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Partie rédactionnelle

Betrachtungen zu singulären
Ausgleichungsmodellen
J. van Mierlo

Unter den Kriterien erwartungstreue und minimale Varianz werden die kleinsten
Quadraten-Schätzer in singulären linearen Ausgleichungsmodellen entwickelt.
Hierbei werden beim Gauss-Markoff-Modell sowohl eine singulare Konfigurationsmatrix

als auch eine singulare Konvarianz zugelassen. Ebenso darf das funktionale

und das stochastische Modell einer bedingten Ausgleichung Singularitäten
aufweisen.
Bei den Formelableitungen wird die Komplementarität des G.M.-Modells und des
Modells einer bedingten Ausgleichung berücksichtigt.

Dans des modèles de compensation linéaires et singuliers, on développe les
estimateurs des moindres carrés en prenant comme critère la variance la plus probable

et minimale. On admet aussi pour le modèle de Gauss-Markoff une matrice de
configuration singulière, ainsi qu'une matrice de covariance singulière. De la
même manière, le modèle fonctionnel et stochastique d'une compensation
conditionnelle doit comporter des singularités.
Dans l'établissement des formules, on met en évidence la complémentarité du
modèle Gauss-Markoff et de celui d'une compensation conditionnelle.

chungen. Das komplementäre Modell
bezeichnet man weiter mit

1. Einführung
In den letzten Jahrzehnten hat sich die
Darstellungsform der Ausgleichungsrechnung

beträchtlich gewandelt. Die in der
mathematischen Statistik entwickelten
Methoden der Parameterschätzung in

linearen oder linearisierten Modellen kann
man im Prinzip in das Modell einer
vermittelnden oder bedingten Ausgleichung
umformen. Die bedingte Ausgleichung ist in

den letzten Jahren in Vergessenheit geraten.

Der Grund hierfür ist, dass die direkte
Aufstellung der Bedingungsgleichungen
in der Praxis viel schwieriger ist als die
Berechnung einer Designmatrix. Dazu
kommt, dass die Überlegungen über die
Dimension der zu invertierenden Matrix
der Normalgleichungen zur Zeit keine
Rolle mehr spielen.
Jedoch hat das Modell einer bedingten
Ausgleichung seine Bedeutung noch nicht

ganz verloren. Jetzt spricht man sogar
vom komplementären Gauss-Markoff-Modell

oder vom dualen Modell. Eliminiert
man die Parameter des G.M.-Modells,
dann erhält man das komplementäre
Modell. Seit der Einführung der Projektionsoperatoren

in die Ausgleichungsrechnung
hat die geometrische Darstellung einer
Ausgleichung an Bedeutung zugenommen

und damit gleichzeitig auch wieder
das komplementäre Modell.
Die entwickelten Methoden zum Testen
von Hypothesen hängen grösstenteils von
den aus der bedingten Ausgleichung
bekannten Widersprüchen ab. Zum
Verständnis der Testmethoden kann das
komplementäre Modell sehr viel beitragen,
ohne dass man eine bedingte Ausgleichung

tatsächlich ausführen muss.

Nach einleitenden Definitionen der
betrachteten Modelle werden die Methoden
der Parameterschätzung und die Berechnung

der verbesserten oder ausgeglichenen

Beobachtungen für singulare
Ausgleichungsmodelle dargestellt. Sowohl das
stochastische Modell als auch das funktionale

Modell darf Singularitäten aufweisen.
Im Falle eines G.M.-Modells sind dann die
Spaltenvektoren der Designmatrix und im

komplementären Modell die Zeilenvektoren

der Bedingungsgleichungen abhängig-

2. Das G.M.-Modell und das
komplementäre Modell
Mit ï als m x 1 -Vektor der Erwartungswerte
des Beobachtungsvektors I, x als nx1-
Vektor der Parameter mit m > n und A als
bekannte mxn-Designmatrix lautet das
Gauss-Markoff-Modell oder kurz G.M.-Mo¬
dell

I Ax

D (I) o2Q, (2.1)

Hierin ist D (I) die m xm-Dispersionsmatrix
der Beobachtungen, o2 der Varianzfaktor
und Q, die Gewichtskoeffizientenmatrix
der Beobachtungen.
Das komplementäre Modell entsteht nach
Eliminierung der Parameter x. Wenn BA

O, dann gilt folglich

Bl 0

Bï=0
D(l) 02Q, (2.3)

Das G.M.-Modell und das komplementäre
Modell (2.3) sind durch BA 0 miteinander

verknüpft.

