Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 89 (1991)

Heft: 8

Artikel: Der Roboter-Theodolit Topomat : Technik, Anwendungen und

Auswirkungen auf den Beruf

Autor: Matthias, H.

DOI: https://doi.org/10.5169/seals-234597

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der Roboter-Theodolit Topomat

Technik, Anwendungen und Auswirkungen auf den Beruf

H. Matthias

An der Eidgenössischen Technischen Hochschule in Zürich hat eine interdisziplinäre Forschungsgruppe in Zusammenarbeit mit der Industrie einen Roboter-Theodolit entwickelt. Solche Instrumente der Zukunft brauchen nicht bedient zu werden. Sie detektieren die Zielpunkte selbsttätig, bestimmen deren Koordinaten in einem beliebigen Koordinatensystem und übermitteln die Resultate an einen beliebigen Ort in situ und/oder in eine Informatikzentrale. Im nachstehenden Aufsatz werden die Technik, mögliche Anwendungen und die metamorphischen Kräfte derartiger Roboter auf unseren Beruf behandelt.

A L'Ecole Potytechnique Fédérale de Zurich, un groupe de recherche interdisciplinaire — en collaboration avec un partenaire de l'industrie — a développé un théodolite-robot. De tels instruments sont capables de travailler sans opérateur. Ils détectent eux-mêmes automatiquement les points à relever, en déterminent les coordonnées dans un système quelconque et les transmettent à un endroit choisi, sur place ou vers un centre informatique. Cet article présente la technique développée pour ces instruments, des exemples d'application et les conséquences probables de l'apparition de ces robots sur les activités de la profession.

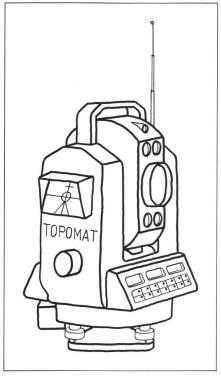


Abb. 3: Topomat 1-[5×102] [m].

Die Systemauslage

Die Messassistenten sind mit Zielpunktgeräten ausgerüstet und beziehen der Reihe nach alle Aufnahmepunkte nach Anweisungen des Aufnahmeleiters. Die Zielpunktgeräte bestehen aus einer Standlatte, einem – zumeist wahrscheinlich – optischen Reflektor und einem kleinen Sender. Bei letzterem wird es sich um ein optoelektronisches Gerät handeln, das modulierte Signale in einem relativ grossen Raumwinkel sendet und das der Assistent für einen kurzen Moment nach dem Stationsbezug einschaltet. Untereinander sind Topomat, Aufnahmeleiter, Messassi-

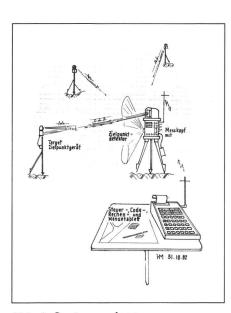


Abb. 1: Systemauslage.

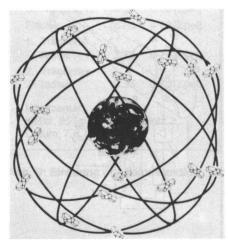
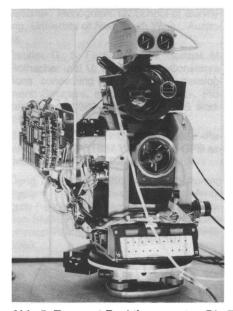


Abb. 2: Satellitenpositionierung $[5 \times 10^2] - [5 \times 10^6]$ [m].

stenten und eventuell eine entfernte Verarbeitungszentrale durch ein telematisches System miteinander verbunden.


Auf dem Stationspunkt ist der Topomat aufgestellt. Dieser ist durch verschiedene besondere Eigenschaften gekennzeichnet. Er kann sowohl ganz selbsttätig, automatisch arbeiten als auch von einem Operateur direkt bedient werden sowie fernübertragene Anweisungen empfangen. Die von ihm ermittelten direkten Messgrössen sind in herkömmlicher Weise horizontale Richtungen, Höhenwinkel, Raumdistanzen. Die Mikroprozessoren des Topomaten vermögen darüber hinaus natürlich auch verschiedenste indirekte Messgrössen zu editieren, insbesondere durch

