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Fachteil

Die Interpretation
geophysikalischer Erregungen
von Polbewegung und
Rotationsschwankung
H. Jochmann

Variationen von Polbewegung und Tageslänge werden durch geophysikalische
Prozesse hervorgerufen. Diese beeinflussen das Rotationsverhalten der Erde,
wenn sie mit Massenbewegungen oder Kopplungsmomenten zwischen verschiedenen

Sphären der Erde verbunden sind.
Die Untersuchung dieser Zusammenhänge erfordert ein Modell des Rotationsverhaltens

der Erde, in dem die Kenntnisse über den inneren Aufbau der Erde soweit
berücksichtigt sind, wie es für die Interpretation der betreffenden geophysikalischen

Prozesse erforderlich ist. Die anzuwendende Lösungsmethode der aus
diesem Modell folgenden Differentialgleichungen hängt von den Informationen über
den zu untersuchenden geophysikalischen Prozess ab. Die direkte Methode
wurde erfolgreich bei der Interpretation atmosphärischer Einflüsse auf das
Rotationsverhalten der Erde angewandt, da durch die meteorologischen Organisationen

ausreichend Informationen über das Verhalten der Atmosphäre zur Verfügung
gestellt werden. Die inverse Lösung wird zweckmässig für die Interpretation von
Prozessen angewandt, deren Verlauf global nicht so gut bekannt ist, wie z.B.
Schwankungen des Meeresspiegels.
Die Untersuchung des Rotationsverhaltens der Erde in Verbindung mit geophysikalischen

Prozessen ist nicht nur wichtig für die Erklärung von Variationen der
Rotationsparameter, sondern trägt auch zum Erkennen der globalen Eigenschaften
geophysikalischer Prozesse bei.

Les variations du mouvement des pôles et de la longueur des jours sont provoqués

par des phénomènes géophysiques. Ceux-ci influencent la rotation de la
Terre lorsqu'ils sont liés à des mouvements de masses et à des moments de
couplage entre les différentes sphères de la Terre.
La recherche de ces dépendances exige un modèle de la rotation de la Terre dans
lequel les connaissances sur sa constitution interne sont prises en compte
comme cela est nécessaire pour l'interprétation des phénomènes géophysiques
concernés. La méthode de résolution à appliquer et les équations différentielles
qui en résultent dépendent des informations concernant les phénomènes géophysiques

à étudier. La méthode directe a été utilisée avec succès pour l'interprétation
des influences atmosphériques sur la rotation de la Terre car des informations

sur le comportement de l'atmosphère peuvent être obtenues auprès des organisations

météorologiques. La solution inverse sera appliquée pour l'interprétation
des phénomènes dont le comportement global n'est pas bien connu, comme par
exemple les variations du niveau de la mer.
La recherche concernant la rotation de la Terre en liaison avec des phénomènes
géophysiques n'est pas seulement importante pour expliquer la variation des
paramètres de cette rotation, mais elle contribue aussi à la connaissance des
propriétés globales des phénomènes géophysiques.

gerufenen Variationen, während im

Inertialsystem äussere Momente den Hauptanteil

der Variationen hervorrufen (siehe
z.B. [9]). Zur Untersuchung geophysikalischer

Erregungen des Rotationsvektors
ist daher besonders sein Verhalten im
mitrotierenden System geeignet, wofür im

folgenden die theoretischen Grundlagen
dargestellt werden.
Die nachfolgend dargestellten Methoden
sind für die Interpretation periodischer
Prozesse geeignet, deren Periode wesentlich
länger als ein Tag ist.

1. Das Modell des
Rotationsverhaltens der Erde
Den folgenden Untersuchungen liegt ein
vereinfachtes Kern-Mantel-Modell
zugrunde, in dem die Wirkung äusserer
Momente nicht beachtet wird. Nach dem

Drehimpulssatz ergeben sich in einem mit
dem Mantel rotierenden Koordinatensystem,

dessen x3-Achse mit der mittleren

Lage der Figurenachse zusammenfällt,
folgende Bewegungsgleichungen:

dH
dt

dH
"dt

+ (wxH)=0

+ (cdxHc) Nc+Lc
(1)

In vorstehenden Gleichungen sind H und
Hc die Drehimpulse von Erde und Kern, co

ist die Winkelgeschwindigkeit des Mantels
und Nc das Trägheitskopplungsmoment
zwischen flüssigem Kern und Mantel. Lc
ist ein Kopplungsmoment zwischen Kern
und Mantel, das z.B. durch elektromagnetische

oder topographische Kopplung
erzeugt wird (siehe [12]). Nimmt man nach
POINCARÉ [11] eine einfache Rotation
des flüssigen Kerns an, so ergibt sich aus
der Trägheitsbewegung des Kerns

Nc=(ojcxH( (2)

worin coc die Winkelgeschwindigkeit des
Kerns ist. Mit (2) und

A00 CD -0) (3)

ergibt sich aus (1)

Die Rotationsgeschwindigkeit der Erde
und die Richtung der Rotationsachse sind
Schwankungen unterworfen, die durch
äussere Kräfte und die am Erdkörper
ablaufenden geophysikalischen Prozesse
hervorgerufen werden. Als äussere Kräfte
sind die Anziehungskräfte von Sonne,
Mond und Planeten bekannt, die Präzession,

Nutation und Gezeitendeformationen
hervorrufen. Neben diesen astronomisch

bedingten Einflüssen, können
geophysikalische Prozesse das Verhalten des
Rotationsvektors beeinflussen, wenn sie

mit Massenbewegungen oder Drehmomenten

zwischen verschiedenen Teilen
der Erde verbunden sind; erwähnt seien
Massenbewegungen in der Atmosphäre
und der Hydrosphäre sowie Kopplungsmomente

zwischen Erdmantel und flüssigem

Kern.
Die Variationen des Rotationsvektors der
Erde lassen sich in einem mit der Erde
rotierenden Koordinatensystem oder einem
Inertialsystem darstellen. Im mitrotierenden

Koordinatensystem dominieren die
durch geophysikalische Prozesse hervor-

dH
dt

dHt
~dT

+ (coxH) =0

(Aw x H. (4)

Die Drehimpulse in (4) sind durch folgende
Beziehungen gegeben:

H=lM(o+lccoc+h I(d + IcAü)+ h

Hc=lca)c+hc=lc((o+A(o) + hc
(5)
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Partie rédactionnelle
worin

A+C^

c12

c13

'12
A+c 22

-13

:23

'23 C+c 33

(6)

und

"c

Ac+Cii

*-1 2

c
c13

'12

Ac+c"
c

C23

22

C13

c

c23

Cc+c'33

(7)

die Trägheitstensoren der Erde und des
flüssigen Kerns sind.

