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Partie rédactionnelle

Métrologie industrielle
Evaluation des paramètres liés aux
mouvements spatiaux d'un objet le long
d'un axe, développement-software et
applications
P. Grussenmeyer, R. däger, F. Klumb

L'estimation des paramètres géométriques relatifs à la description du mouvement
spatial d'un corps indéformable le long d'un axe comporte de nombreuses
applications dans le domaine de la métrologie industrielle. L'observation à des instants
différents d'un semis de points matérialisés finement sur l'objet suivi à partir d'un
système de mesures adéquat (couple de théodolites en observations simultanées,

installation photogrammétrique...) fournit les informations brutes initiales,
traitées à l'aide d'un logiciel de compensation de réseaux tridimensionels. Pour la
description d'un mouvement relatif à un axe et l'écriture du programme AXE, le
modèle classique de Gauss-Helmert est transformé en modèle de Gauss-Markov.
Pour cela on introduit de nouvelles inconnues dans la compensation, qui sont les
coordonnées compensées des points-objets issus de l'une des époques arbitrairement

choisie. Cette dernière est appelée époque de référence et tous les
paramètres de rotation o> et de translation t sont toujours définis par rapport à la
position spatiale qu'occupe l'objet dans cette époque.

Der Artikel befasst sich mit der Parameterschätzung zur Bewegung eines starren
Objekts um eine räumliche Achse. Als Beobachtungen fungieren die dreidimensionalen

Objektpunktkoordinaten verschiedener Bewegungszustände. Im
theoretischen Abschnitt werden die Überführung der zunächst In aufeinanderfolgenden
Epochen verketteten Gauss-Helmert-Modelle in ein einheitliches Gauss-Markov-
Modell, der iterative Ausgleichungsprozess der Berechnung der Achsbewegungsparameter

sowie die vorausgehende Beschaffung genäherter Startparameter mittels

Eigenwertproblem zur Fixgeraden der kardanischen Drehung behandelt.
Danach werden das zum Gauss-Markov-Modell der Achsbewegung entwickelte
Programmpaket AXE, welches kein univariates Epochendesign verlangt, dessen
Schnittstelle zur einem Netzausgleichungsprogramm und die In AXE realisierte
Beobachtungskontrolle im Modus des Iterativen Datasnooping präsentiert. Unter
den Anwendungsbeispielen werden die Sonderfälle der ausgleichenden räumlichen

Geraden und die Kongruenzprüfung unter automatischer Elimination
deformierter Punkte für die Analyse von GPS- oder Deformationsnetzen in zwei
Epochen behandelt.

1. Introduction et énonce du
problème
L'analyse tridimensionnelle des déformations

d'objets, ou le suivi du déplacement
spatial d'un corps dans un référentiel
donné, est de plus en plus le ressort du
topographe. Du fait des précisions requises,
une telle étude nécessite l'emploi de
procédés de mesures particuliers ainsi

que l'utilisation d'instruments adéquats.
Mais elle fait appel avant tout à des techniques

de calculs très développées, permettant

d'exploiter aux mieux les mesures
acquises. L'étude présentée ici concerne la

détermination des paramètres liés aux
mouvements de translation et (ou) de rotation

d'un corps le long d'un axe. Afin de

mieux cerner le problème mathématique à
traiter, nous pouvons nous inspirer des
systèmes de mesures tels qu'ils se
présentent en métrologie industrielle pour le

suivi de corps mobiles le long d'un axe
spatial (fig. 1). Considérons désormais
l'aspect géométrique du problème à partir
du schéma ci-dessous: l'objet est observé
à des instants époques différentes) à

partir de stations dont les coordonnées
sont déterminées dans le système local
commun. Un certain nombre de points de
référence Ri sont également observés à

chaque fois, et leur stabilité au cours du

temps est vérifiée ultérieurement par les
calculs de compensation du réseau
tridimensionnel ainsi formé. Les points
stationnés Sj et les points d'appui Ri établissent

le lien indispensable entre les diverses

époques. Des points Ei constituant
une ou plusieurs bases de longueur connue,

sont également observés afin de
permettre la mise à l'échelle précise du
réseau: dans la pratique, ces points peuvent

