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Fachteil

Ein Versuch, die
hypothesenfreie Reduktion des
geometrischen Nivellements
und die Schwerelosigkeit beim
«Freien Fall» aus der
Kräftefunktion darzustellen
W. Embacher

Das totale Differential der Kräftefunktion gibt, bei sinngemässer Festlegung der
Konstanten, die Potentialdifferenz zweier Punkte und die Schwerkraft. Andererseits

erkennt man aus der Ableitung der Kräftefunktion, dass beim bewegten
System die doppelte Beschleunigung auftritt, während im System selbst Schwerelosigkeit

herrscht. Weiters zeigt der Verfasser einen Fehler auf, welcher bisher bei
der Berechnung der «Geopotentiellen Kote» aufgetreten ist.

La différentielle totale de la fonction de forces (champ gravitationnel) donne, lorsque

l'on fixe correctement les constantes, la différence de potentiel entre deux
points et la pesanteur. On montre d'autre part qu'en dérivant la fonction de forces,
on obtient le double de l'accélération dans un système en mouvement, tandis que
règne l'apesanteur dans le système lui-même. L'auteur met aussi en évidence une
faute commise jusqu'ici dans le calcul de la cote géopotentielle.

1. Einleitung
Der in der Geodäsie hauptsächlich
verwendete Ausdruck «Kräftefunktion» ist mit
der negativen Potentialfunktion gleichbedeutend.

Lagrange hat zuerst die Bemerkung
gemacht, dass sich die Komponenten einer
anziehenden Kraft als die partiellen
Differentialquotienten einer und derselben
Funktion nach den Koordinaten des
angezogenen Punktes darstellen lassen.
Laplace hat dieses Resultat auf die Anziehung

beliebiger Massen ausgedehnt. Für
die dabei auftretende Funktion hat Gauss
den Namen «Potential» eingeführt. Green
hatte dafür die Bezeichnung «Potentialfunktion»

vorgeschlagen.
Je nach dem Grade der Annäherung in der
Reihenentwicklung der Kräftefunktion
unterscheidet man sogenannte Niveausphä-
roide n-ten Ranges. Das Glied O. Ordnung
stellt die Kugel dar.

2. Das Schwerefeld der Erde
Wir betrachten näherungsweise den
Erdkörper als geschichtete Kugel, so dass wir
ihn durch einen Massenpunkt ersetzt denken

dürfen.
Die Bewegung der Einheitsmasse auf
dem Weg dr entgegen der Schwerkraft 7
erfordert die Arbeit

A=r-k2^
J^ r

r2,2M. .2M.2M no,dr k —- k — 0,2)

erforderlich.
Um die Probemasse von r-, r aus nach r2

oo zu befördern, braucht man die
sogenannte Ablösearbeit P

P -k
2M

0,3)

Man bezeichnet sie als potentielle Energie
oder Potential des Feldes an der Stelle r;
dieses Pontential ist nach dem oben
Gesagten gleich der negativen Kräftefunktion
U, wobei k2 die Gravitationskonstante, d.i.
ein Proportionalitätsfaktor mit

k2=66,67- 10"9

4 3
und M=-7ir 0,4)

_.* .i i
2 M

dA - ydr - k —dr' 2
r

0,1)

Um die Masse von der Höhe r-, auf r2 zu
heben, ist die Arbeit

ist, wenn om die mittlere Dichte der Erde
bedeutet. Überlässt man die Probemasse

M
mit der potentiellen Energie-k2 —

sich selbst, so setzt sie sich in Richtung
der wirkenden Kraft in Bewegung. Sie
gewinnt an kinetischer Energie mit wachsender

Geschwindigkeit v. Bezeichnen wir mit
R den Erdradius und mit r den Abstand der
Probemasse vom Erdmittelpunkt bei
Beginn des Falles, so gilt für die kinetische
Energie nach Durchfallen der Potentialdifferenz

v i2n/1— =k M (¦=
2 R 0,5)

