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Fachteﬂ

Ein Versuch, die hypo-
thesenfreie Reduktion des
geometrischen Nivellements
und die Schwerelosigkeit beim
«Freien Fall» aus der
Kraftefunktion darzustellen

W. Embacher

Das totale Differential der Kréaftefunktion gibt, bei sinngemésser Festlegung der
Konstanten, die Potentialdifferenz zweier Punkte und die Schwerkraft. Anderer-
seits erkennt man aus der Ableitung der Kréaftefunktion, dass beim bewegten Sy-
stem die doppelte Beschleunigung auftritt, wahrend im System selbst Schwerelo-
sigkeit herrscht. Weiters zeigt der Verfasser einen Fehler auf, welcher bisher bei
der Berechnung der «Geopotentiellen Kote» aufgetreten ist.

La différentielle totale de la fonction de forces (champ gravitationnel) donne, lors-
que l'on fixe correctement les constantes, la différence de potentiel entre deux
points et la pesanteur. On montre d’autre part qu’en dérivant la fonction de forces,
on obtient le double de I'accélération dans un systéme en mouvement, tandis que
régne I'apesanteur dans le systéme lui-méme. L’auteur met aussi en évidence une
faute commise jusqu’ici dans le calcul de la cote géopotentielle.

1. Einleitung

Der in der Geodasie hauptsachlich ver-
wendete Ausdruck «Kraftefunktion» ist mit
der negativen Potentialfunktion gleichbe-
deutend.

Lagrange hat zuerst die Bemerkung ge-
macht, dass sich die Komponenten einer
anziehenden Kraft als die partiellen Diffe-
rentialquotienten einer und derselben
Funktion nach den Koordinaten des ange-
zogenen Punktes darstellen lassen. La-
place hat dieses Resultat auf die Anzie-
hung beliebiger Massen ausgedehnt. Fir
die dabei auftretende Funktion hat Gauss
den Namen «Potential» eingeflhrt. Green
hatte daflr die Bezeichnung «Potential-
funktion» vorgeschlagen.

Je nach dem Grade der Annaherung in der
Reihenentwicklung der Kraftefunktion un-
terscheidet man sogenannte Niveausphé-
roide n-ten Ranges. Das Glied O. Ordnung
stellt die Kugel dar.

2. Das Schwerefeld der Erde

Wir betrachten naherungsweise den Erd-
korper als geschichtete Kugel, so dass wir
ihn durch einen Massenpunkt ersetzt den-
ken durfen.

Die Bewegung der Einheitsmasse auf
dem Weg dr entgegen der Schwerkraft y
erfordert die Arbeit
dA=-ydr=- kQMzdr

r

0,1)

Um die Masse von der Hohe ry auf ry zu
heben, ist die Arbeit
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A= f -k—d KM _(2M - g0

lo I

erforderlich.

Um die Probemasse von ry = raus nachrp
= o zu beférdern, braucht man die soge-
nannte Abldsearbeit P

2M

s Jg 0,3)

Man bezeichnet sie als potentielle Energie
oder Potential des Feldes an der Stelle r;
dieses Pontential ist nach dem oben Ge-
sagten gleich der negativen Kraftefunktion
U, wobei k2 die Gravitationskonstante, d.i.
ein Proportionalitatsfaktor mit

k®=66,67 10"

und M=%nr3....om 0,4)

ist, wenn op, die mittlere Dichte der Erde
bedeutet. Uberlasst man die Probemasse

mit der potentiellen Energie — k2 ¥

sich selbst, so setzt sie sich in Richtung
der wirkenden Kraft in Bewegung. Sie ge-
winnt an kinetischer Energie mit wachsen-
der Geschwindigkeit v. Bezeichnen wir mit
R den Erdradius und mit r den Abstand der
Probemasse vom Erdmittelpunkt bei Be-
ginn des Falles, so gilt fur die kinetische
Energie nach Durchfallen der Potentialdif-
ferenz

0,5)