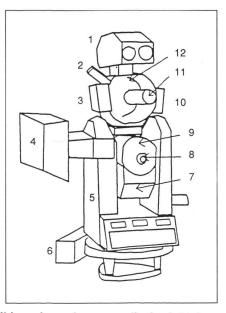


Abb. 4: 3D Koordinaten-Messsystem $[1 \times 10^{-6}] - 1,5$ [m].

eine provisorische oder definitive Lagerung (Ursprungskoordinaten, Orientierung, Metrik) gekennzeichnete Koordinaten oder gerichtete Koordinatendifferenzen in einem Projektions- oder beliebigen geodätischen System sowie Gebrauchshöhen oder gerichtete Höhendifferenzen. Der Topomat sucht die Zielpunkte selbstätig auf. Dabei ist ihm z.B. der Sender des Zielpunktgerätes behilflich. Er kann bewegliche Ziele kontinuierlich verfolgen

Partie rédactionnelle

- 1 Distomat DI 1000
- 2 Motor zum Umschalten, horizontale/vertikale Grobdetektion
- 3 Treiberstufe f. Lasersender
- 4 Elektronik des T 2000
- 5 T 2000, motorisiert
- 6 Motor für azimutale Drehung
- 7 Fokussierung
- 8 Sender für Feindetektion
- 9 Feindetektion für Fernrohr mit CCD-Kamera
- 10 Empfängerelektronik für Grobdetektion
- 11 Lasersender
- 12 Spiegeloptik mit umschaltbarer Blende für Grobdetekion

Abb. 5: Topomat Funktionsmuster. Die Bilder zeigen eine generelle Ansicht der verschiedenen Module.

und die Messwerte in beliebig definierten Intervallen editieren. Der Standort des Aufnahmeleiters ist frei. Er weist die Messassistenten an, führt und konstruiert die Vermessungsakten, kontrolliert bisweilen den Topomaten und bedient das programmierbare Registrier- und Rechentablett. Es ist mit einem Display ausgerüstet. An diesem werden die vom Topomaten übertragenen direkten oder indirekten Messwerte angezeigt, sodann vom Aufnahmeleiter eingegebene Attribute für Identifizierung und Verknüpfung, ferner Codes, z.B. für Weiterbearbeitung und Datenablage sowie Zwischen- und eventuell Schlussresultate. Vom Tablett aus kann der Aufnahmeleiter den Topomaten auch steuern, abstellen, aktivieren, Messmodi ändern etc.

Topomaten sind – neben anderen Systemen, z.B. weltweiten satellitengestützten Messsystemen und 3D-Messmaschinen in der Feinwerktechnik – 3D-Messroboter für mittlere Distanzen.

Die Grobdetektion

Bei der Grobdetektion werden Infrarotimpulse einer rechteckförmigen Diode mittels einer anamorphotischen, sphärischzylindrischen Optik als vertikaler Fächer in

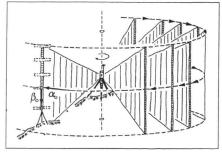
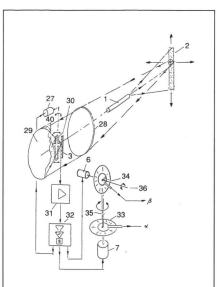
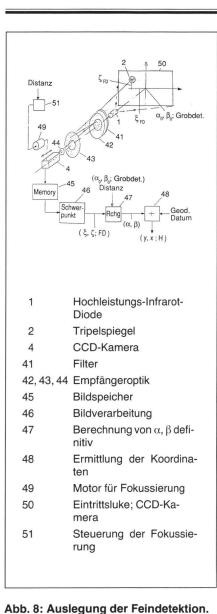
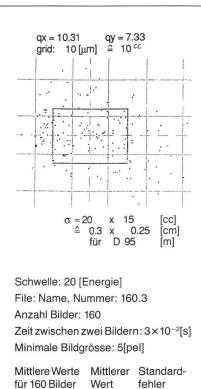



Abb. 6: Prinzip der Grobdetektion.