In der Nähe der Erdoberfläche geht diese
Gleichung für

y- My
R2

und mit einer Fallhöhe h (r - R) über in

2
V 2

— 7- h oder v =27h
2 ' 0,6)

Dies ist das allgemeine Fallgesetz.
Setzen wir in Gleichung 0,3) für die Masse
M die Gleichung 0,4) ein und bedenken,
dass der Ausdruck

k2-M_

R2

gleich der Schwere 7 ist, so gilt für die
Kräftefunktion U auf der Oberfläche der
geschichteten Kugel

U=7- R 0,7)

Dies ist die Gleichung der Niveaufläche im

Abstand R. Betrachten wir den Zustand
der relativen Ruhe, so können wir den
Mittelwert

Y1 + Y2
-¦yn

der Schwere der beiden Niveauflächen U-|

und U2 in der Nähe der Oberfläche als
konstant auffassen und bezeichnen wir den
Unterschied der beiden Radien dieser
Niveauflächen (R2- Ri) mit AR - h, so
gilt für den Potentialunterschied AU der
beiden Niveauflächen

AUR=-7mh 0,8)

Bei konstant gehaltenem Radius, und nur
dann, gilt bei Änderung der Schwere 7 um
AY

AUY=AyR 0,9)

Die Gleichung 0,9) geht aus der
Fundamentalgleichung meines «Dynamischen
Nivellements» hervor und setzt keine
Massenänderung, bzw. Dichteänderung
voraus. Die Gleichung (5,2) meiner Arbeit:
«Der Höhenunterschied zweier Punkte
der physischen Erdoberfläche» (Heft 9 der

Institutsmitteilungen des Institutes für
Geodäsie der Universität Innsbruck) lautet:

h- {-^W
'Ag-4Kk2acos25)-2aY

Ah

2
¦ 47rk o~ sin S cos 5

3h
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Partie rédactionnelle
Auf die geschichtete oder homogene Kugel

angewandt, gibt sie den Kugelradius:

4jtk om-2
3y

3h

Agdenn —=- ist auf der Kugeloberfläche

Null, genauso wie der Geländewinkel o.
Damit ergibt sich für den Nenner

2 37
(47tkGm-2^)

3h

4uk2- 5,517 V%- 4k2- 5,517

4 2 -2
— 7tk o -154,14 sec

3

von mir mit A7 bezeichnet.
Allein die Dimension von A7[sec]-2 zeigt,
dass der Ausdruck mit Masse oder
Massenänderung nichts zu tun hat. Wie
oben erwähnt, gelten diese Überlegungen
für die Nähe der Kugeloberfläche. Aus A.
Wangerin: «Theorie des Potentials und der
Kugelfunktion» (Seite 50) ergeben für r
R die Grenzwerte:

lim Va lim Vj ^TtrjR2
r R r R 3

Ay- R R 7- R

(siehe Gleichung 0,72)

lim Xa lim X, -tccX Ay ¦ R y
r R r R 3

(siehe Gleichung 0,9)

Obwohl die Funktionen für Potential und
Anziehung für äussere und innere Punkte
verschieden sind, schliessen sich die Aussen-

und Innenwerte an der Grenzfläche
(Oberfläche) kontinuierlich an.
Dementsprechend sind die Hauptglieder der
Funktionen ausserhalb der Grenzfläche bis auf
kleine Korrektionsglieder den Hauptgliedern

an der Grenzfläche gleich:
Denn für r R + h lautet das Potential

Va=Y. R(1
R

und die Anziehung Xa

Oh
Xa=Y '-*>

Man sieht, dass die Korrektionsglieder in

der Nähe der Grenzfläche in Bezug auf die
Hauptglieder sehr klein sind. Es genügt
daher, die Funktionen an der Grenzfläche
selbst zu untersuchen.
Aus dem Ausdruck für die Schwere

7 k2 — Jtam ¦ R, der wie oben gezeigt

wurde, auch in der Nähe der Erdoberfläche

gilt, geht hervor, dass

Ay=k -7t om

sein muss (Ay ist die zweite Ableitung von
V, in einer Richtung). Also zeigt Gleichung
0,9), dass die Ableitung der Kräftefunktion
nach der Schwere y bei gleichbleibendem
Radius, im Zustand der Ruhe, die
Schwere ergibt.