'm= ' " 'c

ist der Trägheitstensor des Erdmantels. In

(6) und (7) sind A,C und Ac, Cc die
Hauptträgheitsmomente der Erde und des flüssigen

Kerns. c,j und cfj sind kleine zeitliche
Variationen der Deviationsmomente und
für i j der Hauptträgheitsmomente, die
die Änderung der Massengeometrie
infolge von Massenbewegungen am Erdkörper

beschreiben. Die dynamische Wirkung
dieser Bewegungen ruft die relativen
Drehimpulse h und hc hervor. Cg, ccij, h und
hc werden im folgenden als kleine Grössen

behandelt, deren Quadrate und
Produkte vernachlässigbar sind. Dieses
Vorgehen ist gerechtfertigt, da sich die
Massengeometrie der Erde infolge von
geophysikalischen Prozessen und
Rückkopplungseffekten, hervorgerufen durch
Polbewegung und Rotationsschwankung,
nur wenig ändert.
Zur Untersuchung des Zusammenhangs
zwischen dem Verhalten des Rotationsvektors

und geophysikalischen Prozessen
müssen Beziehungen zwischen den
Parametern des geophysikalischen Prozesses
und den Grössen hergestellt werden, die
das Verhalten des Rotationsvektors im
mitrotierenden Koordinatensystem beschreiben.

Hierzu wurden in (4) und (5) die
Beziehungen

{o^rriiCûo Aœ^niCOg

cû2=m2co0 und Aco2 n2co0 (8)

co3= (1+ m^ co0 Acû3 n3co0

eingeführt.

In (8) sind m-, und m2 die beiden Komponenten

der Polbewegung und

ITU
ATageslänge
Tageslänge

0)

ist der negative Wert der relativen Änderung

der Tageslänge. w0 ist die mittlere
Rotationsgeschwindigkeit. m1f m2 und m3
sind aus astronomischen Beobachtungen,
Satellitenbeobachtungen oder der Basis-
interferometrie nach astronomischen
Radioquellen (VLBI) ableitbar, n^ n2 und n3
beschreiben die Bewegung des Kerns
relativ zum Mantel. Sie sind keine messbaren

Grössen und können nur in
Ausnahmefällen - unter Verwendung plausibler
Hypothesen - aus der Säkularvariation
des geomagnetischen Feldes abgeleitet
werden.
Die durch Massenbewegungen hervorgerufenen

Deviationsmomente der
Trägheitstensoren (6) und (7) ergeben sich
nach folgender Formel:

c„.-/x,xjdm(t) (10)

Die Variation des axialen Hauptträgheitsmomentes

infolge von Massenbewegungen
wird nach

'33
i 2 2

: (X1+X2
' M

dm(t) - C (11)

erhalten, worin C das mittlere axiale
Hauptträgheitsmoment ist. In ähnlicher
Form ergeben sich die zeitlich variablen
Anteile der beiden äquatorialen
Hauptträgheitsmomente c-11 und c22. Die relativen
Drehimpulse erhält man nach der Formel

h J (r x v) dm (12)

Bildet man folgende komplexe Ausdrücke:

m m1 + i m2
n n1 + in2 c c13+ic23

h h1 + i h2

hc h1 + ih2
c c

L1 + iL2

so ergeben sich aus (4), unter Berücksichtigung

von (5), (6) und (7), die
Differentialgleichungen zur Beschreibung von
Variationen des Rotationsvektors,

¦ .C-A AC,
N

m-i-s-(ü0m+-^-(n + i(ü0n)

c c .h h

A A A Acoo
(13)

'c hc
m + n + i -rr— (o0 n :

c Ac Ac«i0 Acco0

Cç

Cm3 + 7^n3
c33 h 3

C Coon

(14)

m3+n3
C33 n3 L3

C Cco0 Cco0

Das Differentialgleichungssystem (13)
beschreibt die Polbewegung und (14) die
Variation der Tageslänge. Beide Gleichungssysteme

sind mathematisch voneinander
unabhängig, so dass im allgemeinen
Polbewegung und Variation der Tageslänge
getrennt behandelt werden können.
Nimmt man an, dass die zu untersuchenden

geophysikalischen Prozesse am
Erdmantel stattfinden und die charakteristischen

Frequenzen dieser Prozesse

a« (Oq

sind, so erhält man aus (13) und (14),
indem man die rechten Seiten der jeweils
zweiten Gleichungen verschwinden lässt

C-A c c
m -1 -r— con m - -r— icon-i-Au ° Ay °A^M VM M

h
i-i—+ -

VM AMCÛM^O

ITU
C33

Cm
'Mw0

+ Kr

(15)

(16)

AM A - Ac und CM C - Cc sind die
Hauptträgheitsmomente des Mantels.
Mit (15) und (16) wurden zwei Gleichungen

gewonnen, die die Beziehung
zwischen Polbewegung, Tageslänge und den
das Rotationsverhalten beeinflussenden
Eigenschaften geophysikalischer
Prozesse herstellen. Kq ist ein Integrationskonstante,

die durch Anfangswertbetrachtungen

bestimmt werden kann.
Durch Lösung der homogenen Differentialgleichung

ergibt sich aus (15) die Kreisfrequenz

der freien Polbewegung

C-A
COn (17)

(17) ist die Eigenfrequenz eines aus starrem

Mantel und flüssigem Kern bestehenden

Erdmodell. Sie ist grösser als die
EULER'sehe Kreisfrequenz der starren Erde

C-A
'EU- -C0n (18)

Hätte man die Eigenwerte auf Grund der
Gleichung (13) berechnet, so hätte sich
zusätzlich eine nahezu tägliche Frequenz
ergeben, die jedoch für die weiteren
Betrachtungen keine Bedeutung hat. Wegen
der vollständigen Darstellung des
Eigenwertproblems sei auf [9] verwiesen. (17)
stellt natürlich noch nicht die Eigenfrequenz

der realen Erde dar. Diese wird
noch durch Änderungen der Massengeometrie

infolge der durch die Polbewegung
hervorgerufenen Fliehkraftänderungen
beeinflusst. Diese bewirken Deformationen

des Erdmantels und Polgezeiten des

88 Mensuration, Photogrammetrie, Génie rural. 3/88
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Ozeans, die beide die Grösse der Kreisfrequenz

der freien Polbewegung beeinflussen

(genauere Darstellungen findet man
in [8] und [10]). Der plausibelste Wert dieser

Kreisfrequenz wird durch Analyse der
Polbewegung erhalten. Er beträgt, wenn
man als Zeiteinheit das Jahr benutzt,

'CH" (19)

worin

2. Berechnung der
Erregerfunktionen
Die Erregerfunktionen % und % erhält man
durch Berechnung der Integrale (10), (11)
und (12), deren zeitliche Variation als zeitliche

Variation der Dichte p und der
Horizontalkomponenten der Bewegungsgeschwindigkeit

(VgjSüd-nördlich, v^
westöstlich) dargestellt wird.
Führt man an Stelle des kartesischen
Koordinatensystems das geographische
ein, so erhält man folgende Erregerfunktionen

in sphärischer Approximation:

kann z.B. das Bewegungsgesetz der Kon-
tinuumsmechanik nach LAGRANGE

pv pf + div X (28)

ansetzen und die Beziehungen zwischen
dem Spannungstensor und dem
Dehnungstensor nach dem für das betreffende
Kontinuum der Erde gültigen rheologischen

