Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 87 (1989)

Heft: 10

Artikel: Vollkommene Zahlen

Autor: Fricker, F.

DOI: https://doi.org/10.5169/seals-234083

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Vollkommene Zahlen

F. Fricker

Seit der Antike heisst eine Zahl «vollkommen», wenn sie *gleich der Summe ihrer Teiler* ist (ohne die Zahl selbst). Die kleinste vollkommene Zahl ist die 6: Sie lässt sich restlos durch 1, 2 und 3 dividieren, was aufaddiert in der Tat wieder 6 liefert. Der nächste Vertreter dieser Gattung ist 28 (28 = 1+2+4+7+14). Für den Mönch Alkuin, den Lehrer Karls des Grossen, lag die überragende Bedeutung dieser Definition von Vollkommenheit auf der Hand. Denn hatte nicht Gott die Welt in 6 Tagen erschaffen? Und lässt er nicht den Mond die Erde in 28 Tagen umkreisen?

Depuis l'Antiquité, on désigne par «parfait» un nombre qui est égal à la somme de ses diviseurs (à l'exception du nombre lui-même). Le plus petit nombre parfait est le nombre 6 qui est divisible sans reste par 1, 2 et 3 et qui aussi la somme de ces trois derniers nombres. Le deuxième nombre de cet ensemble est 28 (28 = 1+2+4+7+14). Pour le moine Alkuin, le précepteur de Charlemagne, il était évident que cette définition de la perfection avait une importance primordiale. Dieu n'a-t-il pas en effet créé le monde en 6 jours? Et ne fait-il pas tourner la Lune autour de la Terre en 28 jours?

Mathematisch angegangen hat dieses Thema bereits Euklid (um 300 v. Chr.) mit seiner inzwischen berühmten Formel 2^{p-1} (2^p-1). Ihr Sinn: Ist neben p auch 2^p-1 eine Primzahl, so liefert das Produkt von 2^{p-1} und 2^p-1 eine vollkommene Zahl. Auf diese Weise hat man mit p=2, 3, 5, 7, 13, 1

17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11 213, 19 937, 21 701, 23 209, 44 497, 86 243, 13 2049, 216 091 nach und nach 30 vollkommene Zahlen entdeckt (die letzten 18 ab 1952 unter Einsatz von Elektronenrechnern). Die dem grössten «Startwert»

(die Zahl p in Euklids Formel) 216091 entsprechende vollkommene Zahl wurde am 1. September 1985 von David Slowinski während des Probelaufes eines neu installierten Supercomputers bei Chevron Geosciences in Houston (Texas) entdeckt. Danach herrschte «Funkstille».

Doch vor Jahresfrist haben Walter N. Colquitt und Luther Welsh Jr. vom Houston Area Research Center in Woodlands (Texas) herausgefunden, dass auch p = 110 503 in die genannte Liste gehört (siehe Tabelle). Da Slowinski seinerzeit nicht systematisch, sondern eher mit Instinkt auf die Pirsch ging, ist es nicht völlig verwunderlich, dass er das neue, mit seinen 66530 Stellen nur ungefähr halb so grosse Exemplar übersehen hatte. (Vollständig ausgelotet ist bis heute lediglich der Bereich der unterhalb von 110503 gelegenen Startwerte.) Das von den beiden Computerspezialisten Colquitt und Welsh formulierte Programm war übrigens derart listenreich, dass der damit betraute Supperrechner NEC SX-2 der Nippon Electric Company bereits nach 11 Minuten das Urteil «vollkommen» fällen konnte. Der von Slowinski vor drei Jahren eingesetzte Cray X-MP/24 hatte sich dagegen noch 3 Stunden abrackern müssen.