être par exemple les extrémités d'une
stadia maintenue horizontalement, et
placée dans une zone d'observation
favorable. Finalement après traitement de
l'ensemble des mesures brutes effectuées, on
obtient les valeurs les plus probables des
coordonnées (x, y, z) des points-objets,
ainsi que leurs précisions affichées dans
la matrice des variances-covariances des
inconnues de cette compensation préalable.

On peut ainsi présenter les coordonnées

de ces points, considérées, désormais

comme des observations fictives,
sous la forme de «n» vecteurs correspondant

aux «n» époques de la manipulation:

La notation (Xj, ,; yy,,; zjt décrit les
coordonnées du point d'indice «j» observé à

l'époque «i». Il n'y a pas de restriction qui
impose un nombre constant «p» de
points-objets par époque dans le

programme axe et sa flexibilité d'utilisation
s'en trouve nettement améliorée.

2. Modèle mathématique
2.1 Géométrie relative aux mouvement
spatiaux d'un corps rigide le long d'un
axe
En négligeant les déformations d'un corps
rigide donné, muni de «p» points-objets Xj,

i (x,,; y«,,; z, i) dans la ième époque, on
parvient à décrire de façon similaire pour
tous les points X^, son mouvement spatial
entre deux états successifs X,, i et Xj, l+1 de
son évolution (époques «i» et «i+1»), selon

divers modèles autorisant l'évaluation
des paramètres géométriques du mouvement

recherché. Dans la plupart des cas,
le mouvement des points-objets X,, „j 1,p
(fig. 1 est décomposé en une translation t

des points Xj,, selon les grandeurs tx, ty, t2

X,=

X1M X,, 2 'x„r Xl> n

Xj, ,x2 Xj, 2 x,= x,*, xn Xp'n

xpM Xp. 2 Xp. i Xp. n

avec X,i y,. (1-1)
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Fig. 1 : Système usuel de mesure en métrologie industrielle et les points-objets
décrivant le mouvement d'un corps mobile le long d'un axe.

dans la direction des axes de coordonnées,

et en une rotation cardanique du
semis de points, qui est décrit par la matrice
de rotation Rk [B8].

i
XJ,, + 1 Rk-(Xj,i + t),avect «y (2-1)

-1

teur directeur norme r. Le nombre de
degrés de liberté «f» permettant la
description du mouvement de rotation axial,
s'établit comme pour (2-1 à f 6. Les 7
paramètres correspondants du modèle
s'écriront, ensemble avec la condition que
r soit norme:

Une seconde modélisation arbitraire du
mouvement s'obtient en remplaçant Rk (2-
1) par la matrice rotation Re relative d'Eu-
ler [B8]. Pour deux époques successives
X, et Xj, i + le modèle (2-1 de transformation,

décrit conventionnellement par les
matrices Rk ou Re, peut être représenté de
manière équivalente par le modèle:

yT (rx.rx.rz.<->.tx.ty.y et rx2 + ry2 + rz2

1. (2 - 3a, b)

Si l'on transforme le vecteur translation t
(2-2a) accompagnant la rotation axiale,
ou, plus généralement, tout mouvement
de corps rigide entre 2 époques «i» et «i +
1 », dans un système de coordonnées dont

Xj.i+1 Ra (rx,ry,rz,w) • (X,,, +1) (2 - 2a)

avec

(1- rx2) cosw + rx2 rxry (1- cosw) + rzsinw rxrz (1-cosw) - rysinw
Ra rxry (1 - cosco) - rzsinw (1- ry2) cosw + ry2 ryrz (1- cosw) + rx-sinw

rxrz (1 - cosw) + rysinw ryrz (1 - cosw) - rx sinw (1 - rz2) cosco + rx2

(2 - 2b)