Definition 1

Das G.M.-Modell sei bezeichnet als:

1.1: reguläres G.M.-Modell, wenn

r(A) n und r(Q,) m

(r[] steht für Rang der in Klammern
stehenden Matrix)

1.2: A-singuläres G.M.-Modell, wenn

r(A) u < n und r(Q,) m

1.3: Q-singuläres G.M.-Modell, wenn

r(A) n und r(Q,) q < m

1.4: allgemeines G.M.-Modell, wenn

r(A) u < n und r(Q,) q < m gilt.

Diese spezifizierten Modelle stammen von
Caspary [1984].
Ebenso kann man vier verschiedene
Modelle für das komplementäre Modell
einführen. Bezeichnet man das komplementäre

Modell weiter als K-Modell, dann gilt

Definition 2

Das K-Modell sei bezeichnet als:

2.1 : reguläres K-Modell, wenn

r(B) b und r(Q,) m

2.2: B-singuläres K-Modell, wenn

r(B) r < b und r(Q,) m

2.3: Q-singuläres K-Modell, wenn

r(B) b und r(Q,) q < m

2.4: allgemeines K-Modell, wenn

r(B) r < b und r(Q,) q < m gilt.

Für alle definierten funktionalen Modelle
ist immer BA 0 gültig. (2.4)

Mit einem Beobachtungsvektor I werden
Schätzungen für T und x gesucht.
Es sei l+e eine Schätzung für I, dann
muss l+e die folgenden Bedingungen
erfüllen:

(i) erwartungstreu, d.h. E (l+e) ï (2.5)

(ii) B(l+e) O (2.6)

Aus (2.6) folgt, dass die verbesserten
Beobachtungen l+e die Bedingungsgleichungen

erfüllen. Aus (2.6) ergibt sich mit
(2.4)

(2.2) l+e Ax (2.7)

worin B eine bxm-Matrix darstellt mit
b < m. In der geodätischen Literatur ist B
bekannt als die Matrix der Bedingungsglei-

Hierin ist x eine Schätzung für x. (E[]
steht für den Erwartungswert des in Klammern

stehenden Arguments).
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Fachteil
Es sei rj> eine willkürliche lineare Funktion
der Erwartungswerte von Ï:

4> fî (2.8)

Eine erwartungstreue Schätzung für <j> sei

$ F(l+e)

Die Schätzung rj> sei als best bezeichnet,
wenn sie minimale Varianz besitzt. Die
«Verbesserungen» e, welche für alle f
minimale Varianzen erzeugen, d.h.

2 T T
a f Q1+ef minmum Vf

bezeichnet man mit v. Es wird sich im
folgenden zeigen, dass v die Verbesserungen

nach der Methode der kleinsten
Quadrate darstellen. Die Berechnung von v
und x hängt von der Art der definierten
Modelle ab.

3. Das reguläre G.M.- und
K-Modell
Im Modell BÏ O oder B(l+e) O werden
die Verbesserungen e berechnet als
Lösung der konsistenten Gleichungen

Be=-w (3.1)

worin w der Vektor der Widersprüche
darstellt

w BI (3.2)

Die Lösung e erhält man mit Hilfe einer
Rechtsinversen von B Noble [1969]

Bi HBT(BHBT)1 (3.3)

worin H eine willkürliche (reguläre) Matrix
darstellt. Die Matrix BHBT muss regulär
sein! Es gilt

BB< lb

also folgt

l+e (lm - B< B) I (3.4)

l+e sind erwartungstreue Schätzungen
und ausserdem gilt B(l+e) O.

Die Matrix H ist so zu bestimmen, dass die
Varianz einer willkürlichen Funktion von
l+e minimal wird.

