss-Markov-Modell der Achsbewegung entwickelte Programmpaket AXE, welches kein univariates Epochendesign verlangt, dessen Schnittstelle zur einem Netzausgleichungsprogramm und die in AXE realisierte Beobachtungskontrolle im Modus des Iterativen Datasnooping präsentiert. Unter den Anwendungsbeispielen werden die Sonderfälle der ausgleichenden räumlichen Geraden und die Kongruenzprüfung unter automatischer Elimination deformierter Punkte für die Analyse von GPS- oder Deformationsnetzen in zwei Epochen behandelt.

1. Introduction et enonce du problème

L'analyse tridimensionnelle des déformations d'objets, ou le suivi du déplacement spatial d'un corps dans un référentiel donné, est de plus en plus le ressort du topographe. Du fait des précisions requises, une telle étude nécessite l'emploi de procédés de mesures particuliers ainsi que l'utilisation d'instruments adéquats. Mais elle fait appel avant tout à des techniques de calculs très développées, permettant d'exploiter aux mieux les mesures acquises. L'étude présentée ici concerne la détermination des paramètres liés aux mouvements de translation et (ou) de rotation d'un corps le long d'un axe. Afin de

mieux cerner le problème mathématique à traiter, nous pouvons nous inspirer des systèmes de mesures tels qu'ils se présentent en métrologie industrielle pour le suivi de corps mobiles le long d'un axe spatial (fig. 1). Considérons désormais l'aspect géométrique du problème à partir du schéma ci-dessous: l'objet est observé à des instants (= époques différentes) à

partir de stations dont les coordonnées sont déterminées dans le système local commun. Un certain nombre de points de référence R, sont également observés à chaque fois, et leur stabilité au cours du temps est vérifiée ultérieurement par les calculs de compensation du réseau tridimensionnel ainsi formé. Les points stationnés S, et les points d'appui R, établissent le lien indispensable entre les diverses époques. Des points E, constituant une ou plusieurs bases de longueur connue, sont également observés afin de permettre la mise à l'échelle précise du réseau: dans la pratique, ces points peuvent être par exemple les extrémités d'une stadia maintenue horizontalement, et placée dans une zone d'observation favorable. Finalement après traitement de l'ensemble des mesures brutes effectuées, on obtient les valeurs les plus probables des coordonnées (x, y, z) des points-objets, ainsi que leurs précisions affichées dans la matrice des variances-covariances des inconnues de cette compensation préalable. On peut ainsi présenter les coordonnées de ces points, considérées, désormais comme des observations fictives, sous la forme de «n» vecteurs correspondant aux «n» époques de la manipulation:

La notation (x_j, j, y_y, j, z_j, j) décrit les coordonnées du point d'indice «j» observé à l'époque «i». Il n'y a pas de restriction qui impose un nombre constant «p» de points-objets par époque dans le programme $_{AXE}$ et sa flexibilité d'utilisation s'en trouve nettement améliorée.

2. Modèle mathématique

2.1 Géométrie relative aux mouvement spatiaux d'un corps rigide le long d'un

En négligeant les déformations d'un corps rigide donné, muni de «p» points-objets X_j , $= (x_j, \cdot_i, y_j, \cdot_i; z_j, \cdot_j)$ dans la ième époque, on parvient à décrire de façon similaire pour tous les points X_j , son mouvement spatial entre deux états successifs X_j , \cdot_i et X_j , \cdot_i et on évolution (époques «i» et «i+1»), selon divers modèles autorisant l'évaluation des paramètres géométriques du mouvement recherché. Dans la plupart des cas, le mouvement des points-objets X_j , \cdot_i j = 1, p (fig. 1) est décomposé en une translation t des points X_i , \cdot_i selon les grandeurs t_x , t_y , t_z

$$X_{1} = \begin{bmatrix} X_{1} & 1 & 1 & 1 \\ X_{j+1} & 1 & 1 \\ X_{p+1} & 1 & 1 \\ \vdots & X_{p+1} & 1 \end{bmatrix}, X_{2} = \begin{bmatrix} X_{1} & 2 & 1 & 1 \\ \vdots & X_{j+2} & 1 & 1 \\ \vdots & X_{p+1} & 1 & 1 \end{bmatrix}, \dots, X_{n} = \begin{bmatrix} X_{1} & 1 & 1 & 1 \\ \vdots & X_{j+n} & 1 & 1 \\ X_{j+n} & 1 & 1 & 1 \end{bmatrix}, \text{ avec } X_{j+1} = \begin{bmatrix} X_{j+1} & 1 & 1 & 1 \\ X_{j+1} & 1 & 1 & 1 \\ X_{j+1} & 1 & 1 & 1 \end{bmatrix}$$
 (1-1)