Die bisher gefundenen vollkommenen Zahlen

Startwert	produzierte vollkommene Zahl	Jahr	Entdecker	eingesetzter Compute
2	6)			
3	28	A +: 1	in Flammata was Fuldid assumbat	
5	496	Antike	in «Elemente» von Euklid erwähnt	
7	8128			
13	33550336	1461	in «Codex lat. Monac.» erwähnt	
17	8589869056	1500	1588 Cataldi	
19	137438691328	1588	Catalol	
31	2305843008139952128	1750	Euler	
61	37 Stellen	1883	Pervouchine	
89	54 Stellen	1911	Powers	
107	65 Stellen	1913	Fauquembergue	
127	77 Stellen	1876	Lucas	
521	314 Stellen			
607	366 Stellen			
1279	770 Stellen	1952	Robinson	SWAC
2203	1327 Stellen			
2281	1373 Stellen			
3217	1937 Stellen	1957	Riesel	BESK
4253	2561 Stellen 1	1961	Hurwitz	IBM 7090
4423	2663 Stellen	1901	Hulwitz	IBIVI 7 090
9689	5834 Stellen			
9941	5985 Stellen	1963	Gillies	ILLIAC II
11213	6751 Stellen			
19937	12003 Stellen	1971	Tuckerman	IBM 360/91
21701	13066 Stellen	1978	Nickel und Noll	CDC CYBER 174
23209	13973 Stellen	1979	Noll	CDC CYBER 174
44497	26790 Stellen	1979	Nelson und Slowinski	Cray 1
86243	51924 Stellen	1982	Slowinski	Cray 1
110503	66530 Stellen	1988	Colquitt und Welsh	NEC SX-2
132049	79502 Stellen	1983	Slowinski	Cray X/MP
216091	130100 Stellen	1985	Slowinski	Cray X/MP

Partie rédactionnelle

Dass man bis heute nur 31 vollkommene Zahlen gefunden hat, könnte daran liegen, dass das auf Euklid basierende Vorgehen zu wenig allgemein ist. Doch der grosse Leonhard Euler (1707–1783) konnte nachweisen, dass das Euklidische Rezept alle *geraden* vollkommenen Zahlen liefert. Hingegen hat man zum gegenwärtigen Zeitpunkt trotz einer Vielzahl von theoretischen Zwischenresultaten immer noch

keine Ahnung, ob es auch *ungerade* vollkommene Zahlen gibt. Irritierender noch: Es ist nicht einmal klar, ob es ausser den bis jetzt gefundenen vollkommenen Zahlen überhaupt eine – eventuell durchaus gerade – weitere gibt. Anderseits hat das offenbar äusserst seltene Vorkommen dieser Zahlenspezies auch etwas Tröstliches. Denn sonst wäre ja die Eigenschaft, vollkommen zu sein, nichts Besonderes.

Adresse des Verfassers: Prof. Dr. François Fricker Professor für Mathematik an der Justus-Liebig-Universität Giessen (BRD) Postfach 1336 CH-4001 Basel

Die Insolvenzentschädigung

A. Waltenspühl

Kein seltener Vorfall: Ein Arbeitgeber fällt in Konkurs und hinterlässt Mitarbeiter, deren aufgelaufene Lohnforderungen plötzlich in Frage gestellt sind. Da nützt auch die Tatsache wenig, dass ihre Forderungen grundsätzlich konkursprivilegiert sind. Denn bis es – wenn überhaupt – zu einer Auszahlung kommt, können Wochen verstreichen. Und da das Einkommen üblicherweise bereits weitgehend verplant ist, sieht der Arbeitnehmer oftmals kargen Zeiten entgegen; dunkle Wolken überziehen seinen finanziellen Horizont.

Un cas peu extraordinaire: un employeur fait faillite et délaisse des collaborateurs dont les prétentions salariales sont soudainement mises en question. Le fait-même que leurs créances sont par principe privilégiées ne leur sert de rien. Car nombre de semaines peuvent s'écouler jusqu'au paiement éventuel; et comme la majeure partie du revenu est généralement sacrifiée d'avance, l'employé se voit souvent confronté à des temps de vaches maigres. Son horizon financiel disparaît sous de lourds nuages.