In der Nahe der Erdoberflache geht diese
Gleichung flr

=M2k2
R
und mit einer Fallhdhe h = (r — R) Uberin
4 2
V?=Y‘ h oder v =2yh 0,6)

Dies ist das allgemeine Fallgesetz.
Setzen wir in Gleichung 0,3) fir die Masse
M die Gleichung 0,4) ein und bedenken,
dass der Ausdruck

kM

RZ

gleich der Schwere vy ist, so gilt fir die Kréaf-
tefunktion U auf der Oberflache der ge-
schichteten Kugel

U=y R 0,7)
Dies ist die Gleichung der Niveauflache im
Abstand R. Betrachten wir den Zustand
der relativen Ruhe, so kénnen wir den Mit-
telwert

Vit 2
g

der Schwere der beiden Niveauflachen U,
und U, in der Nahe der Oberflache als kon-
stant auffassen und bezeichnen wir den
Unterschied der beiden Radien dieser Ni-
veauflachen (R, — Ry) mit AR = — h, so
gilt fir den Potentialunterschied AU der
beiden Niveauflachen

AU R= "‘{mh 018)

Bei konstant g__ehaltenem Radius, und nur
dann, gilt bei Anderung der Schwere y um
Ay

AU, = AR 0,9)

Die Gleichung 0,9) geht aus der Funda-
mentalgleichung meines «Dynamischen
Nivellements» hervor und setzt keine Mas-
senanderung, bzw. Dichtednderung vor-
aus. Die Gleichung (5,2) meiner Arbeit:
«Der Hohenunterschied zweier Punkte
der physischen Erdoberflache» (Heft 9 der
Institutsmitteilungen des Institutes flr
Geodasie der Universitat Innsbruck) lau-
tet:

h = (g"‘{o)

)

(Ag 4nk © COoS 8)—
Ah

2 .
- 471k o sin 4 cos &

39
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Auf die geschichtete oder homogene Ku-
gel angewandt, gibt sie den Kugelradius:

R=— 1
41tk20'm— 2 o
oh
Ag . .
denn —= ist auf der Kugeloberflache

Ah
Null, genauso wie der Gelandewinkel d.
Damit ergibt sich fir den Nenner

(amk’s, 2 v,
ah

—4nk®- 5517-2 5.

2
3 4k - 5,517

4 ]
=% nk’s, = - 154,14 sec”

von mir mit Ay bezeichnet.

Allein die Dimension von Ay[sec]-2 zeigt,
dass der Ausdruck mit Masse oder
Massenanderung nichts zu tun hat. Wie
oben erwahnt, gelten diese Uberlegungen
fir die Nahe der Kugeloberflache. Aus A.
Wangerin: «Theorie des Potentials und der
Kugelfunktion» (Seite 50) ergeben fir r =
R die Grenzwerte:

(siehe Gleichung 0,9)

Obwohl die Funktionen fiir Potential und
Anziehung fur aussere und innere Punkte
verschieden sind, schliessen sich die Aus-
sen- und Innenwerte an der Grenzflache
(Oberflache) kontinuierlich an. Dement-
sprechend sind die Hauptglieder der Funk-
tionen ausserhalb der Grenzflache bis auf
kleine Korrektionsglieder den Hauptglie-
dern an der Grenzflache gleich:

Denn fur r = R + h lautet das Potential

VazY' R(1' )

| =

und die Anziehung X,

2h

Xa=v- (1 'ﬁ)

Man sieht, dass die Korrektionsglieder in
der Nahe der Grenzflache in Bezug auf die
Hauptglieder sehr klein sind. Es genugt
daher, die Funktionen an der Grenzflache
selbst zu untersuchen.

Aus dem Ausdruck fir die Schwere

40

y = kZ% 7o, - R, der wie oben gezeigt

wurde, auch in der Nahe der Erdoberfla-
che gilt, geht hervor, dass

Ay = K’ % no,

sein muss (Avy ist die zweite Ableitung von
V;in einer Richtung). Also zeigt Gleichung
0,9), dass die Ableitung der Kraftefunktion
nach der Schwere v bei gleichbleibendem
Radius, im Zustand der Ruhe, die
Schwere ergibt.

3. Der Abstand benachbarter
Niveauflachen

Wir gehen vom Modell der Kugelflachen
als Niveauflachen ab und betrachten die
tatsachlichen Niveauflachen. Wenn n die
nach aussen gerichtete Normale im Punkt
P einer Niveauflache ist, so andert sich
beim Ubergang in der gleichen Lotlinie
von der Niveauflache W = C zur benach-
barten die Konstante W um dW und es gilt
analog zu Gleichung 0,8) die Gleichung

gdn=-dw 1)

Orientieren wir das Koordinatensystem im
Punkt P, so, dass die z-Achse mit der Fla-
chennormalen zusammenfallt, die
+ x-Achse mit der geographischen Nord-
richtung und die + y-Achse mit der Ost-
richtung, so sind die Komponenten der
Schwerkraft, wenn wir unter W das Po-
tential der Schwerkraft verstehen, im
Punkt Py:

oz ffe
8z Jo X Jo oz /o

Setzen wir fur die Funktion f(x y z) jetzt die

Funktion 6—\,2\/ so ist im Punkt P (x y z),
wenn wir den Wert im benachbarten Punkt
Po (Xo Yo Zo) Mit (%_VZV)O bezeichnen nach

der Taylorschen Reihenentwicklung:

2
M(M) W
0

= (x-Xq)
oz oz xdz |
dW
+( (y-yo)+ — (z-2zg)+ -
dydz /o 5z |o 3)

% bedeutet die Zunahme des Potentials

in Richtung der z-Achse. Setzen wir fiir z—
z, den Héhenunterschied —Ah und fur die
Resultierende aus (x —x,) und (y —y,) die
Seite As, so geht Gleichung 3) Uber in

aw g faw]
8h sh°
0
2
W s 4)
8hds /o

Die beiden letzten Glieder dieser Glei-
chung entsprechen dem Schwereunter-
schied Ag zweier benachbarten Punkte
der physischen Erdoberflache

Ag=—Ah6—g +nsd9 5)
dh

ds

Uns interessiert der Hohenunterschied
zweier Punkte der physischen Erdoberfla-
che. Man pflegt die Differenz zweier Ziel-
héhen, welche durch die horizontale Visur
eines Nivellierinstrumentes an zwei verti-
kal aufgestellten Massstaben entsteht, als
Hohenunterschied der beiden Punkte zu
bezeichnen.

: ache
};thggséxﬁﬁ u)ygauilaﬂh

|
|
|
|
o b
|
-
Bl

ngestdrte Niveaufldche

Bezugsfléiche

w|

Abb. 1
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Das «Denkgewohnte» liegt in den beiden
Begriffen «horizontal» und «vertikal». Als
«Denknotwendiges» ware festzustellen,
dass die Niveauflache durch den Schnitt-
punkt Kippachse-Stehachse nicht parallel
ist mit der Senkrechten auf das Lot im
Fusspunkt des Instrumentes, auf welche
sich die Differenz der Zielhdhen bezieht.
Zunachst wollen wir die Frage nach der
wahren Natur der nivellierten Héhenunter-
schiede wiederholend klaren.

Abbildung 1 zeigt den Schnitt eines Han-
ges in Richtung der Fallinie mit den Gelan-
depunkten A, M und B.

A B sei die ungestérte Ausgangsflache,
der Abstand A A sei h. Der Standpunkt des
Nivellierinstrumentes ist M und die beiden
Nivellierlatten stehen in A und B. Die ge-
storte Niveauflache in A ist strichliert ge-
zeichnet (A B"), wahrend die Parallele zur
ungestdrten Niveauflache in A und B’ voll
dargestellt wurde. Der Winkel zwischen
der Parallelen zur ungestorten und der ge-
stoérten Niveauflache ist mit ¢ bezeichnet,
dieser Winkel kann im Gebirge einen Be-
trag bis zu 30 Bogensekunden erreichen.
In O sei die Visierlinie durch R — %’ gekenn-
zeichnet und die Parallele zur ungestorten
Niveauflache durch O ware R — V. Der Ho-
henunterschied im gestérten System (d.h.
dem tatsachlich vorhandenen System) ist
Ah" = AA” = BB"” und der im ungestorten
System Ah = BB’ = AA’. Es ist also Ah
um B'B” = d( grésser als Ah’, das heisst

Ah=Ah'+dg=ah'+ 92798} 5,0)
g

Der Wert fir dC wurde der Arbeit [1] ent-
nommen (Glg. 3.21, S. 24).

Die Nichtparallelitat der beiden ungestor-
ten Niveauflachen A B und AB’, d.h. der
Héhenunterschied Ahg wegen der Bes-
sel- oder Normalreduktion "Ay" betragt im
Maximum in der Nord-Sudrichtung Ahg =

Ayl h (siehe [2] Glg. (10), Seite 292, und

[5] Glg. (3.2), Seite 250). Diese Reduktion
betragt in unserer Breite z.B. fliir 2000 m
Hoéhenunterschied auf einen Kilometer
Entfernung etwa 1,6 mm.

Nehmen wir an, es wiirde vom Punkt A bis
zum Punkt | nivelliert. So erhalten wir als
«rohe Lattenhéhe» des Punktes | Uber
Punkt A

n=i
" Rohe Lattenhéhe" = 3 Ah’

A=

n=i
Die Summe 21 Ah’ ist der Abstand
n=

einer zur Bezugsflache durch A parallelen
Flache. Nachdem die Lotrichtungen nur
um Sekundenbetrdge schwanken, kann
man die einzelnen Lattenabschnitte sum-
mieren. Der Fehler, welcher bei einem
Richtungsunterschied der Lotrichtungen
von beispielsweise 30” und einem Hohen-
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unterschied von 3000 m dadurch entsteht,
betragt 0,03 mm, kann also vernachlés-
sigt werden.

Die Nichtparallelitat der tatséchlichen Ni-
veauflachen kann beim geometrischen Ni-
vellement nicht festgestellt werden (siehe
[9], Abb. 4), weil das geometrische Nivelle-
ment sowohl auf der ungestdrten als auch
auf der gestérten Niveauflache den Ho-
henunterschied Null ergibt.

Wir gehen vom Abstand zweier Parallelfla-
chen zur einfacheren Vorstellung auf den
Abstand zweier Parallelkurven tber und
betrachten der Einfachheit halber als Aus-
gangspunkt einen Meridian einer Rota-
tionsflache.

Zwei Parallelkurven sind dadurch defi-
niert, dass sie auf allen ihren gemeinsa-
men Normalen ein Stiick von derselben
Lange abschneiden; bekanntlich heissen
diese stetigen Kurven «Evolventen». Der
Ort ihrer gemeinsamen Krimmungsmittel-
punkte ist die Evolute. Da die Krimmung
eine Funktion der zweiten Ableitung ist,
muss die Evolvente einschliesslich der
zweiten Ableitung eine stetige Kurve sein.
Im allgemeinen ist der ebene Schnitt einer
gestorten Niveauflache keine solche
Kurve. Daher gibt es zu einer gestdrten Ni-
veauflache, wenn wir wieder zu den Flé&-
chen Ubergehen, im allgemeinen keine
Parallelflache. Die gestorte Niveauflache
kann also nicht als Vergleichsflache die-
nen.

Die «rohe Lattenhéhe» kann nicht als Ab-
stand von einer gestdrten oder tatsachli-
chen Niveauflache aufgefasst werden,
sondern nur als Abstand von einer analyti-
schen Flache definiert werden!

Die «rohe Lattenhohe» erweitert durch die
Héhenanderung Ahg wegen der Normal-

oder Besselreduktion gibt den Abstand
zweier ungestorter Niveauflachen. Gibt
man die Summe aller dC dazu, so erhalt
man den Abstand eines Punktes einer ge-
storten Niveauflache von der ungestorten
Bezugsniveauflache in seiner Lotlinie.
Wiirde man den Abstand zweier gestorter
Niveauflachen suchen, so misste man die
Differenz der beiden Abstéande von der
jeweiligen  ungestorten  Niveauflache
(dCunten — dlopen) SUCheN.

Da sich jedoch die zweite gestorte Ni-
veauflache unter der physischen Erdober-
flache befindet, ist eine Bestimmung des
Hoéhenunterschiedes dCnien dieser gestor-
ten Niveauflache von ihrer zugehdrigen
ungestdrten ohne Hypothesen nicht mog-
lich.

Der Hohenunterschied eines Oberflachen-
punktes lasst sich nur in Bezug auf eine
ungestorte Ausgangsflache hypothesen-
frei bestimmen.

Helmert schreibt in seinem Lehrbuch [2],
dass aus geometrischen Nivellements Ho-
henunterschiede und Meereshéhen in
Strenge nicht zu finden sind. Er geht zur
Bestimmung der «strengen Reduktion des
Nivellements» auf Potentialdifferenzen
Uber.

Er und in der Folge auch Ledersteger [3]
geben fur die Potentialdifferenz zweier
Messpunkte und damit zweier Niveaufla-
chen die Gleichung

g2+ 014

Wy-Wi=(25-24) 5

6,0)

an, wobei sie das Restglied% (zo + 24)

(g2 —g1) wegen seiner angeblichen Ge-
ringfligigkeit vernachlassigen. Die Werte
fir g4 und g, werden den Messungen an

2z ‘di 2 le
g P = o —— — T z,
f Tl
| W,
P

Abb. 2

W,, W, Niveauflache durch Punkt 1 bzw. 2

W, Niveauflache durch Instrumentenhorizont

Z4 Lattenablesung:... auf Lattenstandpunkt 1

2, Lattenablesung:... auf Lattenstandpunkt 2

(0] Lattennullpunkt

dy,d, Abstand im Punkt 1 bzw. 2 zwischen Horizontalebene und Niveauflache

durch den Instrumentenhorizont J

AC1’2

Potentialdifferenz zwischen den Punkten P4 und P,

4
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den Fusspunkten P4 und P, der Messlat-
ten entnommen. Zeger [4] berechnet den
Potentialunterschied zweier Punkte exak-
ter, indem er die Horizontal- und Vertikal-
gradienten einfiihrt.

Zeger erhalt die Potentialdifferenz AC4 , =
W2 - W1 mit

AC1,2='9—1(21'(11)*‘972(22‘(52)

Durch Transformation, wie bei Helmert [1]
und Ledersteger [2] und Einflihrung des
Vertikalgradienten V, erhélt er die mittle-
ren Schwerewerte gy und g,. Die Differenz
der Oberflachenschwerewerte drickt Ze-
ger durch Gleichung 5,0) aus, wobei

-a—g— =V, und 5—9 =Hy
Sh ds

die ausseren Gradienten sind. Er erhalt
schliesslich, bei Vernachlassigung der Ab-
stande d4 und ds:

1
AC1,2=‘§(g1+92)Ah1,2

1
+§S1'2(Z1+22) Ha .....

7,0)
Bekanntlich ist beim Nivellement aus der
Mitte bei stetigem Gelande die jeweilige
Instrumentenhéhe gleich der halben
Summe der Zielhdhen. Wenn die Poten-
tialdifferenz ACy, aus der Differenz
zweier Potentialdifferenzen abgeleitet
wird, ist also das Zusatzglied

1
531,2(Z1+22) Ha

von der jeweiligen Instrumentenhéhe ab-
hangig. Zeger begeht hier den selben Feh-
ler wie Helmert und Ledersteger. Ein Re-
duktionsglied der Potentialdifferenz kann
nicht von der jeweiligen Instrumentenhéhe
abhangig sein! Dies lasst sich auch einfa-
cher zeigen:

Wie oben soll g; bzw. g, die Schwerkraftin
den Hohen 1321 bzw. 1Ezz sein und Vg,
und V,, seien die ausseren Vertikalgra-
dienten. Dann ist

Z4
Z191=(91'Va1"2—)21

2

Z4
=91Z1'Va1?
und 8,0)
2292=(92 Va2 5 ) 22
,2
= Z5< ¥ f2
9222 a2,
Fir Vay = Vo = V, gilt
\ o 2
9222'9121'732(22‘21) 9,0)

Beim Nivellement auf derselben Niveau-
flache ist z; = z, = J (J = Instrumenten-
héhe) und daher

J(92-91)#0 10)

Beim Nivellement vom Aquator zum Pol
und einer Instrumentenhdhe von 1,5 mist,
wenn man die Instrumentenhéhe von
1500 mm durch die Schwere von ~
1000 gal dividiert:

1,50 (gpol- 9Aqu.) = 8 mm.

Das ist die Konvergenz zweier Niveaufla-
chen mit einem Hohenunterschied von
1,50 m vom Aquator bis zum Pol. Die dy-
namische Hohendifferenz auf ein und der-
selben Niveauflache ist selbstverstandlich
Null! Dies zur Richtigstellung der Ableitun-
gen von Helmert [2] und Ledersteger [3].

Wie in Abbildung 3 gezeigt, wird zur Be-
rechnung der «Geopotentiellen Kote» der
Wert

Abb. 3

42

]
90=5 (gi+9k)

verwendet. In Abbildung 3 sind g; und gi
die gemessenen Schwerewerte in P; und
Py. Zur Bestimmung der Potentialdifferenz
zwischen P; und Py wird der Schwerewert
g/’ in P;’ verwendet. Dieser ergibt sich, wie
man aus Abbildung 3 sieht, entweder aus

! 1
9i=95'§Va' dh

oder

. 1
9i=90'§Ha' ds

Dies erhalt man auch aus Gleichung 5,0),
wenn man entweder ds oder dh Null setzt.
Wird g;" mit dh multipliziert, so erhalten wir
fur die Potentialdifferenz

1
W, - Wy =§(91+92)Ah21

-HaAh21-§ 11)

Wie man sieht, geht Gleichung 7,0) in Glei-
chung 11) Uiber, wenn man den Vorblick z,
= Null werden lasst, d.h. wenn man
W, — W, direkt bestimmt.

Der Horizontalgradient H, lasst sich durch
Schweremessungen bestimmen, damit
kann die Hypothesenfreie Reduktion des
geometrischen Nivellements durchgefihrt
werden.

4. Die Anderung der
Kraftefunktion bei Anderung
des augenblicklichen
Bewegungszustandes

Wir bleiben wieder bei der Kugel und ge-
hen von der Gleichung fir die Kréaftefunk-
tion
U=vR 0,7
aus. Bei Anderung der Kréaftefunktion bei
gleichzeitiger Anderung des Bewegungs-
zustandes, also in mobilem Zustand, sind
sowohl y als auch R variabel, aber nicht
voneinander unabhangig, denn nach Glei-
chung 0,9 ist

v=Ay-R 0,71
daher ist

2
U=R Ay 0,72
und
AUR gyst =2RAR Ay =-2yh 0,73

(wobei die Fussnote «System» zeigen
soll, dass die Gleichung fur das bewegte
System gilt).

Mensuration, Photogrammeétrie, Génie rural, 2/88
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Genauso wie das totale Differential flr die
Gleichung 0,7 in der Ruhe gilt, gilt fir den
freien Fall die Ausgangsgleichung 0,72,
wobei die Differentiation nach R das allge-
meine Fallgesetz und die Differentiation
nach Ay Null gibt, weil Ay konstant ist.
AUy syt =0 0,74
Beide Ableitungen der Kraftefunktion gel-
ten fur das beschleunigt-bewegte System.
Gleichung 0,73 sagt aus, dass die Poten-
tialdifferenz, die zu Beginn der Bewegung
Null war, am Ende der Bewegung 2vh be-
tragt. Fur das Bezugssystem ist die Po-
tentialdifferenz gleich dem Mittelwert, also
vh. Zum gleichen Resultat kommt man
Uber das bekannte Integral fur die Arbeit.
Fur die Einheitsmasse gilt

Vv, 2
A=f vdv=V—
2 2

Dieses Integral besagt, dass die Arbeit
das Geschwindigkeitsintegral Gber dem
Impuls ist.

0,75

Aus Abbildung 4 sehen wir, dass der Im-
puls das geometrische Mittel aus dem
Weg und der doppelten Beschleunigung
ist. Das halbe Quadrat der Geschwindig-
keit (Flache O, A, B) ist die Arbeit oder die
Leistung

2
v

2

Aus Gleichung 0,74 folgt, dass beim
«Freien Fall» im bewegten System Schwe-
relosigkeit herrschen muss.

5. Uber die Auswirkung
der Schwerelosigkeit im
bewegten System auf die
Bewegungen in den
fliessenden Gewassern

Solange der freie Fall nicht gebremst wird,
zeigt eine belastete Federwaage keinen
Ausschlag, ein schwingendes Pendel hort
auf zu schwingen, eine Kerzenflamme er-
lischt. Bei Raketenfligen treten fir den
Menschen infolge fehlender Gravitation
physiologisch-physikalische ~ Umweltbe-
dingungen auf. Dies gilt besonders fiir die
Erdumkreisung der Satelliten, welche
nichts anderes als ein Fallen auf vorge-
schriebener Bahn ist.

Auch die freie Bewegung auf der schiefen
Ebene ist ein Fallen auf vorgeschriebener
Bahn. Hier muss ebenfalls Schwerelosig-
keit auftreten. Dies gilt fiir die gesamte Ge-
birgsdynamik, besonders fur das Fliessen
des Wassers und fur das Abgehen von La-
winen.

Bekanntlich geht die Lageenergie der aus
dem Gebirge abfliessenden Gewaésser
grosstenteils verloren. Die Abflussge-
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schwindigkeit, selbst der reissendsten Ge-
wasser, Ubersteigt den Wert von 5 bis 6 m/
sec nicht. Die Energie des Wassers ver-
braucht sich beim Abfluss zur Uberwin-
dung der inneren Reibung und der Wand-
reibung. Die Summenwirkung dieser Rei-
bungen wird als Bettwiderstand bezeich-
net.

Bei rascher Spiegelsenkung, namlich um

die halbe Wassertiefe h = %t, erreicht die

Wassergeschwindigkeit einen kritischen
Wert. Es wird v = \/2gh = \/gt, die auf-
tretende Geschwindigkeit v ist die soge-
nannte Wellenschnelligkeit.

Man unterscheidet zwei Arten der Wasser-
bewegung, ndmlich laminares und turbu-
lentes Fliessen. Ebenso gibt es zwei Arten
des Abflusses, und zwar Strémen und
Schiessen. Die laminare Bewegung mit ih-
rer geringen Geschwindigkeit hat stets
den stromenden Abfluss zur Folge. Bei
Uberschreitung einer bestimmten kriti-
schen Geschwindigkeit vy > Vg-t
geht der stromende Abfluss jedoch in den
schiessenden Abfluss Uber, wofur die
FROUDE'sche Kennzahl

Fr=t <1

Va>

massgebend ist. Einer Anderung der Be-
wegungsgrosse oder des Impulses "m-v”
entspricht daher auch eine Anderung der
FROUD’schen Zahl.

Durch die innere Reibung oder den Im-
pulsaustausch ([6], Seite 82) vollzieht sich
eine Anderung der Bewegungsgrosse. Of-
fenbar beeinflusst die Schwerelosigkeit im
bewegten System beim freien Fall die in-
nere Reibung und damit auch die Art des
Wasserabflusses.

Es besteht nach dem Wissen des Verfas-

sers keine Literatur dartber. Es wére da-
her angebracht, auf diesem Gebiet einen
Forschungsschwerpunkt zu bilden.
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