Mit $ fî sei r£ T (l+e) eine
erwartungstreue Schätzung von <j>. Es wird sich
zeigen, dass für Q, diese Minimierungsbe-
dingung erfüllt ist und dass damit die kleinsten

Quadrate Schätzungen erhalten sind:

(i) -v Q,BT (BQ,BT)-1
:,4,(ii)' E(l+v) I

(iii) B(l+v) O

(3.5)

Betrachtet man nun das reguläre G.M.¬
Modell. Für die verbesserten Beobachtungen

gilt nun

mit

x'=A"^l und

A"' (ATMA)"1 ATM (3.7)

worin M eine reguläre willkürliche Matrix
darstellt.

A-^ ist die Linksinverse von A. Wie man
leicht zeigen kann, sind l+e' erwartungstreue

Schätzungen von Ï. Im allgemeinen
Fall gilt e + e'.

Aus (3.3) und (3.4) ergibt sich

ATH1e O und

mit

l+e Ax gilt folglich

(ATH1A) x ATH-1I oder

x (ATH1A) ATH1I (3.8)

Für den Fall, siehe (3.7) und (3.8),

M H"1 (3.9)

ergibt sich

(i) e e'

(ii) x x'. (3.10)

Die Matrix H ist nicht unbedingt symmetrisch!

Mit (3.4) ergibt sich für die Varianz von ô
f(l+e):

o2. a2[rQ,f - kTBQ,f - kTQ,f -
rQ,BTk + kTBQ,BTk]

mitkT=rB-i (3.11)

Werden die Ableitungen von a2 nach k

gleich null gesetzt, dann erhält man das
konsistente Gleichungssystem

rQ,BT= kT(BQ,BT)

und damit die Lösung

kT=fTQ,BT(BQ,BT)-1 (3.12)

Vergleicht man (3.11) mit (3.10), dann werden

mit H Q, die Schätzungen mit
minimaler Varianz erzeugt. Bezeichnet man
dann die entsprechenden Verbesserungen

mit v, dann erhält man die kleinsten
Quadrate Schätzungen l+v. Wählt man in

(3.7) für M Q-,1 R dann erhält man
nach (3.10) die bekannte

kleinste Quadrate Lösung:

x (ATPA)-WPI. (3.13)

Es gilt ATPv O, und dadurch kann man
für (3.13) auch schreiben

x (ATPA)-WP(l+v) (3.14)

l+e'= Ax' (3.6)

Die Schätzungen x„ x2... xnsind lineare
Funktionen von l+v und besitzen nach
(3.12) minimale Varianz.

4. Projektionsoperatoren

Der Beobachtungsvektor I sei ein m-di-
mensionaler Vektor im m-dimensionalen
Vektorraum L. Diesen Vektorraum
bezeichnet man als Stichproberaum. Der

Stichproberaum kann in disjunkte
Unterräume L, und L2 zerlegt werden. Es gilt
dann die direkte Summe

L L, © L2 •

Jeder Vektor I ist eindeutig als Summe

I I, + l2 darstellbar, wobei

I, e L, und l2 e L2 •

Die Norm eines Vektors im Stichproberaum

L wird definiert durch

=4¥pi (4.1)

Die Methode der kleinsten Quadrate
minimiert das Quadrat der Norm des
Verbesserungsvektors:

2 1 T
Ivll — v Pv (4.2)

Der Winkel 0 zwischen zwei willkürlichen
Vektoren Ç, und t,2 ergibt sich aus der
geometrischen Definition des verallgemeinerten

Skalarproduktes

ÇrÇ2 i-^PÉ2=|iy H^l cos e (4.3)

Zwei Vektoren sind zueinander orthogonal,

wenn

é!pÇ2 °

gilt.