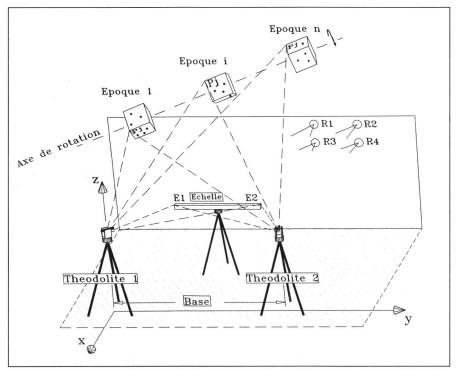


Fig. 1: Système usuel de mesure en métrologie industrielle et les points-objets décrivant le mouvement d'un corps mobile le long d'un axe.

dans la direction des axes de coordonnées, et en une rotation cardanique du semis de points, qui est décrit par la matrice de rotation R_{\Bbbk} [B8].

$$X_{j,i} + {}_{1} = R_{k} \cdot (X_{j,i} + t), \text{ avec } t = \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix} (2-1)$$

Une seconde modélisation arbitraire du mouvement s'obtient en remplaçant R_k (2–1) par la matrice rotation R_e relative d'Euler [B8]. Pour deux époques successives X_j et X_j , $_i$ + $_1$ le modèle (2–1) de transformation, décrit conventionnellement par les matrices R_k ou R_e , peut être représenté de manière équivalente par le modèle:

teur directeur normé r. Le nombre de degrés de liberté «f» permettant la description du mouvement de rotation axial, s'établit comme pour (2–1) à f = 6. Les 7 paramètres correspondants du modèle s'écriront, ensemble avec la condition que r soit normé:

$$y^{T} = (r_x, r_x, r_z, \omega, t_x, t_y, t_z) \text{ et } r_x^2 + r_y^2 + r_z^2$$

= 1. (2 - 3a, b)

Si l'on transforme le vecteur translation t (2–2a) accompagnant la rotation axiale, ou, plus généralement, tout mouvement de corps rigide entre 2 époques «i» et «i + 1», dans un système de coordonnées dont

$$\begin{split} X_{j^{1}j} +_{1} &= R_{a} \; (r_{x}, r_{y}, r_{z}, \omega) \cdot (X_{j^{1}j} + t) \\ \text{avec} \\ R_{a} &= \begin{bmatrix} (1 - r_{x}^{2}) \; \cos\omega + r_{x}^{2} & r_{x}r_{y} \; (1 - \cos\omega) + r_{z}\sin\omega & r_{x}r_{z} \; (1 - \cos\omega) - r_{y}\sin\omega \\ r_{x}r_{y} \; (1 - \cos\omega) - r_{z}\sin\omega & (1 - r_{y}^{2}) \; \cos\omega + r_{y}^{2} & r_{y}r_{z} \; (1 - \cos\omega) + r_{x} \cdot \sin\omega \\ r_{x}r_{z} \; (1 - \cos\omega) + r_{y}\sin\omega & r_{y}r_{z} \; (1 - \cos\omega) - r_{x}\sin\omega & (1 - r_{z}^{2}) \; \cos\omega + r_{x}^{2} \end{bmatrix} \end{split}$$

Du point de vue mathématique les matrices R_k , R_e et R_a – même paramétrisées différemment – sont indentiques. Le développement mathématique littéral des éléments de la matrice de rotation R_a , réalisé sur la base de transformations de coordonnées, figure dans [B5] et [B9]. Celui-ci allie une translation t (2–1) à une rotation autour de l'axe de rotation défini par le vec-

l'axe z possède la direction r (2–2b), la relation (2–2a) pourra s'écrire après une série de calculs intermédiaires comme

$$X_{j,i+1} = R_a \cdot X_{j,i} + (I - R_a) \cdot a + \tau \cdot r$$
avec
$$y^T = (r_x, r_x, r_z, \omega, a_x, a_v, a_z, \tau) \quad (2 - 4a, b)$$

le vecteur de 8 paramètres inconnues. La grandeur scalaire τ dans y (2–4b) décrit la translation des points-objets dans la direction de l'axe r. Puisque $R_a \cdot r = r$ on peut aussi écrire (2–4a) de la manière suivante:

$$X_{j_{1}+1} = R_{a} \cdot (X_{j_{1}} + \tau \cdot r) - (I - R_{a}) \cdot a$$
 (2 - 4c)