3. Der Abstand benachbarter
Niveauflächen
Wir gehen vom Modell der Kugelflächen
als Niveauflächen ab und betrachten die
tatsächlichen Niveauflächen. Wenn n die
nach aussen gerichtete Normale im Punkt
P einer Niveaufläche ist, so ändert sich
beim Übergang in der gleichen Lotlinie
von der Niveaufläche W C zur benachbarten

die Konstante W um dW und es gilt
analog zu Gleichung 0,8) die Gleichung

g dn - dW i:

Orientieren wir das Koordinatensystem im
Punkt P0 so, dass die z-Achse mit der
Flächennormalen zusammenfällt, die
+ x-Achse mit der geographischen
Nordrichtung und die + y-Achse mit der
Ostrichtung, so sind die Komponenten der
Schwerkraft, wenn wir unter W das
Potential der Schwerkraft verstehen, im
Punkt Pn:

g
5W

8z

SW
_

5W

ôx /o \ 8z
e 2)

Setzen wir für die Funktion f (x y z) jetzt die

Funktion
ÔW

ôz ' so ist im Punkt P(xy z),

wenn wir den Wert im benachbarten Punkt

po(xoyozo)miM~^—)o bezeichnen nach

der Taylorschen Reihenentwicklung:

8W

8z

8W\ 8 W
— + (x-x0)

\òz /o \Sx8z/o

5 W

\SySz/o

ÔW

;y-y0)
8 W

(z-zc
\Sz 3)

ôz
bedeutet die Zunahme des Potentials

in Richtung der z-Achse. Setzen wir für z -
z0 den Höhenunterschied -Ah und für die
Resultierende aus (x - x0) und (y - y0) die
Seite As, so geht Gleichung 3) über in

SW

5h

8 W

8h

Ah

8 W

\8h8s/o
As 4)

Die beiden letzten Glieder dieser
Gleichung entsprechen dem Schwereunterschied

Ag zweier benachbarten Punkte
der physischen Erdoberfläche

Ag -Ah^+As^
8h 8s

5)

Uns interessiert der Höhenunterschied
zweier Punkte der physischen Erdoberfläche.

Man pflegt die Differenz zweier
Zielhöhen, welche durch die horizontale Visur
eines Nivellierinstrumentes an zwei vertikal

aufgestellten Massstäben entsteht, als
Höhenunterschied der beiden Punkte zu
bezeichnen.

..!.£-
_ —W

,_Pu-----
küW*«* Si»"»""*0

ungestörte Nivcauflâchc

Bezuqsfläche

Abb. 1
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Fachteil
Das «Denkgewohnte» liegt in den beiden
Begriffen «horizontal» und «vertikal». Als
«Denknotwendiges» wäre festzustellen,
dass die Niveaufläche durch den Schnittpunkt

Kippachse-Stehachse nicht parallel
ist mit der Senkrechten auf das Lot im

Fusspunkt des Instrumentes, auf welche
sich die Differenz der Zielhöhen bezieht.
Zunächst wollen wir die Frage nach der
wahren Natur der nivellierten Höhenunterschiede

wiederholend klären.

Abbildung 1 zeigt den Schnitt eines Hanges

in Richtung der Fallinie mit den
Geländepunkten A, M und B.