Gesetz berechnen und erhält mit
der Kontinuumsgleichung

p + p divv 0 (29)

2k 1
^ „„,1

TCH=TT9a unda °.°5ä

sind.
Die CHANDLER-Frequenz aCH stimmt
hinreichend mit dem theoretisch für ein
Erdmodell mit flüssigem Kern,
elastischem Mantel und auf Polgezeiten
reagierendem Ozean berechneten Wert überein.
a ist ein Dämpfungsfaktor, der durch die
Viskosität des Mantels verursacht wird.
Mit (19) ergibt sich folgende Differentialgleichung

der Polbewegung:

1

m + a m ioCH (m -v|/) (20)

worin

V=X
ron

(21)

die Erregerfunktion ist, die aus den
Deviationsmomenten und relativen Drehimpulsen

nach

(22)C-A (C - A)co0

berechnet wird.
Die Gleichung (20) ist für Erregerfunktionen

gültig, die die Erde belasten und eine
elastische Deformation der Erdoberfläche
bewirken. Erregerfunktionen, die die Erde
nicht belasten, müssen mit dem Faktor
aEu^°CH multipliziert werden.
Die Änderung der relativen Tageslänge
wird durch die Beziehung

m3 v|/3

mit

c33 h3
v|/3

Cm Cmco0

beschrieben.

(23)

(24)

L p (<p>ut)L C-A •'v
2

p0 (<p,A.,r)) r sincp cosip exp (ik) dV

1

/vrp(<p,V)(vxsinq)
(25)

(C - A)<o0

-rv,)exp(fc)dV

V3=-r-/v(P(9.V,t)
UM v

2 2
-p0(cp,A,,r)) r cos <pdV

/v r p (<p,X,r) vxcos cp dV
CMco0

(26)

Die ersten Integrale von (25) und (26) stellen

die Variation der Massengeometrie dar,
während in den zweiten die dynamische
Wirkung der Massenbewegungen zum
Ausdruck kommt. Bei der Ermittlung der
lokalen Dichtevariationen muss man beachten,

dass die Gesamtmasse der Erde
erhalten bleibt, d.h. die Dichtevariationen
müssen gegebenenfalls um einen Wert ôp
korrigiert werden, der folgende Beziehung
befriedigen muss:

/v (p (cp.Ut) - p 0(<?\r) dV + V ôp 0

(27)

Die Integration vorstehender Integrale
muss über das Volumen der Erde ausgeführt

werden.

2.1 Die Bestimmung der
Dichtevariationen und
Bewegungsgeschwindigkeiten
Zur Bestimmung der örtlich und zeitlich
variablen Dichten und Bewegungsgeschwindigkeiten

müssen Beziehungen zwischen
diesen und messbaren Grössen des
geophysikalischen Prozesses ermittelt werden.

Diese Beziehungen folgen den Gesetzen
der Kontinuumsmechanik, die für das
Kontinuum der Erde gelten, in dem der
geophysikalische Prozess vor sich geht. Man

und gegebenenfalls der Zustandsglei-
chung

f(p,p,T) 0 (30)

(p Druck, T absolute Temperatur)
ein System partieller Differentialgleichungen,

aus dem man die Beziehungen
zwischen Dichte, Temperatur, Bewegungsgeschwindigkeit

und Deformation ermitteln
kann, vorausgesetzt, die Volumenkräfte f
sind bekannt. Es geht über das Ziel dieses
Aufsatzes hinaus, die komplizierten
Beziehungen für einen allgemeinen Deformationsfall

darzustellen. Wir wollen uns im

folgenden auf die EULER'sche
Bewegungsgleichung für ideale Flüssigkeiten

v f- —grad p
P

(31)

beschränken, die für die Konstruktion von
Erregerfunktionen wichtig ist, die durch
Bewegungen in der Atmosphäre und
Hydrosphäre verursacht werden.

2.2 Die atmosphärische
Erregerfunktion
Die Dynamik der Atmosphäre ist infolge
weltweiter meteorologischer Beobachtungen

der am besten bekannte globale
geophysikalische Prozess. An den meteorologischen

Stationen werden Luftdruck,
Temperatur, Windgeschwindigkeit und
Luftfeuchte gemessen, so dass es mittels
Gleichung (31) möglich ist, Beziehungen
zur Dichte p herzustellen. Gleichung (31)
wird in einem mit der Erde rotierendem
Koordinatensystem

v + (co x r) + co x (co x r)

+ 2 (coxv) f- —grad p
P

(32)

Die Volumenkraft f ist im vorliegenden Fall
die Schwerkraft. In einem lokalen
Koordinatensystem, dessen eine Achse nach
dem Zenit zeigt, während die beiden anderen

Achsen Tangenten an den Meridianen

Vermessung, Photogrammetrie, Kulturtechnik, 3/88 89
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(positiv südwärts) und Parallelkreisen
(positiv ostwärts) sind, erhalten wir aus (32)
für eine stationäre Atmosphäre (v O)

pvx

pv.

1

2aco0sincp 9cp

1 3p_

2aco0 sincp coscp 3A

p 3r

(33a)

(33b)

(33c)

worin a der mittlere Erdradius ist.
Gleichung (33c), in der die Corioliskraft gegenüber

dem dominierenden Einfluss der
Schwerkraft vernachlässigt wurde, ist die
Gleichung für eine statische Atmosphäre.
Neben den Gleichungen (33) benötigt
man zur Lösung des vorliegenden
Problems noch die Zustandsgieichung der
Atmosphäre. Ganz allgemein kann man
annehmen, dass die Dichte eine Funktion
der Höhe ist,

Der Faktor 0,7 in (36b) berücksichtigt die
Deformation der festen Erde infolge des
Luftdrucks. In (36a) braucht ein derartiger
Faktor nicht eingeführt zu werden, da die
Polbewegungsgleichung (20) die
Deformation der Erde infolge von Laständerungen

bereits in Rechnung stellt.
Berücksichtigt man die Zustandsglei-
chung der Atmosphäre

RT (37)

worin R die Gaskonstante ist, so erhält
man nach einigen elementaren Rechnungen

(siehe [4]) folgende Werte für die
massengeometrischen Anteile der
Erregerfunktion:

(a + hm)

(C-A) g

p p (r-a) p (h) (34)

/2 2t

ll*-*/2x-o

hm ist die effektive Höhe der Atmosphäre,
die vom gewählten Atmosphärenmodell
abhängt. Berücksichtigt man in (37) die
Änderung von g und T mit der Höhe, so
erhält man

h m= 7000m

Für eine isotherme Atmosphäre ergibt sich

h m= 6800m

Die Differenz beider Werte zeigt, dass das
Atmosphärenmodell nur einen geringen
Einfluss auf die Berechnung der Erregerfunktion

hat. Die Luftdruckdifferenzen in

(38) müssen gegenüber lokalen langzeitigen

Mitteln des Luftdrucks gebildet
werden.