Du point de vue mathématique les matrices

Rk, Re et Ra - même paramétrisées
différemment - sont indentiques. Le développement

mathématique littéral des
éléments de la matrice de rotation Ra, réalisé
sur la base de transformations de
coordonnées, figure dans [B5] et [B9]. Celui-ci
allie une translation t (2-1 à une rotation
autour de l'axe de rotation défini par le vec-

l'axe z possède la direction r (2-2b), la
relation (2-2a) pourra s'écrire après une
série de calculs intermédiaires comme

Xj.i+1 - Ra X, i + (I - Ra) a + T • r

avec

yT (rx ,r ,r ,,<a a^, a^T) (2- 4a, b)

le vecteur de 8 paramètres inconnues. La

grandeur scalaire t dans y (2-4b) décrit la

translation des points-objets dans la direction

de l'axe r. Puisque Ra • r r on peut
aussi écrire (2-4a) de la manière suivante:

Xj.i+i Ra •(Xj, + X r)--0 "Ra)"

(2

a

-4c)

En introduisant l'égalité Xt,, a dans les
relations (2-4a), on obtient X,,i+1 a + x-r.
Ceci signifie ici que «a» désigne un point
quelconque de l'axe. Le terme (l-Ra) • a

permet donc de considérer, qu'après
translation de Xj, du vecteur x ¦ r, la rotation

se réalise autour d'un axe r défini non
pas par le point origine (0,0,0), mais décrit
par contre par un vecteur de localisation
«a» arbitraire et la relation X a + x • r. La
matrice de projection (l-Ra), singulière,
possède un défaut de rang d 1, et la
direction axiale r définit précisément
l'espace vectoriel nul (noyau de dimension
1 de cette matrice. Ainsi le produit (l-Ra) ¦

a «projette» automatiquement un point
quelconque désigné par «a» au point de
l'axe le plus proche du point origine
(0,0,0), et réduit ainsi simultanément avec
la condition (2-3b) le nombre de degrés
de liberté au sein du vecteur «y» contenant

les huit paramètres géométriques (2-
4b) du modèle (2-4a), au nombre total f

6 de degrés de liberté d'un corps indéformable.

2.2 Mouvement axial observé sur
plusieurs époques. Passage du modèle
Gauss-Helmert au modèle de Gauss-
Markov

A partir du modèle Gauss-Helmert
fondamental (2-4a, c), on peut décrire globalement

un mouvement axial suivi sur «n»
époques en écrivant une «ligne» selon (2-
4a, -4c) pour chaque groupe de deux
époques successives. Par suite aux
imbrications successives des époques on
accède au modèle de Gauss-Markov en
définissant comme paramètres de références

X,, les observations coordonnées Xj,,
de la 1 ère époque. Celles-ci peuvent alors
être considérées comme observations
directes dans la compensation:

Xj,i+ vfI1 T1 (2-5a)

vjM représente ici le vecteur des corrections

appliquées aux observations
coordonnées de la première époque (ou de
toute autre époque de référence). Par
introduction recursive dans (2-4a, -4c) et
(2-5a) et en considérant la propriété Ra,,,

k
• Ra, k. i Ra> i> i

des matrices de rotation
on obtient (n-1 nouvelles équations matri-
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Partie rédactionnelle
cielles, dont la finalité est d'avoir substitué problème sont, dans le concept de IMKA
le système du modèle de Gauss-Helmert (Industrie Messsystem der Universität
(2-4a) par le modèle de Gauss-Markov Karlsruhe), issus d'une compensation
suivant: commune de toutes les époques se rap-

Xj,2 + V
Xj.i+Vj,^

Xj.n + V,,n

R..1.I -^M + O-Ra-vi) -a + x^i-r

R».1.n -Xj-l + C-Ra-lJ-a + ^'n-r

(2 - 5b)