En introduisant l'égalité $X_{j,\ i}=a$ dans les relations (2–4a), on obtient $X_{j,\ i+1}=a+\tau\cdot r$. Ceci signifie ici que «a» désigne un point quelconque de l'axe. Le terme (I-R_a) · a permet donc de considérer, qu'après translation de X_{i} , $_{i}$ du vecteur $\tau \cdot r$, la rotation se réalise autour d'un axe r défini non pas par le point origine (0,0,0), mais décrit par contre par un vecteur de localisation «a» arbitraire et la relation $X = a + \tau \cdot r$. La matrice de projection (I-R_a), singulière, possède un défaut de rang d = 1, et la direction axiale r définit précisement l'espace vectoriel nul (noyau de dimension 1) de cette matrice. Ainsi le produit (I-R_o) · a «projette» automatiquement un point quelconque désigné par «a» au point de l'axe le plus proche du point origine (0,0,0), et réduit ainsi simultanément avec la condition (2-3b) le nombre de degrés de liberté au sein du vecteur «y» contenant les huit paramètres géométriques (2-4b) du modèle (2-4a), au nombre total f = 6 de degrés de liberté d'un corps indéformable.

2.2 Mouvement axial observé sur plusieurs époques. Passage du modèle Gauss-Helmert au modèle de Gauss-Markov

A partir du modèle Gauss-Helmert fondamental (2–4a, c), on peut décrire globalement un mouvement axial suivi sur «n» époques en écrivant une «ligne» selon (2–4a, –4c) pour chaque groupe de deux époques successives. Par suite aux imbrications successives des époques on accède au modèle de Gauss-Markov en définissant comme paramètres de références X_j, les observations coordonnées X_j, de la 1ère époque. Celles-ci peuvent alors étre considérées comme observations directes dans la compensation:

$$X_{j,1} + V_{j,1} = X_{j,1}$$
 (2 – 5a)

Partie rédactionnelle

cielles, dont la finalité est d'avoir substitué le système du modèle de Gauss-Helmert (2–4a) par le modèle de Gauss-Markov suivant:

problème sont, dans le concept de IMKA (Industrie Messsystem der Universität Karlsruhe), issus d'une compensation commune de toutes les époques se rap-

$$\begin{array}{lll} X_{j_{1}2} + v_{j_{1}2} = & R_{a_{1}1,2} \cdot \hat{X}_{j_{1}1} + (I - R_{a_{1}1,2}) \cdot a + \tau_{1,2} \cdot r \\ \vdots & \vdots & \vdots \\ X_{j_{1}i} + v_{j_{1}i} = & R_{a_{1}1,i} \cdot \hat{X}_{j_{1}1} + (I - R_{a_{1}1,i}) \cdot a + \tau_{1,i} \cdot r \\ \vdots & \vdots & \vdots \\ X_{j_{1}n} + v_{j_{1}n} = & R_{a_{1}1,n} \cdot \hat{X}_{j_{1}1} + (I - R_{a_{1}1,n}) \cdot a + \tau_{1,n} \cdot r \end{array} \tag{2-5b}$$

Le vecteur y des inconnues du modèle de Gauss-Markov (2–5a, b) relatif au mouvement axial, s'écrit:

portant au système de référence lié aux stations du théodolite, ou, dans le cas d'un changement de station au cours des ob-

$$y^{\mathsf{T}} = (r_{\mathsf{x}}, r_{\mathsf{y}}, r_{\mathsf{z}} \mid a_{\mathsf{x}}, a_{\mathsf{y}}, a_{\mathsf{z}} \mid \omega_{1,2}, ..., \omega_{1,1}, ..., \omega_{1,1} \mid \tau_{1,2}, ..., \tau_{1,1}, ..., \tau_{1,1} \mid x_{1,1}, ..., x_{j+1}, ..., x_{p+1}) \quad (2 - 5c)$$

Dans le cas de n = 2 époques, le modèle généralisé de mouvements axiaux (2-5a. b) est identique à (2-1) établi au chap. 2.1, relatif aux mouvements spatiaux de corps indéformables comportant six degrés de liberté. Pour n>2 il reste - au delà de (rx, ry r_z , a_x , a_y , a_z) – dans la i^{ième} époque seulement les deux degrés de liberté $\omega_{i,j}$ et $\tau_{i,j}$. Dans le cas ou la configuration des pointsobjets observés varie selon les époques et ce cas est traité par le programme AXE, des paramètres (= coordonnées de référence) supplémentaires peuvent être nécessaires. Ceux-ci seront, dans le contexte défini par (2-5a), également introduits dans le problème en tant qu'inconnues «directement observées». Ce cas se présente généralement lorsqu'au cours des rotations axiales (chap. 1), les points de l'époque de référence X_i, 1 disparaissent peu à peu du champ visible d'observation.