À B sei die ungestörte Ausgangsfläche,
der Abstand Ä A sei h. Der Standpunkt des
Nivellierinstrumentes ist M und die beiden
Nivellierlatten stehen in A und B. Die
gestörte Niveaufläche in A ist strichliert
gezeichnet (A B"), während die Parallele zur
ungestörten Niveaufläche in A und B' voll
dargestellt wurde. Der Winkel zwischen
der Parallelen zur ungestörten und der
gestörten Niveaufläche ist mit e bezeichnet,
dieser Winkel kann im Gebirge einen
Betrag bis zu 30 Bogensekunden erreichen.
In O sei die Visierlinie durch R - vgekenn-
zeichnet und die Parallele zur ungestörten
Niveaufläche durch O wäre R - V Der
Höhenunterschied im gestörten System (d.h.
dem tatsächlich vorhandenen System) ist
Ah' AA" BB" und der im ungestörten
System Ah BB' AA'. Es ist also Ah
um B'B" dE, grösser als Ah', das heisst

Ah Ah' + dÇ Ah'+ iAl^h 5,0)

Der Wert für dì; wurde der Arbeit [1]
entnommen (Gig. 3.21, S. 24).
Die Nichtparallelität der beiden ungestörten

Niveauflächen À B und AB', d.h. der
Höhenunterschied AhB wegen der Bessel-

oder Normalreduktion "Ay" beträgt im
Maximum in der Nord-Südrichtung AhB

-^- h (siehe [2] Gig. (10), Seite 292, und

[5] Gig. (3.2), Seite 250). Diese Reduktion
beträgt in unserer Breite z.B. für 2000 m
Höhenunterschied auf einen Kilometer
Entfernung etwa 1,6 mm.
Nehmen wir an, es würde vom Punkt A bis
zum Punkt I nivelliert. So erhalten wir als
«rohe Lattenhöhe» des Punktes I über
Punkt A

Rohe Lattenhöhe" £ Ah'

ist der Abstand
n i

Die Summe 2 Ah'
n 1

einer zur Bezugsfläche durch A parallelen
Fläche. Nachdem die Lotrichtungen nur
um Sekundenbeträge schwanken, kann
man die einzelnen Lattenabschnitte
summieren. Der Fehler, welcher bei einem
Richtungsunterschied der Lotrichtungen
von beispielsweise 30" und einem Höhen¬

unterschied von 3000 m dadurch entsteht,
beträgt 0,03 mm, kann also vernachlässigt

werden.
Die Nichtparallelität der tatsächlichen
Niveauflächen kann beim geometrischen
Nivellement nicht festgestellt werden (siehe
[9], Abb. 4), weil das geometrische Nivellement

sowohl auf der ungestörten als auch
auf der gestörten Niveaufläche den
Höhenunterschied Null ergibt.
Wir gehen vom Abstand zweier Parallelflächen

zur einfacheren Vorstellung auf den
Abstand zweier Parallelkurven über und
betrachten der Einfachheit halber als
Ausgangspunkt einen Meridian einer
Rotationsfläche.

Zwei Parallelkurven sind dadurch
definiert, dass sie auf allen ihren gemeinsamen

Normalen ein Stück von derselben
Länge abschneiden; bekanntlich heissen
diese stetigen Kurven «Evolventen». Der
Ort ihrer gemeinsamen Krümmungsmittelpunkte

ist die Evolute. Da die Krümmung
eine Funktion der zweiten Ableitung ist,
muss die Evolvente einschliesslich der
zweiten Ableitung eine stetige Kurve sein.
Im allgemeinen ist der ebene Schnitt einer
gestörten Niveaufläche keine solche
Kurve. Daher gibt es zu einer gestörten
Niveaufläche, wenn wir wieder zu den
Flächen übergehen, im allgemeinen keine
Parallelfläche. Die gestörte Niveaufläche
kann also nicht als Vergleichsfläche
dienen.