Zur Bestimmung der dynamischen Anteile
der atmosphärischen Erregerfunktion

Ap0(cp,A,t) sincp cos cp exp(iA)dcp dA (38a)

Wird (34) in (33c) eingesetzt, so erhält
man

>o g/ P (r)dr (35)

V3M= -0,7-
(a + hm

cMg

/2 2it

n Ap0 (cp,A.,t) cos cp dcp dA. (38b)

h ist die effektive Höhe der Atmosphäre
und p0 der am Boden gemessene
Luftdruck. Mit Hilfe von (35) bekommt man
nach [1] eine einfache Beziehung
zwischen meteorologischer Erregerfunktion
und Luftdruck, wenn man annimmt, dass
die effektive Höhe der Atmosphäre

h «a
ist. Führt man in (25)

2
dV r coscp dr dcp dA,

ein und berücksichtigt (35), so erhält man
folgende massengeometrische Anteile der
Erregerfunktion:

27!

Xm _
(C-A) g u

a + h % 2k

Xd~
1,43

(C-A) co0inr=a<p=-y x=o

r p(cp,A,r)(vxsincp -ivj

exp(iA) coscp dcp dA.dr

V3d5

a + h

0.7

r a

3 2
r p (cp,A,r) v^cos cpdcpdAöp

(39a)

(39b)

x=o

Po (cp,A) sincp cos cp exp(iA.)dcp dA (36a)

27t

^3M= "

cm9
0,7 ll

.-%x.o

p0(cp,A)cos cpdcpdA (36b)

verwendet man in verschiedenen Höhen
gemessene Werte der Windgeschwindigkeiten.

Der Faktor 1,43 ist in (39a) eingeführt

worden, da durch XD die Erdoberfläche

keine Auflaständerung erfährt.

3. Geophysikalischer
Prozess und Lösung der
Gleichungen von
Polbewegung und
Rotationsschwankung

Für die Lösung der Gleichungen (20) und
(23) wird angenommen, die aus geophysikalischen

Prozessen abgeleiteten Erreger-
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funktionen seien durch eine Folge von
periodischen Anteilen

V(t)= X Vfexp(i27tft) (40a)
f.- oo

V3(t)= X V3,exp(i2L7T:ft) (40b)
f.-oo

gegeben, die durch eine Fouriertransformation

aus den in der Regel numerisch
gegebenen Erregerfunktionen abgeleitet
werden können. Wird (40a) in (20) eingesetzt,

so erhalten wir folgende Lösung der
Differentialgleichung (20):

m(t) X t (f) v|/f exp(i27cft)
f=-oo

+ ¥foexp(i(aCH+ia)t)

I l(f)v(f,t) + m(f0,t). (41)
f -oo

In (41) ist

l(f)
(1

f

"fo" ]à]
(1- è" i

+
4Q2

(42)

die frequenzabhängige Übertragungsfunktion

mit der CHANDLER-Frequenz

f0 —= 0,840 z.p.a
2rc

und dem Dämpfungsmass (quality factor)

0 ^=50

physikalischen Prozesse sehr
unterschiedlich.

Die Dynamik der Atmosphäre ist infolge
meteorologischer Beobachtungen sehr
gut bekannt. Über das Verhalten der
Hydrosphäre weiss man weniger, da längere
Beobachtungsreihen über Meeresspiegelschwankungen

nur an den Küstenlinien
zur Verfügung stehen und Beobachtungsstationen

des Grundwasserspiegels nur
sporadisch verteilt sind. Aus den Beobachtungen

des geomagnetischen
Oberflächenfeldes erhält man Aussagen zur
Variation der elektromagnetischen Kern-
Mantel-Kopplungsmomente. Da die
Variationen des geomagnetischen Feldes nur
das zeitliche Verhalten des poloidalen
Kernfeldes widerspiegeln, benötigen wir
zusätzliche Hypothesen um etwas den
Einfluss des toroidalen Feldes auf die
Kern-Mantel-Kopplung aussagen zu können.

Wegen der unterschiedlichen Kenntnis

über die verschiedenen geophysikalischen

Prozesse ist es zweckmässig,
verschiedene aus der Mathematik bekannte
Lösungsverfahren anzuwenden. Da in der
Regel spezielle periodische Anteile der
Polbewegung und Rotationsschwankung
untersucht werden, reduzieren sich die
Gleichungen (41) und (43) auf folgende
Form:

m(f,t) l(f)¥(f,t)

m3(f,t) v3(f,t)
(44)

(44) ist die direkte Lösung, die auf
Prozesse anwendbar ist, über die man relativ
gut informiert ist. Ist die Kenntnis über
einen globalen geophysikalischen Prozess
unvollständig, so empfiehlt es sich, die
durch die Gleichungen

gegebene inverse Lösung anzuwenden.
Liegt ein wohldefinierter periodischer Anteil

der Polbewegung und die zugehörige
Erregerfunktion vor, so kann man eine
spezielle Form der inversen Aufgabe - die
Eingangs-Ausgangs-Analyse - anwenden,

mit deren Hilfe es möglich ist, die
Übertragungsfunktion nach

l(f) m(f,t)V(f,t)

l"1(f) v(M)m(f,t)"1
(46)

V(f,t) r1(f)m(f,t)

y3(f,t) m3(f,t)
(45)

zu ermitteln. Man kann nachweisen, dass
die Formeln (46) der Schätzung der
Übertragungsfunktion l(f) nach der Methode
der kleinsten Quadrate entsprechen. Da
die Übertragungsfunktion von der Struktur
der Differentialgleichung der Polbewegung

abhängt, ist es möglich, bei ihrer
Kenntnis die Parameter der Differentialgleichung

oCH und a zu bestimmen, die
von der geometrischen Struktur und Rheologie

der Erde abhängen, womit man eine
Aussage über globale geophysikalische
Eigenschaften der Erde erhält.
Die Berechnung der erregten periodischen

Anteile der Polbewegung und der
relativen Tageslänge ist auf Grund von
(44) ohne Schwierigkeiten möglich, wenn
man die Erregerfunktion des untersuchten
geophysikalischen Prozesses kennt.
Durch Vergleich mit den vom Internationalen

Breitendienst (ILS) gegebenen Daten
und den Werten der Tageslänge des
Bureau de l'heure kann man sich von der
Richtigkeit der Beziehung überzeugen.
Auf Grund von (45) ist es möglich, die zu
einem periodischen Anteil der Polbewegung

und der Variation der Tageslänge
gehörenden Erregerfunktionen zu berechnen.