(4.4)

Zuerst wird angenommen, r(A) n und

r(B) b. Die Spaltenvektoren der Designmatrix

A (2.1) spannen einen n-dimensio-
nalen Unterraum R(A) von L auf. Die
Spaltenvektoren der Matrix Q^B1 spannen
einen b-dimensionalen Unterraum von L

auf. Diese Spaltenvektoren stehen also
alle senkrecht auf die Spaltenvektoren von
A, d.h. nach (4.4) gilt

(QßJ)T PA O oder BA O

Der Vektorraum R(Q1BT) wird dann auch
als das orthogonale Komplement von
R(A) bezeichnet, weiter dargestellt mit

FW-.
L R(A) © R(A)J (4.5)

Den Beobachtungsvektor I kann man in

zwei Komponenten zerlegen

I (l+e) + (-e)
mit l+e e R(A) imf -e e R(A)-1- •
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Partie rédactionnelle
Die Schreibweise l+e e R(A) bedeutet,
dass l+e eine lineare Kombination der
Spaltenvektoren von A darstellt, und -e e

R(A)-1- bedeutet, dass -e eine lineare
Kombination von Q,BT darstellt. Also

l+e Ax

-e Q,BTk (4.6)

Die Vektoren l+e und e sind zueinander
orthogonal, d.h.

(l+e)TPe 0

Mit (3.6) und (3.7) erhält man

l+e A (ATM A)1 AT M I

oder mit

n^=A(ATMA)"1ATM

I + e nA I

(4.7)

5. Schätzung in singulären
funktionalen Modellen

Wir betrachten jetzt das A-singuläre G.M.¬
Modell zusammen mit dem B-singulären
K-Modell. Zuerst sei zu bemerken, dass
die Parameter im singulären G.M.-Modell
nicht eindeutig sind, d.h. für T Ax kann
man auch eine andere lineare Kombination

wählen, z.B. T Ax, mit x =£ x,.

Es sei l+v Ax r(A) u < n (5.1)

B(l+v) O r(B) r < b (5.2)

Die kleinsten Quadrate Schätzungen
erhält man ebenso wie im regulären Modell
als eine orthogonale Projektion von I auf
R(A) und den Verbesserungsvektor v als
eine orthogonale Projektion von -I auf
R(A)X. Die zuständigen orthogonalen Pro-
jektionsoperationen sind, Rao [1973]:

Ô fTT^fT(l+v) 4>.

Ebenso wie im regulären Modell kann man
beweisen, dass die Schätzungen
minimale Varianz besitzen und dadurch auch

x, da man mit ATPv O für x schreiben
kann, vergleiche (3.14)

x (ATPA)"ATP(l+v)

Die Parameter x sind beste erwartungstreue

Schätzungen nicht von x, aber von
N"Nx.

6. Die Q-singulären Modelle

Der Rang der Gewichtskoeffizientenmatrix
Q, sei q < m. Durch Änderung der

Reihenfolge der Beobachtungen kann man
durch elementare Umformungen Q zerlegen

in

Diese Transformation des Beobachtungsvektors

bezeichnet man als eine «Projektion»

von I auf R(A). n* ist der Projektionsoperator,

mit dem der Vektor I auf R(A)
projiziert wird. Projiziert man mit nA l+e auf
R(A), dann ergibt sich wieder l+e, d.h. nA
ist eine idempotente Matrix:

nAnA nA.

Wird in (4.7) die willkürliche Matrix M
ersetzt durch die Gewichtsmatrix R dann
erhält man einen orthogonalen Projektionsoperator:

1.T.
nA A(A PA) AP

Nun gilt mit v statt e

i + v nA i

(4.8)

(4.9)

Diese Lösung ergab sich aus der Minimierung

von 11 e 112, d.h. die «kürzeste Länge»
zwischen I und seiner Projektion l+e.
Hierdurch entstand die Bezeichnung orthogonaler

Projektionsoperator. Ersetzt man in

nA die Matrix A durch Q,BT, dann ergibt
sich der orthogonale Projektionsoperator
auf R(A)-1-:

nA Q1 BT(BQ1PQ1BT)
1

BQìP

also nA QiBT(BQ1BT)"1 B (4.10)

Es gilt, -v sei die Projektion von I auf
R(A)X

also gilt

-v nAi

womit (3.5) erhalten wird.

Weiterhin gilt I nA I + nA I (4.11)

nA A(ATPA) ATP

n^QìB^BQìB1) B

(5.3) EChE

(5.4)

worin (ATPA) und (BQ,B) generalisierte
Inverse darstellen.