Die «rohe Lattenhöhe» kann nicht als
Abstand von einer gestörten oder tatsächlichen

Niveaufläche aufgefasst werden,
sondern nur als Abstand von einer analytischen

Fläche definiert werden!
Die «rohe Lattenhöhe» erweitert durch die
Höhenänderung AhB wegen der Normal¬

oder Besselreduktion gibt den Abstand
zweier ungestörter Niveauflächen. Gibt
man die Summe aller dì; dazu, so erhält
man den Abstand eines Punktes einer
gestörten Niveaufläche von der ungestörten
Bezugsniveaufläche in seiner Lotlinie.
Würde man den Abstand zweier gestörter
Niveauflächen suchen, so musste man die
Differenz der beiden Abstände von der
jeweiligen ungestörten Niveaufläche
(Junten " droben) SUChen.

Da sich jedoch die zweite gestörte
Niveaufläche unter der physischen Erdoberfläche

befindet, ist eine Bestimmung des
Höhenunterschiedes dt;unten dieser gestörten

Niveaufläche von ihrer zugehörigen
ungestörten ohne Hypothesen nicht möglich.

Der Höhenunterschied eines Oberflächenpunktes

lässt sich nur in Bezug auf eine
ungestörte Ausgangsfläche hypothesenfrei

bestimmen.
Helmert schreibt in seinem Lehrbuch [2],
dass aus geometrischen Nivellements
Höhenunterschiede und Meereshöhen in

Strenge nicht zu finden sind. Er geht zur
Bestimmung der «strengen Reduktion des
Nivellements» auf Potentialdifferenzen
über.
Er und in der Folge auch Ledersteger [3]

geben für die Potentialdifferenz zweier
Messpunkte und damit zweier Niveauflächen

die Gleichung

W2-Wr
g2 + 9i

6,0)

1

an, wobei sie das Restglied— (z2 + z^

(92~9i) wegen seiner angeblichen
Geringfügigkeit vernachlässigen. Die Werte
für gì und g2 werden den Messungen an

2

Abb. 2

W^W;,
Wj

z2
O

di,d2

AC1,2

Niveaufläche durch Punkt 1 bzw. 2

Niveaufläche durch Instrumentenhorizont
Lattenablesung:... auf Lattenstandpunkt 1

Lattenablesung:... auf Lattenstandpunkt 2

Lattennullpunkt
Abstand im Punkt 1 bzw. 2 zwischen Horizontalebene und Niveaufläche
durch den Instrumentenhorizont J
Potentialdifferenz zwischen den Punkten P^ und P2
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Partie rédactionnelle
den Fusspunkten P-, und P2 der Messlatten

entnommen. Zeger [4] berechnet den
Potentialunterschied zweier Punkte exakter,

indem er die Horizontal- und
Vertikalgradienten einführt.
Zeger erhält die Potentialdifferenz AC-, 2

W2 - W, mit

AC12 -g1(z1-d1) + g2(z2-d2)

Durch Transformation, wie bei Helmert [1]
und Ledersteger [2] und Einführung des
Vertikalgradienten Va erhält er die mittleren

Schwerewerte gj und g^. Die Differenz
der Oberflächenschwerewerte drückt
Zeger durch Gleichung 5,0) aus, wobei

^=Vaund^
5h 8s

die äusseren Gradienten sind. Er erhält
schliesslich, bei Vernachlässigung der
Abstände d-i und d2:

AC1.2="2 (9i + 92)Ah12

+ -s1,2(z1 + z2)Ha 7,0)

Bekanntlich ist beim Nivellement aus der
Mitte bei stetigem Gelände die jeweilige
Instrumentenhöhe gleich der halben
Summe der Zielhöhen. Wenn die
Potentialdifferenz AC12 aus der Differenz
zweier Potentialdifferenzen abgeleitet
wird, ist also das Zusatzglied

1

'1,21^1Zi + ZC H.

von der jeweiligen Instrumentenhöhe
abhängig. Zeger begeht hier den selben Fehler

wie Helmert und Ledersteger. Ein
Reduktionsglied der Potentialdifferenz kann
nicht von der jeweiligen Instrumentenhöhe
abhängig sein! Dies lässt sich auch einfacher

zeigen:

Wie oben soll gl bzw. g^ die Schwerkraft in

den Höhen — z-, bzw. — z2 sein und Va1

und Va2 seien die äusseren Vertikalgradienten.