2.3 Procédé itératif de compensation et détermination de valeurs approchées initiales

L'évaluation des paramètres dans le modèle axial (2–5a, c) s'effectue dans le programme AXE par la méthode des moindres carrés qui, dans le cas d'une distribution normale des observations coordonnées X_j , i, fournit les paramètres y (2–5c) les plus précis et les moins perturbés. Les coordonnées des points-objets, qui constituent la «matière première» de notre

servations, lié à un système de coordonnées relatif à un ensemble de points de référence stables communs à toutes les époques. Cette compensation est préalablement réalisée à l'aide d'un programme de compensation de réseaux tridimensionnels. Les paramètres y sont déterminés dans la méthode des moindres carrés par la condition classique $v^TC^{-1}v = \min [B2,$ B6, B7]. Dans le cadre de la métrologie industrielle (fig. 1) la matrice des variancescovariances C, relative aux coordonnées observées, est pleine. Elle contient sur sa diagonale principale les sous-matrices C_i, des variances-covariances des coordonnées X_j, i observées à l'époque «i». Les blocs Cii, ki restants expriment les correlations existant entre les différentes époques «i» et «k» et les différents points «j» et «l» dans chaque époque. Le vecteur v des corrections sur les observations (2-5a, b) rassemble les différents sous-vecteurs des corrections des point-objets Xi, relatifs aux époques i = 1, n. Après linéarisation des relations finales (2-5a, b) au voisinage des paramètres approximatifs yo, on aboutit au système d'équations d'erreurs $v = A(y_0)$. dy-(X-X(y_o)). Le vecteur X(y_o) représente les coordonnées-points calculées dans le modèle géometrique (2-5a, b) à partir des paramètres approchés yo relatifs à y (2-5c). Nous ne présentons pas dans cette publication l'expression de coefficients des équations d'erreurs linéarisées des élé-

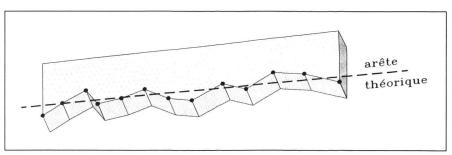


Fig. 2: Contrôle de la rectitude.

ments de la matrice $A(y_o)$, pour celà voir [B5]. Par l'application de $v^TC^{-1}v=$ min au équations d'erreurs et le modèle stochastique C des coordonnées-époques, on arrive au système d'équations normales $(A^TC^{-1}A) \cdot dy = A^TC^{-1}(X-X(y_o))$ avec un défaut d=2. Les inconnues y^i , determinées dans la $i^{ième}$ étape d'un procédé itératif s'obtiennent en partant initialement des inconnues approchées y_o , et en résolvant les équations normales à l'aide du résultat dy^i , après linéarisation et constitution de la matrice $A(y_o)$ en employant y^{i-1} . L'itération sur les paramètres s'écrit:

$$y^{i} = y^{i-1} + dy^{i} = (y_{0} + \sum_{1}^{i-1} dy^{i}) + dy^{i} = y_{0}$$

$$+ \sum_{1}^{i} dy^{i} \qquad (2 - 6)$$

L'itération cesse à la i = kième étape lorsque l'appoint dy devient inférieur à un certain seuil fixé au préalable. Comme le mouvement axial (2-5a, b) entre deux époques se décrit identiquement au mouvement spatial (2-1) quelconque d'un corps rigide possédant six degrés de liberté, et que l'axe de rotation constitue l'ensemble des points invariants par cette transformation spatiale [B5, B9], les paramètres approchés yo employés initialement dans la linéarisation de la première itération de (2-6), peuvent se calculer en recherchant la droite invariante de ce mouvement étudié sous la forme d'une transformation cardanique générale. Cette opération est réalisable par exemple dans le programme AETRA [B1]. Pour la détermination des éléments de la matrice Rk et du vecteurtranslation t entre deux époques, il n'est absolument pas nécessaire de connaitre préalablement certaines valeurs approchées [B1]. La recherche de la droite invariante par la transformation (2-1) revient à résoudre un problème de calculs de valeurs propres [B4]. Les paramètres approchés y s'obtiennent de la manière sui-

- La direction axiale r_o est le vecteur propre correspondant à la seule valeur propre réelle λ = 1 de la matrice R_k,
- l'angle de rotation $ω_o$ est la partie réelle des deux valeurs propres complexes conjugées de la matrice R_k . On y arrive à $cosω_o = \frac{1}{2}(1-\frac{3}{2}R_k(i,i))$. Les R_k (i,i) sont éléments diagonales.
- le point origine a_o de l'axe se détermine à l'aide de a_o = (I-R_k)⁺ · t.