Damit wurde jedoch noch keine
Aussage zum geophysikalischen Prozess
gewonnen, der diese Erregerfunktion
verursacht. Hierzu müssen wir die-die
Erregerfunktion erzeugenden - Integrale (25) und
(26) untersuchen. In der Regel führt die in-

m(f0,t) ist der freie Bewegungsanteil der
Polbewegung, f und f0 werden in Zyklen
pro Jahr angegeben.
Der Einfluss von \p3(t) auf die relative
Tageslänge m3(t) ergibt sich nach (23) zu

m3(t)= X ¥3f exp (i27tft)

X ¥3f(f.t)
U-oo

(43)

2k

I" (f) m(f,t) a
C-A ll' (cp,A,t) sincp cos cp exp(iA)dcp dA.

f=-y2 x=o
(47)

2ti

m3(f,t)
a

C,

mitIst der geophysikalische Prozess so gut
bekannt, dass die periodischen Anteile
seiner Erregerfunktion berechnet werden
können, so ist es auf Grund von (41) und
(43) möglich, die zugehörigen von
Polbewegung und relativer Tageslänge zu ermit- D (cp,A,,t)

teln. Nun ist die zur Verfügung stehende
Information für die verschiedenen geo-

¦11° (cp,A,t) cos cpdcpdA

R+h

l
r R

r (p(cp,A.,t) -r0(cp,A,t) dr (48)
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verse Aufgabe auf ein System von
Integralgleichungen, dessen Lösungsfunktion
zu bestimmen ist. Wir wollen dieses
Problem im folgenden für eine häufig vorkommende

Aufgabenstellung diskutieren.

3.1 Die inverse Lösung
Bei der nachfolgend dargestellten Lösung
wird vorausgesetzt, dass der geophysikalische

Prozess langperiodische Konstituenten

(=ä 1 Jahr) der Erregerfunktion
erzeugt, so dass man sich auf die Untersuchung

der massengeometrischen Anteile
von ty(f,t) und ty3(f,t) beschränken kann.
Der Prozess soll fernerhin in einer Schicht
der Höhe h stattfinden. Zu diesen Prozessen

gehören z.B. die in der Atmosphäre
und Hydrosphäre stattfindenden
Massenbewegungen.

Nach (45) erhält man mit (25) und (26) für
diese spezielle Aufgabenstellung folgende
Integralgleichungen:

Die linken Seiten von (47) sind durch Analyse

der Polkoordinaten oder derTageslän-
genvariationen bekannt. Für einen
bestimmten periodischen Anteil, der mit der
Frequenz f variiert, erhält man sie in der
Form

f (f) m(f,t) A11cos27ift + A12sin27T.ft

+Ì (A21 cos 2irft + A22sin 2îift)

v|/3(f,t) A31cos27tft + A33sin 2îtft

(49)

Im Falle der inversen Lösung ist D(cp,A, t)
die zu bestimmende Lösungsfunktion, die
entsprechend (49) die Form

D(cp,A.,t) D(cp,A,)0 sin(27tft + y (cp,A.))

D(cp,À,)01 cos27ift

+D(cp,X.)02sin2jtft (50)

haben muss. Führt man (49) und (50) in

(47) ein, so erhält man ein System von
sechs Integralgleichungen zur Bestimmung

der Funktionen D(cp,A)01 und

D(cp,A)o2. Aus der Theorie der Integralgleichungen

ist bekannt, dass es für dieses
Problem eine Anzahl äquivalenter Lösungen

gibt, die durch Informationen über den
zu untersuchenden geophysikalischen
Prozess eingeschränkt werden müssen.
Eine weitere Möglichkeit zur Einschränkung

dieser Lösungsvielfalt ergibt sich aus
der Interpretierbarkeit von ip (f,t) als Bewegung

des Trägheitspoles (Figurenachse)
der Erde. Allgemein kann jeder periodische

Anteil der Erregerfunktion ip (f,t) als

elliptische Bewegung des Trägheitspoles
dargestellt werden (siehe z.B. [8]). In

speziellen Fällen, die besonders häufig aus
den Amplitudenspektren der Polbewegung

abzuleiten sind, artet die elliptische
Bewegung in eine lineare aus. Die
Koeffizienten von (49) müssen dann die Beziehung

A^A22 A12A 21

erfüllen. Für eine Erregerfunktion, die
durch eine lineare Bewegung des
Trägheitspoles repräsentiert ist, kann eine
Lösungsfunktion angesetzt werden, deren
Phase unabhängig von den geographischen

Koordinaten cp und A ist,

D(cp,A.) D0((p,A,) sin(27tft + y) (51)

Da man in diesem Fall nur die Amplitudenfunktion

D0(cp,A) zu bestimmen braucht,
reduziert sich (47) auf ein System von drei
Integralgleichungen

geschätzt werden. Setzt man (53) in (52)
ein, so erhält man durch Integration drei
Werte der Konstanten k,

kf, k2 und k3,

die bei richtig angenommener Funktion
F(cp,A) gleich sein müssen.
Ist k-, * k2, so sind die tesseralen Glieder
von (50) fehlerhaft. k-\ k2 + k3 bedeutet,
dass die zonalen Glieder falsch geschätzt
sind. Um Übereinstimmung zu erzielen,
muss die für die Berechnung von (54)
angenommene Werteverteilung geändert
werden. Es sei bemerkt, dass die Entwicklung

von F(cp,A) nach Kugelflächenfunktionen

umgangen werden kann, wenn man
die Integrale (52) numerisch berechnet.

A1:
C-A

C-A

/2 2it

ll<t-y2 x=o

% 27t

ll<f=-y2 x=o

% 27t

ll> -*/ X=0

D0 (cp,A) sincp cos cp cosAdcp dA

D0 (cp,A) sincp cos cp sinA dcp dA (52)

D0(cp,A.)cos cpdcpdA

worin

2 2 /2
A1 (A11 + A12)

V
2 2 /2

A2=(A21 + A22)

V
2 2 /2

A3=(A31 + A32)

ist. Da näherungsweise angenommen
werden kann, dass D0(cp,A) eine Werteverteilung

auf einer Kugelfläche darstellt,
kann es durch eine Entwicklung nach
Kugelflächenfunktionen approximiert
werden,

Bei der Wahl von F(cp,A) muss berücksichtigt

werden, dass die Erregerfunktion ip(f,t)
durch eine Massenbewegung zwischen
Nord- und Südhalbkugel hervorgerufen
wird.
Zur Untersuchung des Einflusses von
Meeresspiegelschwankungen auf das
Rotationsverhalten der Erde kann man z.B.

folgenden Ansatz machen:

F(<p,A.) 0 auf den Kontinenten

F(cp,A.) sign (cp) 1 auf den Ozeanen
(55)

D0(cp,A,) kF(<p,A,)

mit

(53)

Bei diesem Ansatz ist für kleine
Meeresspiegelschwankungen das Gesetz der
Massenerhaltung hinreichend erfüllt.
Aus (48) ergibt sich dann folgende Beziehung

zwischen der Lösungsfunktion und
den Meeresspiegelschwankungen:

F(cp,A.)=X X (amncosmA + bmnsinmA.)Pmn(sincp)
n=0m=0

(54)

(54) muss auf Grund angenommener oder
bekannter durch den geophysikalischen
Prozess hervorgerufener Dichtevariationen

in der betreffenden Schicht der Erde

Sind die Amplituden A-,, A2 und A3 in (52)
auf Grund zweckmässiger Fouriertransfor-
mationen der Zeitreihen von Polbewegung
und Tageslänge ermittelt worden und
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D (<p,A,,t);
Pw/ a+Ah((p.>.,t)

r dr pwAh(cp,A,,t)
gung nahezu vollständig durch atmosphä-

(56) rische Einflüsse gestützt zu werden.
Durch harmonische Analyse der atmo-

wurde aus den Integralgleichungen (52)
mit (53) und (55) eine hinreichende
Übereinstimmung der Werte k nachgewiesen,
so ist es nach (56) möglich, die
Meeresspiegelschwankungen zu ermitteln, durch
die die Erregerfunktionen erzeugt worden
sind.