Dann ist

Zi9i (gi-Vaiy)z1
2

91Z1-Vai^

und

Z292=(92-Va2-

92Z2-Va2:

FürVa1 Va2 Va gilt

10)

92z2-9izr
V a2'z2-z22"*1 9,0)

Beim Nivellement auf derselben Niveaufläche

ist Zi z2 J (J Instrumentenhöhe)

und daher

J(g2-9i)^o 10)

Beim Nivellement vom Äquator zum Pol
und einer Instrumentenhöhe von 1,5 m ist,

wenn man die Instrumentenhöhe von
1500 mm durch die Schwere von ~
1000 gal dividiert:

1,50 gP0|- gÄqu 8mm.

Das ist die Konvergenz zweier Niveauflächen

mit einem Höhenunterschied von
1,50 m vom Äquator bis zum Pol. Die
dynamische Höhendifferenz auf ein und
derselben Niveaufläche ist selbstverständlich
Null! Dies zur Richtigstellung der Ableitungen

von Helmert [2] und Ledersteger [3].

Wie in Abbildung 3 gezeigt, wird zur
Berechnung der «Geopotentiellen Kote» der
Wert

R

Pi

V

P*y^

pk

ds / \ 9k

,P1 / P
/ 0 ^*\- - -

1h ^V^>

9i

Abb. 3

42

9o 2-(9i + gk)

verwendet. In Abbildung 3 sind g, und gk
die gemessenen Schwerewerte in Pj und

Pk. Zur Bestimmung der Potentialdifferenz
zwischen P, und Pk wird der Schwerewert
gi' in P,' verwendet. Dieser ergibt sich, wie
man aus Abbildung 3 sieht, entweder aus

1

g,-2-va- dh

oder

g| g0-2Ha ds

Dies erhält man auch aus Gleichung 5,0),
wenn man entweder ds oder dh Null setzt.
Wird g/ mit dh multipliziert, so erhalten wir
für die Potentialdifferenz

W2-W1=2 (g1 + g2)Ah21

-HaAh21. f 11)

Wie man sieht, geht Gleichung 7,0) in

Gleichung 11 über, wenn man den Vorblick z2
Null werden lässt, d.h. wenn man

W2 - Wì direkt bestimmt.
Der Horizontalgradient Ha lässt sich durch
Schweremessungen bestimmen, damit
kann die Hypothesenfreie Reduktion des
geometrischen Nivellements durchgeführt
werden.

4. Die Änderung der
Kräftefunktion bei Änderung
des augenblicklichen
Bewegungszustandes
Wir bleiben wieder bei der Kugel und
gehen von der Gleichung für die Kräftefunktion

U=y R 0,7

aus. Bei Änderung der Kräftefunktion bei
gleichzeitiger Änderung des Bewegungszustandes,

also in mobilem Zustand, sind
sowohl y als auch R variabel, aber nicht
voneinander unabhängig, denn nach
Gleichung 0,9 ist

7 A7 • R

daher ist

U R2A7

und

AUR,Syst. 2RARA7 -2yh

0,71

0,72

0,73

(wobei die Fussnote «System» zeigen
soll, dass die Gleichung für das bewegte
System gilt).

Mensuration, Photogrammetrie. Génie rural. 2/88



Fachteil
Genauso wie das totale Differential für die
Gleichung 0,7 in der Ruhe gilt, gilt für den
freien Fall die Ausgangsgleichung 0,72,
wobei die Differentiation nach R das
allgemeine Fallgesetz und die Differentiation
nach Ay Null gibt, weil Ay konstant ist.