Le vecteur y des inconnues du modèle de portant au système de référence lié aux
Gauss-Markov (2-5a, b) relatif au mouve- stations du théodolite, ou, dans le cas d'un
ment axial, s'écrit: changement de station au cours des ob-

yT= (rx,ry,rz ax,ay,az mvv..,(à. w1)n T1,2,..,T1,i,..,x1,n x,,,,.., x^,.., xpM) (2 -5c)

Dans le cas de n 2 époques, le modèle
généralisé de mouvements axiaux (2-5a,
b) est identique à (2-1) établi au chap. 2.1,

relatif aux mouvements spatiaux de corps
indéformables comportant six degrés de
liberté. Pour n>2 il reste - au delà de (rx, rf
rz, ax, a,, az) - dans la iième époque seulement

les deux degrés de liberté co„ i et x„ i.

Dans le cas ou la configuration des points-
objets observés varie selon les époques et
ce cas est traité par le programme axe, des
paramètres coordonnées de référence)
supplémentaires peuvent être nécessaires.

Ceux-ci seront, dans le contexte défini

par (2-5a), également introduits dans le

problème en tant qu'inconnues «directement

observées». Ce cas se présente
généralement lorsqu'au cours des
rotations axiales (chap. 1), les points de l'époque

de référence Xj,, disparaissent peu à

peu du champ visible d'observation.

2.3 Procédé itératif de compensation
et détermination de valeurs
approchées initiales
L'évaluation des paramètres dans le
modèle axial (2-5a, c) s'effectue dans le

programme axe par la méthode des moindres

carrés qui, dans le cas d'une distribution

normale des observations coordonnées

Xj, i, fournit les paramètres y (2-5c)
les plus précis et les moins perturbés. Les
coordonnées des points-objets, qui
constituent la «matière première» de notre

servations, lié à un système de coordonnées

relatif à un ensemble de points de
référence stables communs à toutes les
époques. Cette compensation est
préalablement réalisée à l'aide d'un programme
de compensation de réseaux tridimensionnels.

Les paramètres y sont déterminés
dans la méthode des moindres carrés par
la condition classique vTC_1v min [B2,
B6, B7j. Dans le cadre de la métrologie
industrielle (fig. 1) la matrice des variances-
covariances C, relative aux coordonnées
observées, est pleine. Elle contient sur sa
diagonale principale les sous-matrices Cj,,
des variances-covariances des coordonnées

Xj, i observées à l'époque «i». Les
blocs Cy,kl restants expriment les correlations

existant entre les différentes époques
«i» et «k» et les différents points «j» et «I»

dans chaque époque. Le vecteur v des
corrections sur les observations (2-5a, b)
rassemble les différents sous-vecteurs des
corrections des point-objets Xj,, relatifs aux
époques i 1, n. Après linéarisation des
relations finales (2-5a, b) au voisinage des
paramètres approximatifs y0, on aboutit au
système d'équations d'erreurs v A (y0) •

dy-(X-X(y0)). Le vecteur X(y0) représente
les coordonnées-points calculées dans le
modèle géométrique (2-5a, b) à partir des
paramètres approchés y0 relatifs à y (2-
5c). Nous ne présentons pas dans cette
publication l'expression de coefficients des
équations d'erreurs linéarisées des élé-

«

^—-——-~~\
arête

_" "théorique^K^SJ^^

ments de la matrice A(y0), pour cela voir
[B5]. Par l'application de v'C_1v min
au équations d'erreurs et le modèle
stochastique C des coordonnées-époques,
on arrive au système d'équations normales
(ATC"1A) • dy ATC-1(X-X(y0)) avec un
défaut d 2. Les inconnues y1, déterminées

dans la iième étape d'un procédé itératif

s'obtiennent en partant initialement des
inconnues approchées y0, et en résolvant
les équations normales à l'aide du résultat
dy', après linéarisation et constitution de la
matrice A(y0) en employant yi_1. L'itération
sur les paramètres s'écrit:

yi yî-1 + dy (Yo + 2dy) fdy y0

+ tdy
i

(2 -6)