4. Beispiele der
geophysikalischen Erregung
von Variationen des
Rotationsvektors
Nach vorstehendem Überblick über die
Methoden der Interpretation geophysikalischer

Einflüsse auf das Verhalten des
Rotationsvektors der Erde, werden im folgenden

Beziehungen einiger geophysikalischer

Prozesse zur Rotation der Erde
untersucht, wobei direkte und inverse
Lösungsmethoden angewandt werden.

4.1 Die atmosphärische Erregung
4.1.1 Der Einfluss atmosphärischer
Massenbewegungen auf die
Polbewegung

Mit den aus meteorologischen Messungen

bekannten Luftdruckwerten und
Windgeschwindigkeiten kann die Berechnung
der atmosphärischen Erregerfunktion der
Polbewegung nach (36) oder (38a) und
(39a) durchgeführt werden. Bei der
Berechnung des massengeometrischen
Anteils der Erregerfunktion muss man beachten,

dass die Meeresoberfläche auf
schwankenden Luftdruck reagiert. Für

langsame Druckänderungen kann man
annehmen, dass die Luftmassenbewegungen

über den Ozeanen durch entsprechende

Wassermassenbewegungen
kompensiert werden (inverses Barometerprinzip).

Dies erfordert zwar eine zusätzliche
Korrektur der Luftdruckschwankungen,
hat jedoch den Vorteil, dass man unter
Berücksichtigung der Massenerhaltung die
massengeometrischen Anteile der
Erregerfunktion aus Luftdruckwerten ermitteln
kann, die auf dem Festland gemessen
worden sind. Die erforderliche Korrektur
der in (38a) eingehenden Luftdruckdifferenzen

kann nach der Formel

2*

-Z«-!

Polkoordinci/en mct>

8*

-15-

Atmosphörische Erregerfunktion

ytti

0,i~ 10 nr
~I

J.t>

berechnet aus meteer-olofrscher tfrregt/njr
^

PolUoor-c/inaten êtes Bureau International cte / Meere

Abb. 1 : Polbewegung und atmosphärische Erregerfunktion nach Hide [3].

f 3 2 1 0,84 0,7 0,5 0,2 0,1 z.p.a

ll(f)l 0,1 0,5 26,8 1000 37,8 6,1 1,7 1,3

Tab. 1 : Die Übertragungsfunktion l(f)

Eines der neuesten Ergebnisse zur
Untersuchung des Einflusses atmosphärischer
Erregerfunktionen auf die Polbewegung
ist in [3] veröffentlicht. Es ist in Abb. 1

dargestellt. Abb. 1 enthält die Erregerfunktion
und die aus ihr durch numerische Integration

der Gleichung (20) abgeleitete
Polbewegung. Man erkennt, dass aus einer
irregulären Erregerfunktion eine ziemlich
reguläre Polbewegung folgt. Dies wird durch
das Resonanzverhalten der Polbewegung
bewirkt, das durch die Übertragungsfunktion

beschrieben wird, für die einige Werte
in folgender Tabelle angegeben sind.

Aus der Tabelle folgt, dass die
Übertragungsfunktion bei Frequenzen über
1 z.p.a besonders klein wird, wodurch der
in Abb. 1 zu erkennende Glättungseffekt
erzeugt wird. Nach dieser Darstellung

sphärischen Erregerfunktion lässt sich
nachweisen, dass sie im wesentlichen aus
einem jahresperiodischen Anteil besteht,
der über Jahrzehnte hinsichtlich Amplitude

und Phase persistent ist und durch
eine geradlinige Bewegung des Trägheitspoles

dargestellt wird. Abb. 2 zeigt die
Erregerfunktion und den durch sie hervorgerufenen

elliptischen Bewegungsanteil der
Polbewegung. Nach Abb. 1 sind neben
dieser streng periodischen Erregung in

APs(t) -
945 ll>—*/2 *.=o

C (<p,X)
Aps(cp,?t,t)

9(<P)
coscp dcp dA (57)

ermittelt werden, in der C'(cp,A) die
Kontinentfunktion ist, die auf dem Festland die
Werte Eins annimmt und auf dem Meer
verschwindet. SM ist die Gesamtfläche der
Ozeane.

scheint in der Nähe der
Resonanzfrequenz (f0 0,840 1/a) die im
wesentlichen aus einem jahresperiodischen
Anteil und der 1,19-jährigen CHANDLER-
Bewegung zusammengesetzte Polbewe-

(Westi ;

^y

Sr-0

(SM)

Jahresperiode, aus Luftmassenbewegungen

Jahresperiode, aus Polkoordinaten (IPMS)
Erregerfunktion der Luftmassenbewegungen

Abb. 2: Der atmosphärische Anteil der
Polbewegung.
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der atmosphärischen Erregerfunktion
noch ausreichend stochastische Anteile
enthalten, die die Stützung der Amplitude
des freien Bewegungsanteils (CHAND-
LER-Bewegung) bewirken, die sonst
infolge des gedämpften Prozesses der
Polbewegung verschwunden sein musste.
Die vollständige Stützung der Amplitude
der CHANDLER-Bewegung konnte bei
der Untersuchung 30jähriger Zeitreihen
von Polbewegung und Erregerfunktion
nicht nachgewiesen werden (siehe [4]).
Möglicherweise ist die in [3] untersuchte
Zeitreihe der Polbewegung zu kurz, um
eine endgültige Aussage zu diesem
Problem zu machen.