Le signe «+» représente ici la pseudo-inverse (inverse de Moore-Penrose) d'une matrice singulière. Dans le cadre du procédé de Newton de recherche automatique des paramètres par l'itération (2–6), les angles de rotation $\omega_{\eta_{1}}$ (2–5c) joue un moindre rôle. On pourra ainsi prendre pour toutes les époques $\omega_{\eta_{1}}$ = 0 en début d'ité-

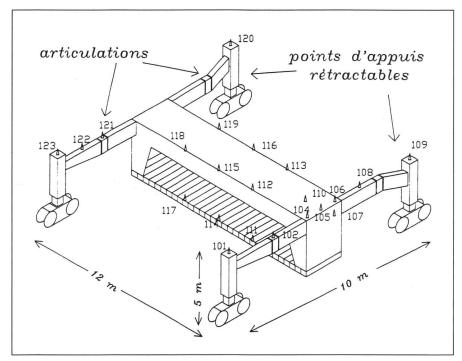


Fig. 3: Contrôle de la rigidité d'une machine.

ration. Il en va de même pour les paramètres de translation $\tau_{\rm i}, \; _{\rm i}.$

2.4 Singularité du système d'équations normales et suppression du défaut de rang

Suite aux particularités décrites au chap. 2.1, intervenant sur la partie y₁ des 6 paramètres axiaux du modèle (2–5a, b),

$$y_1^T = (r_x, r_y, r_z, a_x, a_y, a_z)$$
 (2 - 7)

il apparait dans le système d'équations normales (chap. 2.3) un défaut de rang d = 2. La suppression de ce défaut est réalisée au sein de l'itération (2–6), d'une part par l'introduction de l'équation conditionnelle pour r linéarisée

$$r_x^2 + r_y^2 + r_z^2 = 1$$
. voir (2 – 3b)

et d'autre part par l'extension du système par la condition d'orthogonalité pour a, linéarisée à chaque étape:

$$r^{\mathsf{T}} \cdot a = 0 \tag{2-8}$$

La condition (2–8) définit, à l'issue du processus itératif, un vecteur de localisation a orhtogonal à l'axe $x=a+\tau\cdot r$, et désigne ainsi le point de l'axe le plus proche du point origine (0,0,0). La nombre u des inconnues y (2–5c) comprend un nombre u_2 inchangé de paramètres y_2 liés aux épo-

ques $\omega_{\mathfrak{p}_1}$ et $\tau_{\mathfrak{p}_1}$ (2–5c), en outre un nombre $u_1=6$ paramètres y_1 (2–7) constant décrivant l'axe et un nombre $u_3=3\cdot p_1$ supplémentaire de coordonnées inconnues des points observés dans l'époque de référence. Si on note par p_i le nombre de points-objets observés dans la ième époque parmi les n étudiées, la redondance (nombre d'observations excédentaires) totale r du modèle Gauss-Markov (2–5a, b) s'écrira:

$$r = 3*\sum_{1}^{n} p_{i} - (u_{1} + u_{2} + u_{3}) + 2$$
 (2 - 9)

3. Tests statistiques pour le contrôle des observations

Le calcul d'une grandeur test Tp de contrôle du j^{ième} point $X_{j,\ i}$ (1–1) issu de la j^{ième} époque permet d'apprécier la signifiance statistique de l'erreur tridimensionnelle modélisée, relative aux coordonnées [B3, B5, B9]. Cette grandeur est, «sous l'hypothèse nulle H_o : «Le point P: $X_{j,\ i}$ considéré est compatible avec le modèle fonctionnel», soumise à une distribution centrale de Fisher, et s'écrit:

$$\begin{split} T_p = & \frac{v_p^\intercal \cdot (PQ_v P) \frac{1}{p} \cdot v_p}{2 \cdot \sigma_0^2} & \simeq F_2, \infty \\ avec & v_p = (P \cdot v)_p \end{split} \tag{3 - 1,2}$$

La matrice (3×3) $(PQ_vP)_p$ est l'extrait de la matrice globale correspondant à la partie v_p (3-2) relative au point X_j , i considéré. A cause de la singularité de la matrice $(PQ_vP)_p$, dont le défaut de rang est d=1, l'emploi de la pseudo-inverse (+) est nécessaire dans (3-1) et le nombre de degrés de liberté de la distribution de Fisher est de deux, au lieu de trois. Ce défaut met en évidence l'impossibilité de découvrir par le test (3-1) les erreurs grossières orientées à la direction de l'axe; ces dernières ne perturbent paradoxalement pas l'évaluation des paramètres géometriques y_1 (2-7) recherchés.