- 1 Lasersender
- 2 Tripelspiegel und Fächer
- 3 Empfängerdiode Grobdetektion
- Motoren für azimutale- und Elevationsdrehung
- 27 Motor für Schlitzblende
- 28 Spektralfilter 40 nm
- 29 Mangin Spiegel
- 30 Schlitzblende drehbar
- 31 Vorverstärker
- 32 Signalverarbeitung
- 33 Teilkreis, Azimutal
- 34 Teilkreis, Elevation
- 35 Azimutal-Achse36 Kippachse
- 40 Schlitzblende, fest

Abb. 7: Auslegung der Grobdetektion.


den Raum geworfen. Motorisch angetrieben, scant dieser Fächer rundherum über den Horizont oder nur in der Umgebung eines per Funk übermittelten Sektors. In dem Moment, wo auf den irgendwo positionierten Reflektor Energie auftritt, sendet er diese vollumfänglich zum elektrooptischen Empfängersystem des Topomaten zurück. Das verstärkte und verarbeitete Signal stoppt den horizontalen Antrieb. Nun erfolgt der vertikale Scanvorgang in ähnlicher Weise bei feststehender horizontaler Richtung. Die Schlitzblende im Empfänger wird in die horizontale Lage gedreht und kippt mit dieser über den vertikalen Fächer herunter, bis das Reflektorsignal auch diesen Antrieb stoppt.


Die Feindetektion

Nach der automatischen Feststellung der Näherungswerte α_o , β_o an den Teilkreisen erfolgt die Feindetektion. Sie umfasst die automatische elektrooptische Distanzmessung (Impulslaufzeit oder Phasenmessung) und die Verbesserung der Näherungswerte α_o , β_o . Dazu wird die Austrittspupille der Senderoptik über den Reflektor und die Empfängeroptik auf den Array einer CCD-Kamera abgebildet. Mit Bildverarbeitung (z.B. Schwerpunktbildung) erfolgt die Berechnung der Ablageverbesserung gegenüber der Zielachse des Systems.

Genauigkeit

Mit dem Funktionsmuster wurden Genauigkeitsuntersuchungen dreierlei Art gemacht: alles 3-D. Die sehr erfreulichen Ergebnisse können wie folgt zusammengefasst werden:

Schwerpunkt Xs 86.62 $0.30 [\Sigma pel]$ Schwerpunkt Ys 140.90 $0.32 [\Sigma pel]$ Fläche 78.86 4.82 [Σpel] 1. Trägheits-0.14 [Σpel] radius 2.78 2. Trägheitsradius 2.35 0.11 [Σpel]

Koller 05 [m] And

Horizontal

200

D[m]

Keller, 95 [m], Anzahl Serien: 3, Datum: 7.8.85

Abb. 9: Streuung der Feindetektion.

v [cc

90

70 60 50

40 30

20

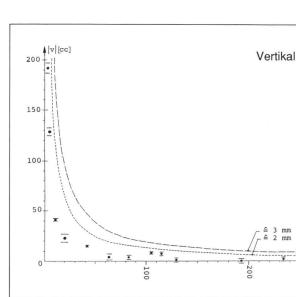


Abb. 10: Absolute Genauigkeit horizontal.

Relative Reproduzierbarkeit in der Grobdetektion horizontal und vertikal

 $\Delta_{\rm max} \approx \, \rm 100^{[cc]}$

Relative Reproduzierbarkeit in der Grob- und Feindetektion horizontal und vertikal

 $\Delta_{\rm max} \approx {\bf 3}^{\rm [cc]}$

Absolute geodätische Genauigkeit in der Grob- und Feindetektion Distanz bis zu 300 m

 $\begin{array}{ll} \text{horizontal} & & q < 1 \text{ [mm]} \\ \text{vertikal} & & q \approx 1 \text{ [mm]} \end{array}$

Das Pegeldiagramm

Als das eigentliche «Sine qua non» von derartigen Theodolitrobotern kann die Beherrschung der Energieverhältnisse bezeichnet werden. Erläuterung des Pegeldiagramms: Gemeint ist einerseits die Transformation der durch die Natur und technischen Rohdaten vorgegebenen Energiewerte in eine der Metrologie zugängliche Energiebilanz zwischen den Nutzsignalen und den Rauscheffekten. Anderseits ist die sehr grosse Dynamik der Nutzsignale infolge Turbulenz gemeint. Die Mittel, die dafür zur Verfügung stehen, sind mechanischer, optischer und elektronischer Art. Mit einer Massnahme wird das Signal verstärkt, in allen anderen werden Störsignale und das Rauschen nach bester Möglichkeit gemindert. Es handelt sich um mechanische Blenden in Sender(n) und Empfänger(n), optische Interfrequenzfilter, elektronische Filter nach Massgabe der Impulslaufzeit und der Im-