Diese Problematik hat der Gesetzgeber frühzeitig erkannt und mit der sogenannten Insolvenzentschädigung ein Instrumentarium von grosser praktischer Bedeutung geschaffen, das der akuten Not zumindest die Spitze zu brechen versucht. Geregelt ist sie in Art. 51 ff. des Arbeitslosenversicherungsgesetzes (AVIG) sowie in Art. 73 ff. der dazugehörigen Verordnung (AVIV).

Vorab sei kurz der eigentliche Zweck der gesetzlichen Regelung umrissen: Die Insolvenzentschädigung deckt Lohnforderungen des Arbeitnehmers für die letzten drei Monate seit Konkurseröffnung beziehungsweise vor dem gestellten Pfändungsbegehren. Der Gesetzgeber will – und damit ist die eigentliche Grundidee angesprochen – die betreibungsrechtlich pri-

vilegierten Lohnforderungen vorzeitig schützen. Damit soll vermieden werden, dass der betroffene Arbeitnehmer durch den Verlust der Lohnforderungen in seiner Existenz bedroht wird.

Wer hat Anspruch?

Anspruch auf Insolvenzentschädigung haben beitragspflichtige Arbeitnehmer, deren zahlungsunfähige Arbeitgeber der Zwangsvollstreckung in der Schweiz unterliegen oder in der Schweiz Arbeitnehmer beschäftigen. Mit andern Worten: Die Anspruchsberechtigung wird primär von der Beitragspflicht für die Arbeitslosenversicherung abhängig gemacht. Danach gilt als beitragspflichtiger Arbeitnehmer, wer nach dem Bundesgesetz über die AHV obligatorisch versichert und für Einkommen aus unselbständiger Tätigkeit beitragspflichtig ist. Nicht gefordert wird - dies im Gegensatz zum Taggeldanspruch bei Arbeitslosigkeit -, dass sich der Arbeitnehmer über eine Mindestbeitragszeit auszuweisen braucht.

Leitenden Angestellten, die gleichzeitig Mitglied des Verwaltungsrates des konkursiten Unternehmens sind, bleibt der Anspruch auf Insolvenzentschädigung versagt. Dies deshalb, weil ihre Lohnforderungen gemäss Rechtsprechung des Bundesgerichtes nicht als betreibungsrechtlich privilegierte Forderung behandelt werden. Dagegen ist grundsätzlich nichts einzuwenden, da sich der eigentliche Zweck der Insolvenzentschädigung im Schutz von nur privilegierten Lohnforderungen erschöpft.

Worin besteht der Anspruch?

Die Insolvenzentschädigung deckt Lohnforderungen, die dem Arbeitnehmer im Zeitpunkt der Konkurseröffnung gegen den Arbeitgeber zustehen, beziehungsweise solche, für die der Arbeitnehmer selber ein Pfändungsbegehren gestellt hat. Gedeckt sind also nicht künftige Forderungen, für die noch keinerlei Arbeit geleistet wurde, sondern lediglich (aber immerhin) solche, die – weil die Arbeitsleistung erbracht wurde – bereits fällig sind.

Selbstredend obliegt der Nachweis der tatsächlichen Existenz dieser Forderung dem Arbeitnehmer. Das Gesetz kommt ihm aber insofern zu Hilfe, als er nicht einen lückenlosen Beweis zu erbringen hat: Es genügt blosse Glaubhaftmachung.

In der Praxis vermögen Verdienstangaben in schriftlichen Arbeitsverträgen, früheren Lohnabrechnungen, Stundenrapporte, möglicherweise gar Aussagen ehemaliger Vorgesetzter oder Mitarbeiter durchaus zu genügen, das Bestehen von Lohnforderungen glaubhaft zu machen. Dennoch ist zu beachten, dass die zuständige Kasse nicht leichthin Zahlungen ausrichten darf: Sie ist verpflichtet, die Angaben der Versicherten im Rahmen des Möglichen nachzuprüfen.

Erschienen in «Schweiz. Technische Zeitschrift», Zürich, Nr. 10/89.