4.1.2 Ein Beispiel zur Anwendung
der Eingangs-Ausgangs-Analyse
Wie Abb. 2 zeigt, besteht eine wohldefinierte

Beziehung zwischen den astronomisch

und meteorologisch bestimmten
Jahresperioden der Polbewegung, so
dass es naheliegend ist, diesen
Bewegungsanteil zur Durchführung einer
Eingangs-Ausgangs-Analyse zu verwenden.
Da diese Analyse sehr empfindlich gegen
Fehler der Eingangs- und Ausgangsdaten
ist, ist zu untersuchen, ob die atmosphärischen

Massenbewegungen die einzigen
wesentlichen Beiträge zur Jahresperiode
der Erregerfunktion liefern, da anzunehmen

ist, dass speziell diese Periode noch
in anderen Prozessen enthalten ist, die in

irgendeiner Form meteorologische Ursachen

haben. Von allen in Betracht
kommenden Prozessen liefert nur die
jahreszeitliche Grundwasserschwankung einen
wesentlichen Beitrag zur Jahresperiode
der Erregerfunktion (siehe [13]).
Da bei den bekannten Verfahren der
Fouriertransformation die Phasen der periodischen

Anteile von Polbewegung und
Erregerfunktion für den vorliegenden
Anwendungszweck zu ungenau erhalten werden,
empfiehlt es sich, durch eine Modifikation
der Formel (46) den Einfluss der Phasenfehler

zu eliminieren. Mit den konjugiert
komplexen Ausdrücken m' und ip' erhält
man folgende Beziehung zur Bestimmung
der Übertragungsfunktion:

I" (f)
v(MW(f,t)

m(f,t)m'(f,t)
(58)

aus der man nach

1 + | I (f) | (59)

die Länge der CHANDLER-Periode erhält.
Für Mittelwerte der Jahresperioden von
Polbewegung und Erregerfunktion, die
aus 30jährigen Zeitreihen abgeleitet
wurden, ergab sich

T0= 1,189 ±0,002 a

94

Das Dämpfungsmass Q kann wegen der
bereits erwähnten Phasenfehler auf
diesem Wege nicht genau genug bestimmt
werden. In [5] wird gezeigt, dass das
Dämpfungsmass aus einem Vergleich der
Energiespektren von Polbewegung und
Erregerfunktion ermittelt werden kann.

4.1.3 Die atmosphärische Erregung
der Tageslänge
Die atmosphärische Erregung der Tageslänge

erfolgt im wesentlichen im Periodenbereich

unter einem Jahr. Nach Gleichung
(43) entspricht die Erregerfunktion praktisch

der relativen Tageslänge, und es
besteht keine frequenzabhängige Übertragung

zwischen beiden Grössen.
In Abb. 3 wird die Erregerfunktion \p3(t) mit
der wegen des Gezeiteneinflusses
korrigierten relativen Tageslänge verglichen.
Die gute Übereinstimmung zwischen
beiden Kurven spricht für sich. Im wesentlichen

erzeugt die atmosphärische
Erregung Jahresperioden und Halbjahresperioden

derTageslänge, die von einigen
kürzeren Perioden überlagert sind.

4.2 Die Bestimmung globaler
Meeresspiegelschwankungen durch
inverse Lösung
Auf Grund der Berechnung von
Amplitudenspektren der Polbewegung wurde die
Existenz einer 4jährigen Periode festgestellt,

für die die bereits erwähnte Beziehung

An A22-A12A2i 0

erfüllt war, d.h. die Erregerfunktion wird
durch eine geradlinige Bewegung des
Trägheitspoles repräsentiert. Damit ist es
gestattet, zur Lösung der inversen
Aufgabe den Ansatz (53) mit der Vorausset¬

zung (55) zu machen, wodurch nach 3.1

eine nordsüdliche Massenbewegung auf
den Ozeanen modelliert wird. Mit diesem
Ansatz wurden aus den ersten beiden
Gleichungen (52) zwei Werte k berechnet,
die hinreichend übereinstimmten.

D0(q>.X)-kF(<p,A,)

wurde in die dritte Integralgleichung von
(52) eingesetzt, um zu überprüfen, ob das
Amplitudenspektrum der Tageslänge mit
der aus der Polbewegung folgenden
Lösungsfunktion verträglich ist. Dieser Test

bestätigte die Hypothese einer nordsüdlichen

Meeresspiegelschwankung.
Ein Beweis dieser Hypothese ist jedoch
erst erbracht, wenn die aus der Polbewegung

abgeleiteten Meeresspiegelschwankungen

hinsichtlich Amplitude und
Periode mit den aus Pegelbeobachtungen
erhaltenen übereinstimmen. In Tabelle 2

sind die aus den Variationen des
Rotationsvektors und aus Pegelbeobachtungen

gewonnenen Ergebnisse zusammengestellt.

Die unterschiedlichen Ergebnisse Ahn
und Ahs für die Nord- und Südhalbkugel
folgen aus dem Gesetz der Massenerhaltung,

da die Wasserflächen beider Halbkugeln

unterschiedlich sind. Von den
dargestellten Ergebnissen aus Pegelbeobachtungen

sind die an der Westküste Amerikas

die zuverlässigsten, da sie an der
Grenze der grössten freien Meeresfläche
liegen. Jeder Wert ist aus den Beobachtungen

einer grösseren Anzahl von
Pegelstationen ermittelt worden. Unter
Berücksichtigung der angegebenen
Standardabweichungen erkennt man eine
hinreichende Übereinstimmung zwischen
den aus Pegelbeobachtungen und den
aus Variationen des Rotationsvektors
abgeleiteten Meeresspiegelschwankungen.

Jy•mTM I,e rV/S
.1fV^

1980 1981 t9831982

W

y\jV« V
r:\ A

Vr
I960 /981 1962 1983

Abb. 3: Relative Tageslängen und atmosphärische Erregerfunktion nach Hide [3].
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Herkunft der Resultate A h /cm/ Periode/a/

Variationen des Rotationsvektors A hn 2,0 ± 0,5
A hs 1,6 ± 0,5

4,0 ±0,2

Pegelbeobachtungen
1. Westküste Nordamerika 1,6 ±0,6 5,2 ±0,5
2. Westküste Mittel- und Südamerika 1,1 ±0,8 5,0 ±0,8
3. Ostküste Amerika 0,7 ±0,6 4,8 ±0,9

Tab. 2: Meeresspiegelschwankungen mit 4-5-jähriger Periode

An den übrigen Küsten, die in vorstehender

Tabelle nicht aufgenommen wurden,
stimmen die erhaltenen Meeresspiegelschwankungen

nicht so gut mit den
angegebenen Werten überein, jedoch sind dort
die Ergebnisse durch vorgelagerte Inseln
und un regelmassige Küstenform gestört.
Durch die vorstehend beschriebene
inverse Lösung konnten regional beobachtete

Meeresspiegelschwankungen als
globale identifiziert werden.

4.3 Die Ermittlung von
Kopplungsmomenten des toroidalen
geomagnetischen Feldes
Nachem die bisherigen Betrachtungen im
wesentlichen Problemen gewidmet
waren, die mit Mitteln der klassischen Mechanik

und der Hydromechanik zu lösen sind,
sollen einige Ausführungen zu Beziehungen

zwischen dem Magnetfeld der Erde
und der Erdrotation gemacht werden. Die
Ursache dekadischer Fluktuationen der
Erdrotation wird Variationen des Magnetfeldes

an der Kern-Mantel-Grenze
zugeschrieben, die im leitfähigen Teil des unteren

Mantels Lorentzkräfte erzeugen, die
die Ursache elektromagnetischer
Kopplungsmomente zwischen Kern und Mantel
sind, die nach (13) und (14) die Polbewegung

und die relative Tageslänge
beeinflussen. Diese Kopplungsmomente ergeben

sich nach der Formel

L /rx(jxB)dV (60)

In (60) sind B die magnetische Flussdichte
und j die Stromdichte im leitfähigen Mantel.