4. Présentation du programme «AXE»

Le programme AXE et un module du système IMKA (Industrie-Messsystem de l'Institut de Géodésie de l'université Karlsruhe) qui se compose des trois parties suivantes:

- Saisie des observations brutes: collimation initiale du couple de théodolites, mesure des angles horizontaux et des distances zénithales sur chaque pointobjet visé et contrôle simultané de la distance zénithale mesurée.
- Exploitation des observations brutes par une compensation du réseau tridimensionnel avec le programme NETZ3D [B10].
- Modules d'analyse tridimensionnelle qui se réfèrent aux coordonnées des matrices de variances-covariances venant de NETZ3D: un module pour l'analyse des formes (en projet), le programme STARR [B9] pour l'analyse des déformations et le programme AXE [B5]

Le programme AXE est conçu pour fonctionner sur un système-PC sous MS-DOS et travaille exclusivement à partir de trois fichiers qu'il écrit selon le mode séquentiel. Le fichier de coordonnées, pouvant être conservé sur une disquette, contient les coordonnées tridimensionnelles x, y, z des point-objets, ainsi que leurs numéros respectifs. Le fichier des cœfficients de poids des observations n'est pas demandé lorsque l'utilisateur a décidé de mener la compensation selon le modèle simplifié ou toutes les observations sont considérées comme non pondérées. Dans les autres cas, le nom du fichier doit obligatoirement figurer dans le fichier principal. Toutes les données sont lues séquentiellement et l'agencement des éléments doit correspondre parfaitement à l'ordre des pointsobjets utilisé dans le fichier des coordonnées (= pseudo-observations). On peut noter par ailleurs que des «tests de plausibilité» de cette matrice C sont réalisés au cours de l'enregistrement ses

Partie rédactionnelle

éléments. La lecture et le contrôle préliminaire des données sont menés avant de débuter les calculs proprement dits. Le programme vérifie la compatibilité des différentes données directrices entre elles. Certains choix formulés par l'utilisateur ne peuvent en effet être conciliables dans le programme. On ne pourra pas par exemple choisir le modèle fonctionnel relatif à la rotation exclusive d'un objet, tout en définissant dans le fichier principal des paramètres de translation approchés. Il serait donc beaucoup trop long et peu intéressant de citer l'ensemble de ces contrôles. Un message d'erreur approprié est immédiatement affiché à l'écran, et le déroulement du programme s'interrompt. Le fichier principal enfin contient les données directrices du programme de compensation, classées en 8 blocs distincts. Parmi celles-ci, on peut citer les plus importantes:

- Nom du fichier des coordonnées et nom du fichier-sortie.
- Choix du nombre des paramètres du modèle-calcul de l'axe (modèle fonctionnel).
- Choix du modèle stochastique (venant de NETZ3D ou simplifié)
- Option conçernant le «datasnooping automatique» et le choix du test statistique principal.
- Nombres maximal d'itérations et critère d'arrét du procédé itératif.
- Mode de calcul des paramètres approchés.

5. Exemples d'application

Dans ce chapitre nous présentons quelques exemples spécifiques pour démontrer les domaines d'utilisation du programme AXE.

5.1 Deux Epoques – test de congruence des réseaux points-GPS et élimination des points instables

Le programme AXE est en principe consacré à l'estimation des paramètres conçernant le mouvement d'un ensemble de points le long d'un axe. Si le nombre d'époques est limité à deux, le problème se ramène à l'analyse de la congruence des réseaux tridimensionnels – par exemple deux réseaux GPS avec des coordonnées correlées – dans le sens d'une transformation de Helmert. Le «datasnooping automatique» recherche et élimine les points instables.

5.2 Le cas special d'un axe rectiligne dans l'espace

Chaque i e poque est constituée d'un seul point-objet X_j, i. Dans ce problème, on peut interpréter chacun des point du semis, comme étant un seul point unique mo-

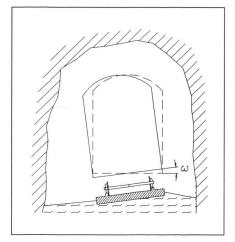


Fig. 4: Wagon test pour la coplanéité de voies ferrées.

bile qui se serait déplacé dans la direction de l'axe. On n'analyse plus ainsi globalement une forme géométrique, mais un mouvement fictif d'un point dans de multiples époques. En pratique, en accordant le même numéro à tous les points observés et en plaçant chacun d'eux dans une pseudo-époque différente, on peut étudier le mouvement fictif de translation de ce point. Ainsi l'application du programme permet le contrôle de la rectitude de pièces mécaniques ou l'étude d'autres cas d'alignement tridimensionnel (fig. 2).