Fig. 2: Contrôle de la rectitude.
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L'itération cesse à la i kième étape lorsque
l'appoint dyk devient inférieur à un certain
seuil fixé au préalable. Comme le mouvement

axial (2-5a, b) entre deux époques
se décrit identiquement au mouvement
spatial (2-1) quelconque d'un corps rigide
possédant six degrés de liberté, et que
l'axe de rotation constitue l'ensemble des
points invariants par cette transformation
spatiale [B5, B9], les paramètres
approchés y0 employés initialement dans la
linéarisation de la première itération de (2-
6), peuvent se calculer en recherchant la
droite invariante de ce mouvement étudié
sous la forme d'une transformation carda-
nique générale. Cette opération est
réalisable par exemple dans le programme
AETRA [B1]. Pour la détermination des
éléments de la matrice Rk et du vecteur-
translation t entre deux époques, il n'est
absolument pas nécessaire de connaître
préalablement certaines valeurs approchées

[B1]. La recherche de la droite
invariante par la transformation (2-1 revient à

résoudre un problème de calculs de
valeurs propres [B4]. Les paramètres
approchés y0 s'obtiennent de la manière
suivante:

- La direction axiale r0 est le vecteur
propre correspondant à la seule valeur
propre réelle i 1 de la matrice Rk,

- l'angle de rotation m0 est la partie réelle
des deux valeurs propres complexes
conjugées de la matrice Rk. On y arrive à

1 3

cosw0 —(1-2Rk(i,i)). Les Rk (i,i) sont

éléments diagonales.

- le point origine a0 de l'axe se détermine
à l'aide de a0 (l-Rk)+ • t.

Le signe «+» représente ici la pseudo-inverse

(inverse de Moore-Penrose) d'une
matrice singulière. Dans le cadre du

procédé de Newton de recherche automatique

des paramètres par l'itération (2-6),
les angles de rotation ra,,, (2-5c) joue un
moindre rôle. On pourra ainsi prendre pour
toutes les époques co„ i

0 en début d'ité-

Mensuration, Photogrammetrie, Génie rural 10/91
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Fig. 3: Contrôle de la rigidité d'une machine.

ration. Il en va de même pour les
paramètres de translation t„

2.4 Singularité du système
d'équations normales et suppression
du défaut de rang
Suite aux particularités décrites au chap.
2.1, intervenant sur la partie y, des 6
paramètres axiaux du modèle (2-5a, b),

y/ (rx.ry.rz.ax,ay,az) (2-7)

ques co,,, et x„, (2-5c), en outre un nombre
u, 6 paramètres y, (2-7) constant décrivant

l'axe et un nombre u3 3 • p,
supplémentaire de coordonnées inconnues

des points observés dans l'époque
de référence. Si on note par p, le nombre
de points-objets observés dans la iiéme époque

parmi les n étudiées, la redondance
(nombre d'observations excédentaires)
totale r du modèle Gauss-Markov (2-5a, b)
s'écrira:

il apparaît dans le système d'équations
normales (chap. 2.3) un défaut de rang
d 2. La suppression de ce défaut est
réalisée au sein de l'itération (2-6), d'une
part par l'introduction de l'équation
conditionnelle pour r linéarisée

r 3*Xpi-(u1 + u2+u3)+2 (2-9)

2+ r 2 + r 2 _ -j
x T ly T lz I voir (2 - 3b)

et d'autre part par l'extension du système
par la condition d'orthogonalité pour a,
linéarisée à chaque étape:

rT-a 0 (2-8)

3. Tests statistiques pour le
contrôle des observations
Le calcul d'une grandeur test Tp de
contrôle du jiè™ point Xj, i (1-1) issu de la iième

époque permet d'apprécier la signifiance
statistique de l'erreur tridimensionnelle
modélisée, relative aux coordonnées [B3,
B5, B9]. Cette grandeur est, «sous
l'hypothèse nulle H0: «Le point P: X,, i

considéré est compatible avec le modèle
fonctionnel», soumise à une distribution
centrale de Fisher, et s'écrit:

La condition (2-8) définit, à l'issue du
processus itératif, un vecteur de localisation a
orhtogonal à l'axe x a + x • r, et désigne
ainsi le point de l'axe le plus proche du

point origine (0,0,0). La nombre u des
inconnues y (2-5c) comprend un nombre u2

inchangé de paramètres y2 liés aux épo-

vT.(PQvP)p".vD
p

avec v„

2-o02

(P-v)p

F2.°°

(3-1,2)

La matrice (3x3) (PQVP)P est l'extrait de la
matrice globale correspondant à la partie
vp (3-2) relative au point Xj, i

considéré. A

cause de la singularité de la matrice
(PQvP)p, dont le défaut de rang est d 1,

l'emploi de la pseudo-inverse (+) est
nécessaire dans (3-1) et le nombre de
degrés de liberté de la distribution de
Fisher est de deux, au lieu de trois. Ce
défaut met en évidence l'impossibilité de
découvrir par le test (3-1 les erreurs
grossières orientées à la direction de l'axe; ces
dernières ne perturbent paradoxalement
pas l'évaluation des paramètres géométriques

y, (2-7) recherchés.

4. Présentation du programme
«AXE»
Le programme axe et un module du
système iMKA (Industrie-Messsystem de l'Institut

de Géodésie de l'université Karlsruhe)

qui se compose des trois parties
suivantes:

- Saisie des observations brutes: collima-
tion initiale du couple de théodolites, -
mesure des angles horizontaux et des
distances zénithales sur chaque point-
objet visé et contrôle simultané de la
distance zénithale mesurée.

- Exploitation des observations brutes
par une compensation du réseau
tridimensionnel avec le programme netz3d
[B10].

- Modules d'analyse tridimensionnelle
qui se réfèrent aux coordonnées des
matrices de variances-covariances
venant de NETZ3D: un module pour l'analyse

des formes (en projet), le

programme starr [B9] pour l'analyse des
déformations et le programme axe [B5]
traité ici.

Le programme axe est conçu pour
fonctionner sur un système-PC sous ms-dos et
travaille exclusivement à partir de trois
fichiers qu'il écrit selon le mode séquentiel.
Le fichier de coordonnées, pouvant être
conservé sur une disquette, contient les
coordonnées tridimensionnelles x, y, z des
point-objets, ainsi que leurs numéros
respectifs. Le fichier des coefficients de poids
des observations n'est pas demandé lorsque

l'utilisateur a décidé de mener la
compensation selon le modèle simplifié ou toutes

les observations sont considérées
comme non pondérées. Dans les autres
cas, le nom du fichier doit obligatoirement
figurer dans le fichier principal. Toutes les
données sont lues séquentiellement et
l'agencement des éléments doit
correspondre parfaitement à l'ordre des points-
objets utilisé dans le fichier des coordonnées

pseudo-observations). On peut
noter par ailleurs que des «tests de plausi-
bilité» de cette matrice C sont réalisés au
cours de l'enregistrement de ses
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Partie rédactionnelle
éléments. La lecture et le contrôle préliminaire

des données sont menés avant de
débuter les calculs proprement dits. Le

programme vérifie la compatibilité des
différentes données directrices entre elles.
Certains choix formulés par l'utilisateur ne
peuvent en effet être conciliables dans le

programme. On ne pourra pas par
exemple choisir le modèle fonctionnel relatif
à la rotation exclusive d'un objet, tout en
définissant dans le fichier principal des
paramètres de translation approchés. Il

serait donc beaucoup trop long et peu
intéressant de citer l'ensemble de ces
contrôles. Un message d'erreur approprié est
immédiatement affiché à l'écran, et le
déroulement du programme s'interrompt.
Le fichier principal enfin contient les
données directrices du programme de
compensation, classées en 8 blocs distincts.
Parmi celles-ci, on peut citer les plus
importantes:

- Nom du fichier des coordonnées et nom
du fichier-sortie.

- Choix du nombre des paramètres du
modèle-calcul de l'axe (modèle
fonctionnel).

- Choix du modèle stochastique (venant
de NETZ3D ou simplifié)

- Option concernant le «datasnooping
automatique» et le choix du test statistique

principal.

- Nombres maximal d'itérations et critère
d'arrêt du procédé itératif.

- Mode de calcul des paramètres
approchés.

5. Exemples d'application
Dans ce chapitre nous présentons quelques

exemples spécifiques pour démontrer

les domaines d'utilisation du

programme axe.

5.1 Deux Epoques - test de
congruence des réseaux points-GPS
et élimination des points instables
Le programme axe est en principe
consacré à l'estimation des paramètres
concernant le mouvement d'un ensemble de
points le long d'un axe. Si le nombre
d'époques est limité à deux, le problème
se ramène à l'analyse de la congruence
des réseaux tridimensionnels - par
exemple deux réseaux GPS avec des
coordonnées correlées - dans le sens d'une
transformation de Helmert. Le
«datasnooping automatique» recherche et
élimine les points instables.

5.2 Le cas special d'un axe rectiligne
dans l'espace
Chaque ilème époque est constituée d'un
seul point-objet Xj,,. Dans ce problème, on
peut interpréter chacun des point du
semis, comme étant un seul point unique mo-

Fig. 4: Wagon test pour la coplanéité de
voies ferrées.

bile qui se serait déplacé dans la direction
de l'axe. On n'analyse plus ainsi globalement

une forme géométrique, mais un
mouvement fictif d'un point dans de
multiples époques. En pratique, en accordant
le même numéro à tous les points
observés et en plaçant chacun d'eux dans
une pseudo-époque différente, on peut
étudier le mouvement fictif de translation
de ce point. Ainsi l'application du
programme permet le contrôle de la rectitude
de pièces mécaniques ou l'étude d'autres
cas d'alignement tridimensionnel (fig. 2).

5.3 Exemple concret: Contrôle de la

rigidité d'une finisseuse utilisé pour
les revêtements routiers en béton
La finisseuse (fig. 3) est une machine de
grande envergure utilisée dans les travaux
publics pour bétonner les revêtements
superficiels routiers. Elle dépose, puis étale
en se déplaçant la dernière couche de
béton. Afin de garantir la planéité de la
surface obtenue, l'ensemble mobile doit rester

parfaitement rigide au cours des
travaux. L'idée centrale du projet consiste à
vérifier l'hypothèse d'indéformabilité de la
finisseuse en soulevant cette énorme
masse par l'une de ses extrémités à l'aide
d'une grue suffisamment puissante! En

observant le semis de repères dans les
deux positions de la machine (au repos et
en position suspendue), on peut vérifier si

l'ensemble s'est déformé au cours de
cette action.

5.4 Contrôle de la coplanéité de voies
ferrées
Cette analyse tridimensionnelle de formes
géométriques peut intervenir dans la pratique

lors de levés de profils en travers de

galeries souterraines. En effet, une technique

courramment employée pour la
vérification de tunnels ferroviaires, s'appuie sur
les mesures réalisées à l'aide d'un profi-
lomètre, solidaire d'un wagonnet mobile
spécialement aménagé (fig. 4). Si les deux

rails de guidage du véhicule ne restent pas
parfaitement coplanaires au cours du

mouvement, l'ensemble du dispositif
d'observation subit un basculement transversal

d'angle variable. Ce défaut de coplanéité

se répercute de manière plus
conséquente encore sur la position des points
levés dans le plan vertical du profil. Il est
nécessaire dans ce cas d'évaluer l'angle
de basculement de l'engin en tout point
d'observation, afin de réajuster les
données du profil erroné selon le défaut constaté.

Dans cette optique, un semis de

points est matérialisé sur les faces externes

du wagonnet. L'observation de leurs
coordonnées tridimensionnelles à partir
de stations terrestres fixes, permet le cas
échéant de déterminer les corrections
angulaires à appliquer aux distances zénithales

mesurées dans chaque profil.

5.5 Auscultation d'ouvrages d'art
susceptibles de basculer
Les contraintes exercées sur un ouvrage
d'art, sous la forme de couples de forces,
peuvent, lorsque le moment fléchissant
résultant devient trop important, provoquer

un basculement de celui-ci autour
d'un axe virtuel. Différentes campagnes
de mesures permettront de déterminer les
coordonnées dans un référentiel local, de
repères scellés sur l'ouvrage et d'étudier
leur évolution spatiale au cours du temps
(fig. 5). Il est possible de vérifier si le

modèle mathématique ainsi élaboré décrit
avec suffisamment d'exactitude la
déformation réelle de l'ouvrage, ou si au
contraire certaines aspects de la déformation
ont été négligés dans le modèle. On

pourra par exemple remettre en cause
l'hypothèse d'indéformabilité du corps sur
laquelle repose le modèle employé par le

programme axe. Un rejet du modèle pourrait

signifier dans ce cas que l'ouvrage,
bien qu'ayant subi un type de déplacement

analogue à celui prévu (rotation
autour d'un axe), n'est pas resté rigide au
cours de son évolution.

6. Conclusion
Le programme axe fonctionne sur PC sous
ms-dos et comporte de nombreuses
applications en métrologie ainsi que l'analyse
de déformations dans les réseaux GPS.
Les différents projets présentés tout au
long de l'article en sont quelques illustrations

typiques. L'exploitation de données
liée à ces exemples a permis de vérifier le

déroulement parfait des opérations dans
le programme et l'exactitude des formulations

théoriques. Le nombre, le type et la

valeur des paramètres recherchés par
l'utilisateur dépendent entièrement du
modèle fonctionnel choisi pour le traitement

des données. Ainsi un modèle
géométrique décrivant aux mieux la réalité
physique du mouvement d'un corps dans
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Fig. 5: Ouvrage susceptible de basculer.

l'espace, devra être fixé initialement:
trajectoire considérée comme étant sinusoidale,

mouvement circulaire plan, etc.. La

principale difficulté réside bien souvent
dans ce choix fondamental, notamment
lorsqu'une multitude de facteurs risquent
d'influencer l'évolution spatiale de l'objet.
Dans ce cas, le choix des paramètres
devra être judicieux, afin de concilier la
volonté d'abstraction mathématique de la
réalité, avec le souci majeur de simplification

du problème, permettant de réduire
les temps de calcul. Inversement, par la
résolution du problème selon un modèle
donné, nous pouvons affirmer, sur la base
de tests statistiques, si le corps en question

suit effectivement une trajectoire et subit

lui-même une évolution semblable à
celle attendue. Si tel n'est pas le cas, le
calcul pourra à nouveau être entrepris à
l'aide de modèles fonctionnels plus
adéquats. On entrevoit ainsi le large champ
d'application offert par une telle perspective

dans le domaine de l'industrie mécanique,

aéronautique, navale etc... Les
relations mathématiques établissant un lien
entre les paramètres, sont issues dans
notre cas de la géométrie élémentaire et

ont servi de base à la résolution du
problème global. Il convient essentiellement,

de ne pas compliquer inutilement le
modèle fonctionnel de base. L'adaptation
du module informatique aux besoins
professionnels de l'utilisateur a constitué un
point central dans la conception du
programme.
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