B und j können aus dem geomagnetischen

Oberflächenfeld mit Hilfe der
Induktionsgleichung

rot — rot B - B
LIO

des Ohmschen Gesetzes

j =o(E +U xB)

und der Beziehung

rot E - B

(61)

(62)

(63)

abgeleitet werden. In vorstehenden
Gleichungen ist E die elektrische Feldstärke
und u die Relativgeschwindigkeit des
leitfähigen Kernmantels gegenüber dem
Mantel.
u. ist die Permeabilität und o die Leitfähigkeit.

Zur Lösung der Induktionsgleichung
benötigt man eine Beziehung zur Darstellung

der Leitfähigkeit im Erdmantel. Nach
[13] wird im allgemeinen hierfür folgende
Beziehung angesetzt

o (r) öc (- (64)

worin c der Radius des Erdkerns ist und oc
3 • 103Q-1m-1 die Leitfähigkeit an der

Kern-Mantel-Grenze. Ferner wird in der
Regel a 30 gewählt. Die schrittweise
Lösung der Induktionsgleichung ist im einzelnen

in [2] und [13] dargestellt. Anfangswerte

der Lösung sind die Kugelfunktionsentwicklungen

des geomagnetischen
Oberflächenfeldes und seiner Säkularvariation.

Nachdem die Werte B und j
berechnetworden sind, können nach (60) die
zeitlich variablen Kopplungsmomente
berechnet werden, die in die Differentialgleichungen

(13) und (14) eingeführt werden
müssen.
Aus den bisher durchgeführten
Untersuchungen zu diesem Problem geht hervor,
dass nur die Variation der Tageslänge von
elektromagnetischen Kern-Mantel-Kopplungsmomenten

messbar beeinflusst
wird. Bei der Interpretation der Ergebnisse
dieses Erregermechanismus muss man
berücksichtigen, dass nach der Dynamotheorie

des Magnetfeldes der Erde nur
das poloidale Kernfeld an der Erdoberfläche

wirksam wird, wodurch nur dessen
Beitrag zum elektromagnetischen
Kopplungsmoment berechnet werden kann. In

der Variation der Tageslänge sind jedoch
die Einflüsse des poloidalen und des
toroidalen Kernfeldes enthalten. Deshalb
muss es möglich sein, Kenntnis über das-
vom toroidalen Feld erzeugte Kopplungsmoment

durch Anwendung der inversen
Lösung zu erhalten.
Auf Grund der durch die Formeln (60)-
(64) in groben Zügen dargestellten
Berechnungsmethode erhält man nach (60)
die durch das poloidale Feld hervorgerufe¬

nen Kopplungsmomente Lp3. In [7] wird
nachgewiesen, dass das poloidale
Kopplungsmoment die Relativbewegung
zwischen Kern und Mantel verzögert.
Man kann daher den Kopplungsfaktor

k=1,46- 1024Nm

berechnen, der mit n3 multipliziert das bei
relativer Rotation zwischen Kern und Mantel

entstehende verzögernde Kopplungsmoment

ergibt. Dies gilt unter der
Voraussetzung, dass die Relativbewegung
zwischen Kern und Mantel mit der Relativbewegung

zwischen Mantel und poloidalem
magnetischen Feld übereinstimmt. Diese
Bedingung ist nach der Magnetohydrodynamik

erfüllt, wenn der Kern eine sehr
hohe Leitfähigkeit hat (frozen-field theory),
was nach den bisherigen Erkenntnissen
zutrifft. Unter dieser Voraussetzung ergibt
sich nach (14) folgende Beziehung:

m 3 + ~n3=0

kn-:
(65)

m,+ r\-.

Ccca0 Ccco0

worin L3 der vom toroidalen Feld erzeugte
Anteil des elektromagnetischen
Kopplungsmomentes ist.
Aus (65) ergibt sich nach Elimination von
ii3

CMco0m3=kn3-L3 (66)

Um Unsicherheiten auszuschalten, die
sich aus der Gleichsetzung der
Relativbewegungen von Mantel und Kern und Mantel

und poloidalem Magnetfeld ergeben,
setzen wir

kn3-L3=Lp+Ltor

und erhalten aus (66)

CM<a0m3-Lp=CMco0Am3=Ltor (67)

Aus einer Fouriertransformation von

Am3=m3-—!— f Lp(T)dT (68)
CMco0 •'to

ergeben sich für verschiedene periodische

Anteile die Amplituden AmT, mit
denen man nach

2k
LTtor=-j-CMcû0AmT (69)

den entsprechenden periodischen Anteil
des toroidalen elektromagnetischen Kopp-
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Partie rédactionnelle
lungsmomentes berechnen kann. In

vorstehenden Formeln ist T die Länge der
Periode.

Nach dem dargestellten Verfahren konnte
für eine 30jährige Periode der
Rotationsschwankung durch Vergleich mit dem
entsprechenden poloidalen Moment Lp
folgende Amplitude des toroidalen Momentes

ermittelt werden:

LT=4- 1017Nm

5. Die Bedeutung der
Erforschung der Wechselwirkung

zwischen
geophysikalischen Prozessen
und der Rotation der Erde
Vorstehende Ausführungen zeigten, dass
die Variationen von Tageslänge und
Polbewegung als Hilfsmittel zur Erforschung
globaler geophysikalischer Prozesse dienen

können. Die im Überblick dargestellte
Theorie lässt sich auf verschiedene
Lösungsvarianten anwenden. Eine erfolgreiche

Anwendung der direkten Lösung
wurde für die atmosphärische Erregung
von Polbewegung und Tageslänge
nachgewiesen. Mit Hilfe der gut bekannten
Jahresperioden von Polbewegung und
atmosphärischer Erregerfunktion ist es möglich,

die Parameter der Differentialgleichung

der Polbewegung zu bestimmen,
die in Beziehung zum inneren Aufbau der
Erde und ihrer Rheologie stehen.
Die inverse Lösung kann zur Untersuchung

globaler Eigenschaften geophysikalischer

Prozesse verwendet werden,
wenn über den Prozess nur sporadisch
über die Erde verteilte Informationen
vorliegen, wie am Beispiel globaler
Meeresspiegelschwankungen gezeigt wurde.

Die Bedeutung der Untersuchung des
Rotationsverhaltens der Erde für die
Erforschung globaler geophysikalischer
Prozesse geht aus diesen Beispielen hervor.
Die durch die Entwicklung moderner
kosmisch-geodätischer Verfahren erzielte
Genauigkeitssteigerung in der Bestimmung
der Polkoordinaten und der Tageslänge
wird die Bedeutung der dargestellten
Verfahren für die Erforschung globaler
geophysikalischer Prozesse in Zukunft noch
steigern, so dass es angezeigt ist, sich
auch in Zukunft mit der Theorie der Erdrotation

und ihrer Beziehung zu geophysikalischen

Prozessen zu befassen.
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