Partie rédactionnelle

Messbereich:

Distanz:

3-300 [m]

Azimut:

360 [°]

Elevation:

 \pm 11 [°] schrittweise bis $\approx \pm$ 75 [°]

Messgenauigkeit:

 $(2\sigma bis 3\sigma)$

Distanz: Quer:

5 [mm] (DI 2000)

Grobdetektion 6 [mgon]

(≙ 10⁻⁴rad ≙ 3 [cm] in 300 [m]) Feindetektion 0,6 [mgon]

(\$\text{\text{\$\rm 10^{-5}}}\$rad \$\text{\$\rm 3}\$ [mm] in [300 m])

Messgeschwindigkeit:

Grobdetektion:

 \approx 100 [ms/grad]

Feindetektion:

≙ 36 s pro Umdrehung

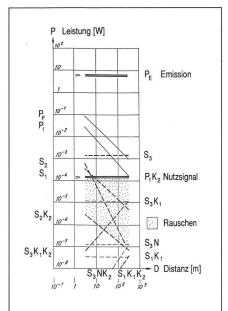
Identifikation:

Vertikale Anordnung von 2 Spiegeln (8 Stellungen in je 1 cm Abstand)

Technische Daten des Laborinstrumentes.

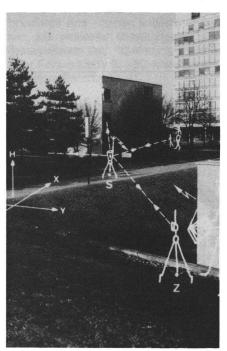
pulslänge sowie einen distanzabhängigen nicht linearen Signalprozessor.

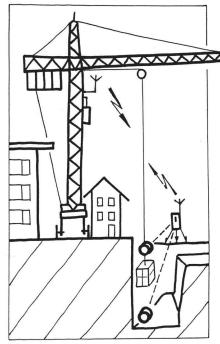
Lasersicherheit


Die «Accessible Emission Limits» (AEL) schreiben Maximalwerte für die flächenbezogene impulsmässige Energie sowie für die gleichermassen definierte mittlere Leistung vor, welche dem Auge zugänglich sein darf. Die Energie- und Leistungsspitzen liegen beim Topomat und der jetzigen Betriebsart von 4 kHz innerhalb der Normwerte 3 A. Diese sind durch die Merkmale «nicht gefährlich bei blossem Auge, gefährlich bei optisch bewaffntetem Auge» gekennzeichnet. Bei Laserbetrieb mit 10 kHz, was eigentlich wünschenswert wäre, müsste Hand in Hand eine Reduktion der Länge der Sendeimpulse von 40 auf 20 ns erfolgen.

Anwendungen

Ein derartiges System wird natürlich auch für Stückvermessungen aller Art, für die Ingenieurvermessung und in der Industrie von ausserordentlicher Bedeutung sein und vielerlei Methoden ändern sowie neue ermöglichen; z.B. die Einmannvermes-


Metamorphische Kräfte auf unseren Beruf


Die Ansätze zu Professionalismus (Ausbildung, Prüfungen mit anerkanntem Fähigkeitsausweis, Weiterbildung, Berufsstrukturen, Berufsorganisation, Rechtsgrundlagen, Fachnormen, Honorarnormen, Offentlichkeitsarbeit) fallen in unserem Beruf und in unserem Land (und weit darüber hinaus) in den Beginn der zweiten Hälfte

- **Emittierte Leistung** P_E
- Vom Prisma reflektierte Leistung
- P₁ Nutzsignal
- Störsignal 1: S Sonne auf weisse Fläche
- Störsignal 2: S2
- Laser auf weisse Fläche
- Störsignal 3: S3 Sonne direkt in Empfänger
- N
- K, Kompensation mit Impulslauf-
- Kompensation mit nicht-linea-K₂ rem Verstärker

Abb. 12: Pegeldiagramm.

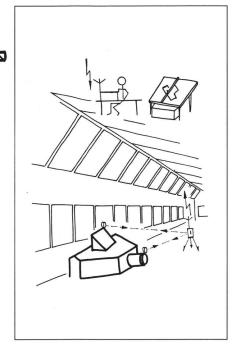


Abb. 13-15: Anwendungen.