Aus (5.3) und (5.4) ergibt sich

nAA A und

-LT T
nA Q ì B Q B

und schliesslich die bekannten Gleichungen

A(ATPAr ATPA A und (5.5)

(B Q,BT) (BQ,BT)"B B (5.6)

Mit (5.3) und (5.4) folgt

l+v nAl A(ATPA)"ATPI und (5.7)

-v nil Q1BT(BQ1BT)"BI (5.8)

Aus (5.7) ergibt sich

x (ATPA)~ ATPI

und dann mitï Ax

E(x) (ATPA)"(ATPA)"ATPAx * x

d.h. x ist keine erwartungstreue Schätzung

von x, aber von N N x mit N ATPA.

Im regulären G.M.-Modell waren die
Parameter wohl erwartungstreu schätzbar. Im

singulären Modell sind die ausgeglichenen

Beobachtungen

i+v nAi

erwartungstreue Schätzungen von ï und
selbstverständlich alle linearen Funktionen

von l+v:

00
(6.1)

worin E eine reguläre Matrix darstellt
[Noble 1969].

Es sei

*

ll
* E

Ii

l2 I2
(6.2)

dann wird

Q, EQ,E ¦q0
00

(6.3)

woraus folgt, dass \\ Konstanten sind, d.h.
I* ist nicht stochastisch. Aus (6.2) folgt mit
K= E"1

ll
I2

K11 K12

K21 K22

*
"i

I2

und damit

I, K„l* + a° mit a° K12l*

l2 K21i; + a° mit a° K22l*

worin a<? und a^ Konstanten darstellen.

Die Lösung I* K_]1 (I, -a°J wird in l2

substituiert, woraus sich ergibt

l2-a° F(l,-a°)
mit F K21K ],

(6.4)

Mit (6.4) wird gezeigt, dass eine singulare
Gewichtskoeffizientenmatrix Q, entsteht,
wenn die Beobachtungen (oder nach
Linearisierung) linear abhängig sind. Die
Dimension des Stichproberaumes sei dann
auch q und nicht m. Das Q-singuläre K-
Modell sei nun

368 Mensuration, Photogrammetrie, Génie rural, 7/88



Fachteil

(BlB;

0

ai
o

a2
(6.5)

Mit (6.4) ergibt sich dann schliesslich

B, (1,-3°) 0 (6.6)

mit

B B, + B,F (6.6a)

Mit B^ O erhält man das entsprechende

reguläre G.M.-Modell:

ï,-a° A,x (6.7)

Mit (6.4) kann man (6.7) transformieren in
das Q-singuläre G.M.-Modell

F,-a?

I2 -a2

At

FAì
x

At

A2
x (6.8)

Die Set
(6.7). Es

ätz
gilt

jngen X folge n direkt aus

x (ajq-1'1a1)-ia;q-;(i1-3°)

Die gleiche Lösung erhält man auch aus
(6.8), das Q-singuläre G.M.-Modell, indem
man für die Gewichtsmatrix die folgende
Matrix

(6.9)

wählt.

(A>5
Qi1t

n-1

(a}a5

Die Verbesserungen v, werden berechnet
mit

-v1 Q1lB{Q-;w (6.12)

mitQw B1Q11Bj,

d.h. Qw ist die Matrix der Gewichtskoeffizienten

der Widersprüche. Aus (6.4) ergibt
sich v2 Fv, oder mit (6.12)

(6.13)-v2 FQ^BjQ w

Man kann leicht zeigen, dass mit (6.6a)
und (6.10) die Verbesserungen v1 und v2
direkt folgen aus:

Vi
-v2 B_

w (6.14)

Dies bedeutet, dass man im Q-singulären
Fall einer bedingten Ausgleichung immer
die richtige Lösung erhalten wird. Tienstra
hat dies schon erwähnt bei der Ableitung
der stufenweisen Ausgleichung, Tienstra
[1956]. Die Verbesserungsquadratsumme
ü. kann man bei einer bedingten Ausgleichung

(Q, singular oder regulär) ohne die
Gewichtsmatrix der Beobachtungen
berechnen:

n wtq-j,w (6.15)

Gemäss Modell (6.7) gilt 11 V-JQ-Jv, oder
mit der Gewichtsmatrix (6.9)

Q:
Qi1,

vi Qnv,

(6.16)

Qu
0 l5a:

Beim Q-singulären G.M.-Modell muss
man also zuerst feststellen, welche
Beobachtungen man als unabhängig betrachten

kann, wonach man die Gewichtsmatrix
nach (6.9) aufstellen kann.

Beim Q-singulären komplementären Modell

spielt die Singularität keine wesentliche

Rolle. Mit (6.4) ergibt sich für die
Gewichtskoeffizientenmatrix der Beobachtungen

7. Das allgemeine G.M.- und
K-Modell
Die abhängigen Bedingungsgleichungen
kann man mit (6.4) ebenso transformieren
in:

-*i8,(1,-

mit

B, B, + B2F

(7.1)

(7.2)

Qii
Qu QiiF'
FQiiFQ^F1

(6.10)

Die Widersprüche w sind definiert durch

Der Rang von B, sei r mit r < b, b ist die
Anzahl aller Bedingungsgleichungen. Das
Modell (7.1) ist ein B-singuläres K-Modell,
wofür die Lösung in § 5 beschrieben
wurde. Es gilt folglich mit (5.8) und (6.4):

-v^Q^BKBAiBT)-1 8,(1,-3°) (7.3)

-v2 -FVl (7.4)

Wie bei (6.14) folgen die Verbesserungen
v, und v2 direkt aus

T

v1 0.11 Ql2 t*1

-v2 Q-21 Q22 b2
QwW (7.5)

mit Q; eine generalisierte Inverse der Matrix

der Gewichtskoeffizienten der
Widersprüche.

Mit (7.5) ist gezeigt, dass man im allgemeinen

K-Modell direkt die kleinste Quadrate
Lösung berechnen kann, ohne dass man
die Singularität von Q, feststellen muss.
Die Verbesserungsquadratsumme wird
analog zu (6.15) berechnet.
Im allgemeinen G.M.-Modell ist Vorsicht
geboten. Nach (7.1) erhält man zuerst ein

singuläres G.M.-Modell:

Ï1-31 (A1 A2) (7.6)

worin die Spaltenvektoren A2 linear abhängig

sind von den Spaltenvektoren Av
Ausserdem gilt:

B (AA) O

Mit (6.4) kann man (7.6) ergänzen:

(7.7)

h-a? A, A? X1 A,

ï a°l2-32 FAì FA2 x2 A2

(B1B2)

0
a,

0
¦a2

Bi(l1 t'1 a?) :W (6.11)

1 °
'l+Vl-3l

0
¦2+v2"a2

Ai
Ä2

(a{aI) P1O
0 0

Ai
Ä2

—T—T
(Ai A2)

P1O
0 0

\t-a-i
1 a°l2-32

T x (7.8)

(7.8) ist die Darstellung des allgemeinen
G.M.-Modells, QM singular, Designmatrix
hat den Rang u2, die Anzahl der Parameter
x2. Das allgemeine G.M.-Modell ist aus
(7.6) entstanden. Hieraus ergibt sich dann
die Lösung nach der Methode der kleinsten

Quadrate:

li+Vi-31 nA1 (h-3!)

1^,-3° Ä, (ÄTPÄJ-ÄjP, (1,-3°)
Ä1x (7.9)

mit

P, Q-], und

l2+v2-3° F^+v,^0) Ä2x (7.10)

(7.9) und (7.10) kann man kombinieren:

(7.11)

Vermessung, Photogrammetrie, Kulturtechnik, 7/88 369



Partie rédactionnelle
Mit (7.11) wird gezeigt, dass man im
allgemeinen G.M.-Modell zuerst die unabhängigen

Beobachtungen festlegen muss,
wonach man die Gewichtsmatrix (6.9)
berechnen kann. Die Lösung des allgemeinen

G.M.-Modells wird mit (7.11) gegeben.
Andere Lösungen werden in Pringle/Ray-
ner [1971] vorgeschlagen.
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Integrierte Geodäsie und
Anwendungen im GPS-Testnetz
Turtmann
M.V. Müller, H.-G. Kahle

Zahlreiche geodätische Beobachtungsmethoden tragen zur Bestimmung
dreidimensionaler Netze bei. