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Partie rédactionnelle

Betrachtungen zu singularen
Ausgleichungsmodellen

J.van Mierlo

Unter den Kriterien erwartungstreue und minimale Varianz werden die kleinsten
Quadraten-Schétzer in singuldren linearen Ausgleichungsmodellen entwickelt.
Hierbei werden beim Gauss-Markoff-Modell sowohl eine singulére Konfigurations-
matrix als auch eine singuldre Konvarianz zugelassen. Ebenso darf das funktio-
nale und das stochastische Modell einer bedingten Ausgleichung Singularitaten

aufweisen.

Bei den Formelableitungen wird die Komplementaritit des G.M.-Modells und des
Modells einer bedingten Ausgleichung beriicksichtigt.

Dans des modéles de compensation linéaires et singuliers, on développe les esti-
mateurs des moindres carrés en prenant comme critére la variance la plus proba-
ble et minimale. On admet aussi pour le modéle de Gauss-Markoff une matrice de
configuration singuliére, ainsi qu’'une matrice de covariance singuliére. De la
méme maniére, le modéle fonctionnel et stochastique d’une compensation condi-

tionnelle doit comporter des singularités.

Dans I'établissement des formules, on met en évidence la complémentarité du
modeéle Gauss-Markoff et de celui d’'une compensation conditionnelle.

1. Einfihrung

In den letzten Jahrzehnten hat sich die
Darstellungsform der Ausgleichungsrech-
nung betrachtlich gewandelt. Die in der
mathematischen Statistik entwickelten
Methoden der Parameterschéatzung in li-
nearen oder linearisierten Modellen kann
man im Prinzip in das Modell einer vermit-
telnden oder bedingten Ausgleichung um-
formen. Die bedingte Ausgleichung ist in
den letzten Jahren in Vergessenheit gera-
ten. Der Grund hierflr ist, dass die direkte
Aufstellung der Bedingungsgleichungen
in der Praxis viel schwieriger ist als die Be-
rechnung einer Designmatrix. Dazu
kommt, dass die Uberlegungen (ber die
Dimension der zu invertierenden Matrix
der Normalgleichungen zur Zeit keine
Rolle mehr spielen.

Jedoch hat das Modell einer bedingten
Ausgleichung seine Bedeutung noch nicht
ganz verloren. Jetzt spricht man sogar
vom komplementaren Gauss-Markoff-Mo-
dell oder vom dualen Modell. Eliminiert
man die Parameter des G.M.-Modells,
dann erhélt man das komplementére Mo-
dell. Seit der Einfllhrung der Projektions-
operatoren in die Ausgleichungsrechnung
hat die geometrische Darstellung einer
Ausgleichung an Bedeutung zugenom-
men und damit gleichzeitig auch wieder
das komplementéare Modell.

Die entwickelten Methoden zum Testen
von Hypothesen hangen grosstenteils von
den aus der bedingten Ausgleichung be-
kannten Widerspriichen ab. Zum Ver-
sténdnis der Testmethoden kann das kom-
plementare Modell sehr viel beitragen,
ohne dass man eine bedingte Ausglei-
chung tatséchlich ausfiihren muss.
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Nach einleitenden Definitionen der be-
trachteten Modelle werden die Methoden
der Parameterschatzung und die Berech-
nung der verbesserten oder ausgegliche-
nen Beobachtungen fir singulare Ausglei-
chungsmodelle dargestellt. Sowohl das
stochastische Modell als auch das funktio-
nale Modell darf Singularitaten aufweisen.
Im Falle eines G.M.-Modells sind dann die
Spaltenvektoren der Designmatrix und im
komplementaren Modell die Zeilenvekto-
ren der Bedingungsgleichungen abhén-

9i9.

2. Das G.M.-Modell und das
komplementare Modell

Mit Tals mx 1-Vektor der Erwartungswerte
des Beobachtungsvektors I, x als nx1-
Vektor der Parameter mitm > nund A als
bekannte mxn-Designmatrix lautet das
Gauss-Markoff-Modell oder kurz G.M.-Mo-
dell

T=Ax

D () = 02Q (21)
Hierin ist D () die mxm-Dispersionsmatrix
der Beobachtungen, o2 der Varianzfaktor
und Q, die Gewichtskoeffizientenmatrix
der Beobachtungen.

Das komplementare Modell entsteht nach
Eliminierung der Parameter x. Wenn BA
= 0, dann gilt folglich

Bi=0 (2.2)

worin B eine bxm-Matrix darstellt mit
b < m. In der geodétischen Literatur ist B
bekannt als die Matrix der Bedingungsglei-

chungen. Das komplementéare Modell be-
zeichnet man weiter mit

Bi=0

D(l) = ¢2Q, (2.3)

Das G.M.-Modell und das komplementére
Modell (2.3) sind durch BA = O miteinan-
der verknUpft.

Definition 1
Das G.M.-Modell sei bezeichnet als:

1.1: reguléres G.M.-Modell, wenn

r(A) =nundr(Q) =m
(r[‘] steht fur Rang der in Klammern
stehenden Matrix)
1.2: A-singuléres G.M.-Modell, wenn
rA) =u<nundr(Q)=m
1.3: Q-singulares G.M.-Modell, wenn
r(A)=nundr(Q)=q<m
1.4: allgemeines G.M.-Modell, wenn
r(A) =u<nundr(Q)=q<mugilt.
Diese spezifizierten Modelle stammen von
Caspary [1984].
Ebenso kann man vier verschiedene Mo-
delle fir das komplementére Modell ein-
fihren. Bezeichnet man das komplemen-
tare Modell weiter als K-Modell, dann gilt

Definition 2
Das K-Modell sei bezeichnet als:

2.1: regulares K-Modell, wenn
r(B) =bundr(Q) =m

2.2: B-singulares K-Modell, wenn
rB)=r<bundr(Q)=m
2.3: Q-singuléres K-Modell, wenn

rB)=bundr(Q)=q<m

2.4: allgemeines K-Modell, wenn

r(B) =r <bundr(Q) = q<magilt.

Far alle definierten funktionalen Modelle
istimmer BA = O gliltig. (2.4)

Mit einem Beobachtungsvektor | werden
Schatzungen fiir Tund x gesucht.

Es sei I+e eine Schatzung fur I, dann
muss I+e die folgenden Bedingungen er-
fallen:

(i) erwartungstreu, d.h. E (I1+e) =1 (2.5)
(i) B(l1+e) = O (2.6)

Aus (2.6) folgt, dass die verbesserten Be-
obachtungen I+e die Bedingungsglei-
chungen erfillen. Aus (2.6) ergibt sich mit

(2.4)
I+e = AR 2.7)

Hierin ist X eine Schatzung fur x. (E[‘]
steht fir den Erwartungswert des in Klam-
mern stehenden Arguments).
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Es sei & eine willkirliche lineare Funktion
der Erwartungswerte von I:

® =1 (2.8)
Eine erwartungstreue Schatzung fur ¢ sei
o =1 (I+e)

Die Schéatzung & sei als best bezeichnet,
wenn sie minimale Varianz besitzt. Die
«\erbesserungen» e, welche flr alle f mi-
nimale Varianzen erzeugen, d.h.

2 2,T ) T
o, =0 f Q.f minmum Vf

bezeichnet man mit v. Es wird sich im fol-
genden zeigen, dass v die Verbesserun-
gen nach der Methode der kleinsten Qua-
drate darstellen. Die Berechnung von v
und X hangt von der Art der definierten
Modelle ab.

3. Das regulare G.M.- und
K-Modell

Im Modell BT = O oder B(l+e) = O werden
die Verbesserungen e berechnet als Lo-
sung der konsistenten Gleichungen

Be = —w (31)

worin w der Vektor der Widerspriiche dar-
stellt

w = BI (3.2)

Die Lésung e erhalt man mit Hilfe einer
Rechtsinversen von B Noble [1969]

B4 = HBT (BHB")" (3.3)

worin H eine willkirliche (regulare) Matrix
darstellt. Die Matrix BHBT muss regular
sein! Es gilt

BB =1,
also folgt

l+e = (I, - B, B)I (3.4)

I+e sind erwartungstreue Schatzungen
und ausserdem gilt B(I+e) = O.

Die Matrix H ist so zu bestimmen, dass die
Varianz einer willklrlichen Funktion von
I+e minimal wird.

Mit = flsei & = f (I+e) eine erwar-
tungstreue Schatzung von . Es wird sich
zeigen, dass fur Q, diese Minimierungsbe-
dingung erflllt ist und dass damit die klein-
sten Quadrate Schéatzungen erhalten sind:
() -v=QBT(BQB")
i E(+v) =1

(i) B(+v) = O

(3.5)

Betrachtet man nun das regulare G.M.-
Modell. Fir die verbesserten Beobachtun-
gen gilt nun

l+e'= AX’ (3.6)
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mit
%' =A"l

A-l = (ATMA)-" A™

und
(3.7)

worin M eine regulare willkurliche Matrix
darstellt.

A-[ ist die Linksinverse von A. Wie man
leicht zeigen kann, sind I+e’ erwartungs-
treue Schatzungen von I. Im allgemeinen
Fall gilt e + e’

Aus (3.3) und (3.4) ergibt sich
A'H'e=0 und

mit

I+e = AX gilt folglich

(ATH-'A) X = ATH-'l oder

% = (ATH-'A) ATH "I

Fur den Fall, siehe (3.7) und (3.8),
M=H"

ergibt sich

(i) e=¢

(i) * =%’ (3.10)

Die Matrix H ist nicht unbedingt symme-
trisch!

Mit (3.4) ergibt sich fir die Varianz von & =
fi(l+e):

o = oIf'Qf — K'BQf - K'Qf -
ffQB'k + k'BQB'K]

mit kK™= fB~} (311)

Werden die Ableitungen von o2 nach k

gleich null gesetzt, dann erhalt man das
konsistente Gleichungssystem

f\QB™= k'(BQ,B")
und damit die Lésung

k"= f'QB" (BQB")' (3.12)
Vergleicht man (3.11) mit (3.10), dann wer-
den mit H = Q, die Schatzungen mit mini-
maler Varianz erzeugt. Bezeichnet man
dann die entsprechenden Verbesserun-
gen mit v, dann erhalt man die kleinsten
Quadrate Schatzungen I+v. Wahlt man in
(8.7) fir M = Q-] = P, dann erhalt man
nach (3.10) die bekannte

kleinste Quadrate Losung:

& = (ATPA)-'ATPI. (313)

Es gilt ATPv = O, und dadurch kann man
far (3.18) auch schreiben

& = (ATPA)-'ATP(I+V) (314)

Die Schatzungen x,, x,... X sind lineare
Funktionen von I+v und besitzen nach
(3.12) minimale Varianz.

4. Projektionsoperatoren

Der Beobachtungsvektor | sei ein m-di-
mensionaler Vektor im m-dimensionalen
Vektorraum L. Diesen Vektorraum be-
zeichnet man als Stichproberaum. Der
Stichproberaum kann in disjunkte Unter-
raume L, und L, zerlegt werden. Es gilt
dann die direkte Summe

L=L ®L,-

Jeder Vektor | ist eindeutig als Summe
I =1, + |, darstellbar, wobei
l,eLyundl,eL,-

Die Norm eines Vektors im Stichprobe-
raum L wird definiert durch

[ 1T
11 = gl Pl

Die Methode der kleinsten Quadrate mini-
miert das Quadrat der Norm des Verbes-
serungsvektors:

(4.1)

Ivi®=Lvipy (4.2)
(52

Der Winkel ©® zwischen zwei willkirlichen
Vektoren €, und T, ergibt sich aus der geo-
metrischen Definition des verallgemeiner-
ten Skalarproduktes

]
£, E,= #; P &, = [[E,]| [I&,l| cos 6 (4.3)

Zwei Vektoren sind zueinander orthogo-
nal, wenn

=
E,PE,=0 (4.4)

gilt.

Zuerst wird angenommen, r(A) = n und
r(B) = b. Die Spaltenvektoren der Design-
matrix A (2.1) spannen einen n-dimensio-
nalen Unterraum R(A) von L auf. Die Spal-
tenvektoren der Matrix Q,BT spannen ei-
nen b-dimensionalen Unterraum von L
auf. Diese Spaltenvektoren stehen also
alle senkrecht auf die Spaltenvektoren von
A, d.h. nach (4.4) gilt

(Q;B)TPA=0o0derBA=0!
Der Vektorraum R(Q,BT) wird dann auch
als das orthogonale Komplement von

R(A) bezeichnet, weiter dargestellt mit
R(A)*.
L = R(A) @ R(A)* (4.5)

Den Beobachtungsvektor | kann man in
zwei Komponenten zerlegen
I =(l+e) + (—e)

mit 1+e ¢ R(A)  imf —e e R(A)* -
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Die Schreibweise I+e ¢ R(A) bedeutet,
dass l+e eine lineare Kombination der
Spaltenvektoren von A darstellt, und —e ¢
R(A)* bedeutet, dass —e eine lineare
Kombination von Q,BT darstellt. Also

I+e = AX

-e=QBk (4.6)

Die Vektoren I+e und e sind zueinander
orthogonal, d.h.

(1+e)'Pe = O

Mit (3.6) und (3.7) erhalt man
I+e=AATMA)""ATM I

oder mit

m,-AA MA) A'M (4.7)

5
l+e=1I,l

Diese Transformation des Beobachtungs-
vektors bezeichnet man als eine «Projek-
tion» von | auf R(A). IT} ist der Projektions-
operator, mit dem der Vektor | auf R(A) pro-
jiziert wird. Projiziert man mit I} I+e auf
R(A), dann ergibt sich wieder I+e, d.h. IT}
ist eine idempotente Matrix:

I I = 105

Wird in (4.7) die willklrliche Matrix M er-
setzt durch die Gewichtsmatrix P, dann er-
hélt man einen orthogonalen Projektions-
operator:

m,-A(A'PA)'A'P (4.8)
Nun gilt mit v statt e
l+v=T0,1 (4.9)

Diese L&sung ergab sich aus der Minimie-
rung von ||e]|2, d.h. die «kiirzeste Lange»
zwischen | und seiner Projektion 1+e. Hier-
durch entstand die Bezeichnung orthogo-
naler Projektionsoperator. Ersetzt man in
IT, die Matrix A durch QBT, dann ergibt
sich der orthogonale Projektionsoperator
auf R(A)*:
- T T,-1
Inm,=Q.B (BQPQB) BQsP

AL T T,.-1
also 1,=Q;B (BQ:B') B  (4.10)

Es gilt, —v sei die Projektion von I auf
R(A)*

also gilt
L
-v=II, |
womit (3.5) erhalten wird.
5
Weiterhingilt =TI, | + TI5 | (4.11)
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5. Schétzung in singuldren
funktionalen Modellen

Wir betrachten jetzt das A-singuléare G.M.-
Modell zusammen mit dem B-singularen
K-Modell. Zuerst sei zu bemerken, dass
die Parameter im singularen G.M.-Modell
nicht eindeutig sind, d.h. fir T = A% kann
man auch eine andere lineare Kombina-
tion wahlen, z.B.T= A%, mit X # X,

Essei I+v=AX%
B(l+v)=0

rlA) =u<n
r(B)=r<b
Die kleinsten Quadrate Schatzungen er-
héalt man ebenso wie im regulédren Modell
als eine orthogonale Projektion von | auf
R(A) und den Verbesserungsvektor v als
eine orthogonale Projektion von —I auf

R(A)*. Die zustandigen orthogonalen Pro-
jektionsoperationen sind, Rao [1973]:

n,-AA'PA] AP (5.3)

,-Q,B'(BQ;B') B (5.4)

worin (ATPA) und (BQB) generalisierte
Inverse darstellen.

Aus (5.3) und (5.4) ergibt sich

muA=A und
m,Q,B'-Q,B'

und schliesslich die bekannten Gleichun-
gen

A(ATPA) ATPA = A und
(BQB") (BQB") B=B
Mit (5.3) und (5.4) folgt

(5.5)
(5.6)

l+v=TI,1=A(A'PAYA'PI und (5.7)

v=1,1-Q,8'(Ba,B") BI (5.8)

Aus (5.7) ergibt sich

% = (ATPA)” A'PI

und dann mitT= Ax

E(%X) = (ATPA) (ATPA) ATPA X # X

d.h. % ist keine erwartungstreue Schét-
zungvon x,abervon N Nx mitN = ATPA.

Im reguléren G.M.-Modell waren die Para-
meter wohl erwartungstreu schéatzbar. Im
singuléaren Modell sind die ausgegliche-
nen Beobachtungen

I+v =1I1,l

erwartungstreue Schatzungen von T und
selbstverstandlich alle linearen Funktio-
nen von l+v:

& == fl+v) = .

Ebenso wie im reguldren Modell kann man
beweisen, dass die Schatzungen mini-
male Varianz besitzen und dadurch auch
%, da man mit ATPv = O flr X schreiben
kann, vergleiche (3.14)

% = (ATPA)” AT P(I+V)

Die Parameter % sind beste erwartungs-
treue Schatzungen nicht von X, aber von
N Nx.

6. Die Q-singularen Modelle

Der Rang der Gewichtskoeffizientenma-
trix Q, sei q < m. Durch Anderung der Rei-
henfolge der Beobachtungen kann man
durch elementare Umformungen Q, zerle-
genin

T [1,0
E =4 6.1
QE 00 (6.1)
worin E eine regulére Matrix darstellt

[Noble 1969].

Es sei
N I
|=€|’ 6.2)
Py I
dann wird
* T _|140
Q,=EQE = 00 (6.3)

woraus folgt, dass I, Konstanten sind, d.h.
I3 ist nicht stochastisch. Aus (6.2) folgt mit

K=E"'
"

] Kt Kiz ||l

= *
o] K21 Koz ||l
und damit
L =K.l +a% mit a%=K,l;
L =K, It +a3 mit aQ= Kyl

worin a% und a3 Konstanten darstellen.

Die Losung I5 = K-, (I,—a%) wird in I, sub-
stituiert, woraus sich ergibt
I,—a3 = F(l,—a%)

mit F = KK,

(6.4)

Mit (6.4) wird gezeigt, dass eine singulare
Gewichtskoeffizientenmatrix Q, entsteht,
wenn die Beobachtungen (oder nach Li-
nearisierung) linear abhangig sind. Die Di-
mension des Stichproberaumes sei dann
auch g und nicht m. Das Q-singulére K-
Modell sei nun

Mensuration, Photogrammeétrie, Génie rural, 7/88



i1 -aq
=0
l2-a

(B4B3)

Mit (6.4) ergibt sich dann schliesslich

B, (I,—a%) =0 (6.6)
mit
B =B, + BF (6.6a)

Mit B,A, = O erhalt man das entspre-
chende reguléare G.M.-Modell:

1,—a% = A,x (6.7)
Mit (6.4) kann man (6.7) transformieren in
das Q-singulare G.M.-Modell

i1-a? A,
X =
FA,

A,

6.8
A, X (6.8)

~ 0
I,-a,

Die Schétzungen % folgen direkt aus
(6.7). Es gilt

% = (AJQ}A,)AIQ, (1,—a9) .
Die gleiche Lésung erhélt man auch aus
(6.8), das Q-singulare G.M.-Modell, indem

man fur die Gewichtsmatrix die folgende
Matrix

Qi o
P- (6.9)
00
wabhlt.
1 -1
~ Q0 A
- (A1TAT 11 1
0 0 ||A,

Beim Q-singuldren G.M.-Modell muss
man also zuerst feststellen, welche Beob-
achtungen man als unabhangig betrach-
ten kann, wonach man die Gewichtsmatrix
nach (6.9) aufstellen kann.

Beim Q-singuldren komplementaren Mo-
dell spielt die Singularitat keine wesentli-
che Rolle. Mit (6.4) ergibt sich fir die Ge-
wichtskoeffizientenmatrix der Beobach-
tungen

.
Qi1 Q4F
FQq; FQF'

1= (6.10)

Die Widerspriiche w sind definiert durch

0
®.8,)|" %1 =B, 0,-a%-w 611

I>-a;
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Die Verbesserungen v, werden berechnet
mit
-v,=Q,BlQw
mit Q, = B,Q,,B],

d.h. Q, ist die Matrix der Gewichtskoeffi-
zienten der Widerspriche. Aus (6.4) ergibt
sich v, = Fv, oder mit (6.12)

-v, = FQ, BIQ-/w

(6.12)

(6.13)

Man kann leicht zeigen, dass mit (6.6a)
und (6.10) die Verbesserungen v, und v, di-
rekt folgen aus:

B]

!
B,

_v1

-1
M Q,w (6.14)

Dies bedeutet, dass man im Q-singuléren
Fall einer bedingten Ausgleichung immer
die richtige Lésung erhalten wird. Tienstra
hat dies schon erwahnt bei der Ableitung
der stufenweisen Ausgleichung, Tienstra
[1956]. Die Verbesserungsquadratsumme
Q) kann man bei einer bedingten Ausglei-
chung (Q, singulér oder regulér) ohne die
Gewichtsmatrix der Beobachtungen be-
rechnen:

Q=wQw (6.15)

Gemass Modell (6.7) gilt Q = vIQ~}v, oder
mit der Gewichtsmatrix (6.9)

i Q_111 0

0 0

Vi
A\

V4 T -1
= = Vi Qqy vy
Vo

(6.16)

1 0
T, 7|Q1 0 [|1y-ay
‘A

0 0

0
I,-a,

7. Das allgemeine G.M.- und
K-Modell

Die abhéngigen Bedingungsgleichungen
kann man mit (6.4) ebenso transformieren

B,(,—a9 =0 (71)
mit
B, =B, + BF (7.2)

Der Rang von B, seirmitr <b, bistdie An-
zahl aller Bedingungsgleichungen. Das
Modell (71) ist ein B-singulares K-Modell,
wofur die Lésung in §5 beschrieben
wurde. Es gilt folglich mit (5.8) und (6.4):

A,

A;

0
I1+v1-a1

0
I>+vo-ay

—T_T,

P;0
(A A)| ]

00

2

A,
(Ay A2

Fachteil

-v, = Q,B] (51011?{)_1 B, (,—a9 (7.3)
(7.4)

-V, = —Fv,

Wie bei (6.14) folgen die Verbesserungen
v, und v, direkt aus

Qy; Qpol[B
Vil _ | Qa1 Quzf [P g™ (7.5)
Vs Qz Q2 Bg v

mit Q;, eine generalisierte Inverse der Ma-
trix der Gewichtskoeffizienten der Wider-
spriche.

Mit (7.5) ist gezeigt, dass man im allgemei-
nen K-Modell direkt die kleinste Quadrate
Lésung berechnen kann, ohne dass man
die Singularitat von Q, feststellen muss.
Die Verbesserungsquadratsumme wird
analog zu (6.15) berechnet.

Im allgemeinen G.M.-Modell ist Vorsicht
geboten. Nach (7.1) erhalt man zuerst ein
singulares G.M.-Modell:

~ 0 X
li-aq=(AsA))| ]

(7.6)

worin die Spaltenvektoren A, linear abhan-
gig sind von den Spaltenvektoren A,. Aus-

serdem gilt:
B(AA)=0 (7.7)
Mit (6.4) kann man (7.6) erganzen:
ii-a5| | A, A A
1 (1) _ 1 2 |4 71 X (7.8)
|2 -aj FA1 FA2 Xo A2

(7.8) ist die Darstellung des allgemeinen
G.M.-Modells, Q, singulér, Designmatrix
hat den Rang u,, die Anzahl der Parameter
X,. Das allgemeine G.M.-Modell ist aus
(7.6) entstanden. Hieraus ergibt sich dann
die Lésung nach der Methode der klein-
sten Quadrate:

0 0
|1+V1 -aq = HA1 (14 -aq)

I, +v,—aC = A, (A'P,A,)-AIP, (I,—a%)
=A% (7.9)
mit

P,=Q7 und

l,+v,—aQ = F(l,+v,—a%) = A,x  (710)

(7.9) und (710) kann man kombinieren:

0
—T-T.|Py0 [[l1-24

00 (7.11)

0
I>-a;
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Mit (711) wird gezeigt, dass man im allge-
meinen G.M.-Modell zuerst die unabhéan-
gigen Beobachtungen festlegen muss,
wonach man die Gewichtsmatrix (6.9) be-
rechnen kann. Die Lésung des allgemei-
nen G.M.-Modells wird mit (7.11) gegeben.
Andere Lésungen werden in Pringle/Ray-
ner [1971] vorgeschlagen.
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Integrierte Geodasie und
Anwendungen im GPS-Testnetz

Turtmann

M.V. Miller, H.-G. Kahle

Zahlreiche geoditische Beobachtungsmethoden tragen zur Bestimmung dreidi-
mensionaler Netze bei. Ein Modell zur Auswertung heterogener Daten in der Ver-
messung liefert die sogenannte «Integrierte Geodasie». Der vorliegende Artikel
berichtet Giber ihre Methoden und liber Erfahrungen bei deren praktischen Anwen-
dung im Schweizerischen GPS-Testnetz Turtmann (Kanton Wallis).

Comme de nombreuses méthodes d’observations contribuent a la détermination
de réseaux tridimensionels, il est nécessaire d’avoir a sa disposition un modéle
élaboré pour la compensation de cette multitude de données géodésiques

hétérogénes. La géodésie integrée, dont les fondements théoriques et des ex-

périences pratiques dans le réseau de Tourtemagne sont décrits dans cet article,

remplit ces exigeances.

1. Einleitung

Die Geodasie und Vermessungstechnik
befindet sich in den letzten Jahren im Um-
bruch. Die Palette der geodéatischen Beob-
achtungsinstrumente wurde in dieser Zeit
um wichtige Messinstrumente erweitert.
Man denke zum Beispiel an VLBI (Very
Long Baseline Interferometry), SLR (Sa-
tellite Laser Ranging) und GPS (Global
Positioning System). Speziell GPS wird in
absehbarer Zeit bei vielen Vermessungs-
aufgaben nicht mehr wegzudenken sein.
Einschréankende Bedingungen bei traditio-
nellen Beobachtungsmethoden fallen bei
GPS-Messungen weg: Weder braucht es
eine direkte Sichtverbindung zwischen

Institut fir Geodasie und Photogrammetrie,
ETH-Hoénggerberg, CH-8093 Zrich,
Separata Nr. 124.
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zwei Stationen, noch ist man auf schénes
Wetter angewiesen. Dies erleichtert ver-
schiedene Anwendungen. Man denke
zum Beispiel an Ubergeordnete Grundla-
genetze (Basislinien bis mehrere tausend
Kilometer sind moglich [2]), an Tunnel-
netze oder Deformationsmessungen. Da-
mit kann die Geodasie zu einem interes-
santen Datenlieferanten fir geodynami-
sche Fragestellungen werden. Anderseits
sind geodatische Beobachtungen stark
mit dem Schwerefeld der Erde korreliert
(Lotabweichungen, Geoidundulationen).
Damit erhebt sich die Frage, wie man alle
heterogenen Daten, die zur Lésung geo-
datischer Aufgaben beitragen (nebst Rich-
tungs-, Hohenwinkel-, Distanzbeobach-
tungen, astronomischen Messungen und
nivellierten  Hoéhenunterschieden also
auch GPS-, VLBI-, SLR- und geophysikali-
sche, zur Hauptsache gravimetrische Be-

«Integrierte Geodasie» am Fusse des Matterhorns: Geodésie-Studenten und -As-
sistenten mit GPS, Zenitkamera und Gravimeter im Diplomvermessungskurs der
ETH Ziirich, 1987.

Mensuration, Photogrammétrie, Génie rural, 7/88
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