5.3 Exemple concret: Contrôle de la rigidité d'une finisseuse utilisé pour les revêtements routiers en béton

La finisseuse (fig. 3) est une machine de grande envergure utilisée dans les travaux publics pour bétonner les revêtements superficiels routiers. Elle dépose, puis étale en se déplaçant la dernière couche de béton. Afin de garantir la planéité de la surface obtenue, l'ensemble mobile doit rester parfaitement rigide au cours des travaux. L'idée centrale du projet consiste à vérifier l'hypothèse d'indéformabilité de la finisseuse en soulevant cette énorme masse par l'une de ses extrémités à l'aide d'une grue suffisamment puissante! En observant le semis de repères dans les deux positions de la machine (au repos et en position suspendue), on peut vérifier si l'ensemble s'est déformé au cours de cette action.

5.4 Contrôle de la coplanéité de voies ferrées

Cette analyse tridimensionnelle de formes géométriques peut intervenir dans la pratique lors de levés de profils en travers de galeries souterraines. En effet, une technique courramment employée pour la vérification de tunnels ferroviaires, s'appuie sur les mesures réalisées à l'aide d'un profilomètre, solidaire d'un wagonnet mobile spécialement aménagé (fig. 4). Si les deux

rails de guidage du véhicule ne restent pas parfaitement coplanaires au cours du mouvement, l'ensemble du dispositif d'observation subit un basculement transversal d'angle variable. Ce défaut de coplanéité se répercute de manière plus conséquente encore sur la position des points levés dans le plan vertical du profil. Il est nécessaire dans ce cas d'évaluer l'angle de basculement de l'engin en tout point d'observation, afin de réajuster les données du profil erroné selon le défaut constaté. Dans cette optique, un semis de points est matérialisé sur les faces externes du wagonnet. L'observation de leurs coordonnées tridimensionnelles à partir de stations terrestres fixes, permet le cas échéant de déterminer les corrections angulaires à appliquer aux distances zénithales mesurées dans chaque profil.

5.5 Auscultation d'ouvrages d'art susceptibles de basculer

Les contraintes exercées sur un ouvrage d'art, sous la forme de couples de forces, peuvent, lorsque le moment fléchissant résultant devient trop important, provoquer un basculement de celui-ci autour d'un axe virtuel. Différentes campagnes de mesures permettront de déterminer les coordonnées dans un référentiel local, de repères scellés sur l'ouvrage et d'étudier leur évolution spatiale au cours du temps (fig. 5). Il est possible de vérifier si le modèle mathématique ainsi élaboré décrit avec suffisamment d'exactitude la déformation réelle de l'ouvrage, ou si au contraire certaines aspects de la déformation ont été négligés dans le modèle. On pourra par exemple remettre en cause l'hypothése d'indéformabilité du corps sur laquelle repose le modèle employé par le programme AXE. Un rejet du modèle pourrait signifier dans ce cas que l'ouvrage, bien qu'ayant subi un type de déplacement analogue à celui prévu (rotation autour d'un axe), n'est pas resté rigide au cours de son évolution.

6. Conclusion

Le programme AXE fonctionne sur PC sous MS-DOS et comporte de nombreuses applications en métrologie ainsi que l'analyse de déformations dans les réseaux GPS. Les différents projets présentés tout au long de l'article en sont quelques illustrations typiques. L'exploitation de données liée à ces exemples a permis de vérifier le déroulement parfait des opérations dans le programme et l'exactitude des formulations théoriques. Le nombre, le type et la valeur des paramètres recherchés par l'utilisateur dépendent entièrement du modèle fonctionnel choisi pour le traitement des données. Ainsi un modèle géométrique décrivant aux mieux la réalité physique du mouvement d'un corps dans