AUY,Syst. 0 0,74

Beide Ableitungen der Kräftefunktion gelten

für das beschleunigt-bewegte System.
Gleichung 0,73 sagt aus, dass die
Potentialdifferenz, die zu Beginn der Bewegung
Null war, am Ende der Bewegung 2yh
beträgt. Für das Bezugssystem ist die
Potentialdifferenz gleich dem Mittelwert, also
yh. Zum gleichen Resultat kommt man
über das bekannte Integral für die Arbeit.
Für die Einheitsmasse gilt

A= | v dV: 0,75

Dieses Integral besagt, dass die Arbeit
das Geschwindigkeitsintegral über dem
Impuls ist.

Aus Abbildung 4 sehen wir, dass der
Impuls das geometrische Mittel aus dem
Weg und der doppelten Beschleunigung
ist. Das halbe Quadrat der Geschwindigkeit

(Fläche O, A, B) ist die Arbeit oder die
Leistung

2
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Aus Gleichung 0,74 folgt, dass beim
«Freien Fall» im bewegten System
Schwerelosigkeit herrschen muss.

5. Über die Auswirkung
der Schwerelosigkeit im
bewegten System auf die
Bewegungen in den
fliessenden Gewässern
Solange der freie Fall nicht gebremst wird,
zeigt eine belastete Federwaage keinen
Ausschlag, ein schwingendes Pendel hört
auf zu schwingen, eine Kerzenflamme
erlischt. Bei Raketenflügen treten für den
Menschen infolge fehlender Gravitation
physiologisch-physikalische Umweltbedingungen

auf. Dies gilt besonders für die
Erdumkreisung der Satelliten, welche
nichts anderes als ein Fallen auf
vorgeschriebener Bahn ist.
Auch die freie Bewegung auf der schiefen
Ebene ist ein Fallen auf vorgeschriebener
Bahn. Hier muss ebenfalls Schwerelosigkeit

auftreten. Dies gilt für die gesamte Ge-

birgsdynamik, besonders für das Fliessen
des Wassers und für das Abgehen von
Lawinen.

Bekanntlich geht die Lageenergie der aus
dem Gebirge abfliessenden Gewässer
grösstenteils verloren. Die Abflussge-
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Abb. 4

schwindigkeit, selbst der reissendsten
Gewässer, übersteigt den Wert von 5 bis 6 m/
sec nicht. Die Energie des Wassers
verbraucht sich beim Abfluss zur Überwindung

der inneren Reibung und der
Wandreibung. Die Summenwirkung dieser
Reibungen wird als Bettwiderstand bezeichnet.

Bei rascher Spiegelsenkung, nämlich um

die halbe Wassertiefe h —t, erreicht die
2

Wassergeschwindigkeit einen kritischen
Wert. Es wird v V2gh VgL die
auftretende Geschwindigkeit v ist die
sogenannte Wellenschnelligkeit.
Man unterscheidet zwei Arten der
Wasserbewegung, nämlich laminares und
turbulentes Fliessen. Ebenso gibt es zwei Arten
des Abflusses, und zwar Strömen und
Schiessen. Die laminare Bewegung mit
ihrer geringen Geschwindigkeit hat stets
den strömenden Abfluss zur Folge. Bei
Überschreitung einer bestimmten
kritischen Geschwindigkeit vgr > ^/g~^
geht der strömende Abfluss jedoch in den
schiessenden Abfluss über, wofür die
FROUDE'sche Kennzahl

Fr
v

massgebend ist. Einer Änderung der Be-

wegungsgrösse oder des Impulses "nvv"
entspricht daher auch eine Änderung der
FROUD'schen Zahl.
Durch die innere Reibung oder den
Impulsaustausch ([6], Seite 82) vollzieht sich
eine Änderung der Bewegungsgrösse.
Offenbar beeinflusst die Schwerelosigkeit im

bewegten System beim freien Fall die
innere Reibung und damit auch die Art des
Wasserabflusses.
Es besteht nach dem Wissen des Verfas¬

sers keine Literatur darüber. Es wäre
daher angebracht, auf diesem Gebiet einen
Forschungsschwerpunkt zu bilden.
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