Forschungsteam

Institut für Geodäsie und Photogrammetrie, ETHZ

Prof. Dr.

Grundidee, Vorsitz H. Matthias

des Teams

P. Herter Geodätische

Messungen

Buchhaltung E. Bischof

Celio Engineering SA

Dr. T. Celio Technische Leitung,

> Entwicklung von Systemkomponenten Lasersender Opto-Elektronik Patentredaktion

Institut für Elektronik, ETHZ

Prof. Dr.

W. Guggenbühl Wissenschaftliche Leitung Elektronik

B. Schneuwly Realisierung E. Hiltebrand Opto-Elektronik Bildverarbeitung T. Gunzinger A. Morbach Modulsteuerung

P. Aschwanden Patentrecherche

Wild-Leitz AG

Motorisierter A. Spiegel

Theodolit

F. Königslehner Distanzmesser Dr. B. Gächter Optikrechnung R Wenk Konstruktion Dr. K. Hildebrand Modulbau

den und qualifizierenden Inhalte können nun mehr und mehr weitgehend von Topomaten, Computern und Plottern übernommen werden. Damit wird das Landvermessen - Können und Geschäft - gegenüber dem früher sehr eng abgesteckten Kreis von Vermessungsinsidern weit geöffnet. Weitere, bisher aussenstehende Berufsgruppen und Individuen verschiedener Ausbildungsstufen werden sich im Landvermessen erfolgreich betätigen können. Es wird neue Firmen geben. Bisher ausschliesslich anders orientierte Firmen werden sich auch dieser Sparte zuwenden. Auftraggeber können die früher bestellten Werke selber beschaffen.

Die Konkurrenz nimmt zu, Betriebseinheiten mit effizienterem Know-how, besserer Organisation - einschliesslich Ausstattung - und besserer Führung werden im Geschäft sein.

des 19. Jahrhunderts. In der Folge zeichneten sich die Vermessungsfachleute dadurch aus. dass sie A) im Feld mit einfachen Instrumenten bei jedem Wetter und

Das Projekt ist an der Nationalen Forschungsausstellung HEUREKA 1991 ausgestellt.

zu allen Jahreszeiten mit System, genau, zuverlässig und rasch die Daten numerisch und graphisch erheben, B) das Datenmaterial mit einfachen Mitteln rasch und zuverlässig überprüfen und hernach numerisch verarbeiten und C) den graphischen Output in höchster Perfektion von Hand anfertigen konnten.

Wesentliche dieser berufskennzeichnen-

Adresse des Verfassers: Prof. Dr. H. Matthias Institut für Geodäsie u. Photogrammetrie ETH-Hönggerberg CH-8093 Zürich

Rec Fits 4

Bestehen Sie auf fortschrittliche Tachymetrie

Rec Elta 3

Ich möchte Genaueres über die fortschrittliche Tachymetrie der

☐ Rec Elta 2 ☐ Rec Elta 3

□ Rec Elta 4 erfahren.

Technische Daten

Rec Elta 2

	Genauigkeiten Winkelmessung:	TICO LITA Z	rico Ella o	Hee Lita 4
		Hz: 0,2 mgon/0,6" V: 0,2 mgon/0,6"	0,5 mgon/2" 0,5 mgon/2"	1 mgon/3" 1 mgon/3"
	Distanzmessung:	2 mm + 2 ppm	3 mm + 3 ppm	3 mm + 3 ppm
	Reichweite mit 1 Prisma maximal	1800 m 6000 m	1600 m 5000 m	1000 m 4000 m
	Kompensator Typ	Zweiachskompens.	Zweiachskompens.	Einachskompens.
	Registrierung	ohne Pufferbatterie; Datensicherheit mind.1Jahr; Speicherkapazität ca. 2000 Datenzeilen; on-line über Schnittstelle RS 232 C sorgung Betriebszeit ca. 8 Std.		
	Stromversorgung			
	Sensoren			
	Gewicht 5,9 kg (inkl. Batterie) Änderungen in Ausführung und Lieferumfang vorbe			
				ing vorbehalten.

Geo-Astor

431

Telefon 055/53 40 76

Postfach

8840 Einsiedeln