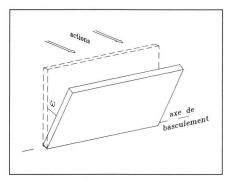


Fig. 5: Ouvrage susceptible de bascu-

l'espace, devra être fixé initialement: trajectoire considérée comme étant sinusoidale, mouvement circulaire plan, etc... La principale difficulté réside bien souvent dans ce choix fondamental, notamment lorsqu'une multitude de facteurs risquent d'influencer l'évolution spatiale de l'objet. Dans ce cas, le choix des paramètres devra être judicieux, afin de concilier la volonté d'abstraction mathématique de la réalité, avec le souci majeur de simplification du problème, permettant de réduire les temps de calcul. Inversement, par la résolution du problème selon un modèle donné, nous pouvons affirmer, sur la base de tests statistiques, si le corps en question suit effectivement une trajectoire et subit lui-même une évolution semblable à celle attendue. Si tel n'est pas le cas, le calcul pourra à nouveau être entrepris à l'aide de modèles fonctionnels plus adéquats. On entrevoit ainsi le large champ d'application offert par une telle perspective dans le domaine de l'industrie mécanique, aéronautique, navale etc... Les relations mathématiques établissant un lien entre les paramètres, sont issues dans notre cas de la géométrie élémentaire et

ont servi de base à la résolution du problème global. Il convient essentiellement, de ne pas compliquer inutilement le modèle fonctionnel de base. L'adaptation du module informatique aux besoins professionnels de l'utilisateur a constitué un point central dans la conception du programme.

Remerciements:

La recherche théorique et la programmation étaient menées dans le cadre d'une collaboration entre l'Institut de Géodesie de l'université de Karlsruhe et la filière Topographie de l'Ensai Strasbourg au cours d'un projet de fin d'études en Topographie. Nous remercions Monsieur le Professeur R. Armbruster, Directeur de l'Ensais et Monsieur le Professeur H. Kunle, Recteur de l'université de Karlsruhe pour leur sou-

Bibliographie:

- [B1] Bleich, P. et M. Illner (1989): Strenge Lösung der räumlichen Koordinatentransformation durch iterative Berechnung. AVN 96 (4): 133-144, Wichmann Verlag, Karlsruhe.
- Dupraz, H. (1985): Théorie des erreurs 2 - Statistique et calculs de compensation appliqués à la géodésie et à la mensuration. Leçon à l'Ecole Polytechnique Federale de Lausanne, octobre 1985, réimpression 1989, Lausanne.
- [B3] DVW-Landesverein Baden-Württemberg (Hrsg.) (1986): Sonderheft «Beurteilung geodätischer Netze». DVW-Mitteilungen (33), Stuttgart, 1986.
- Jeger, M. und B. Eckmann (1967): Einführung in die vektorielle Geometrie und lineare Algebra für Ingenieure und Naturwissenschaftler. Birkhäuser Verlag, Basel und Stuttgart.

- [B5] Klumb F. (1990): Evaluation des paramètres liés aux mouvements spatiaux d'un corps rigide le long d'un axe: étude théorique et implémentation software sur système compatible PC. Projet de fin d'études en Topographie. Ecole Nationale Supérieure des Arts et Industries de Strasbourg. Inédit.
- Koch, K.R. (1980): Parameterschätzung und Hypothesentests in linearen Modellen. Dümmler Verlag, Bonn.
- [B7] Mikhail, E.M. (1983): Observations and Least Squares. Dun-Donelly Publisher, New-York.
- [B8] Bronstein und Semendjiajew (1956): Taschenbuch der Mathematik. Harri Deutsch, Frankfurt/Main.
- Ziegler, C. (1990): Theoretische Herleitungen und softwaremässige Realisierung mit Simulationsstudien und Realdatenauswertungen zum Konzept einer auf Epochen-Ausgleichungen basierenden 3-D Deformationsanalyse. Diplomarbeit am Geodätischen Institut der Universtität Karlsruhe. Inédit.
- [B10] Bleich, P. (1985): Programmerstellung und Untersuchungen zur Modellbildung, Genauigkeit und Zuverlässigkeit im geometrischen 3-D-Modell. Diplomarbeit am Geodätischen Institut der Universität Karlsruhe, Inédit,

Adresses des auteurs:

Prof. Ing. Pierre Grussenmeyer Dipl.-Ing. Francis Klumb Ecole Nationale Supérieure des Arts et Industries de Strasbourg (E.N.S.A.I.S.). 24 Bld de la Victoire F-67084 Strasbourg Cedex

Dr.-Ing. Reiner Jäger Geodätisches Institut Universität Karlsruhe Englerstrasse 7, D-7500 Karlsruhe

unserer Fachzeitschrift Vermessung Die **Photogrammetrie** Kulturtechnik Geschenkidee! eine Freude bereiten?

Möchten Sie Ihren Mitarbeitern, Ihren Verwandten oder Freunden

Dann rufen Sie uns für ein Geschenkabonnement an.

1 Jahres-Abonnement

12mal jährlich informiert unsere **Fachzeitschrift** ausführlich und informativ über

- Vermessung
- Photogrammetrie und
- Kulturtechnik.

SIGWERB AG Industriestrasse 447 5616 Meisterschwanden Telefon 057/27 38 50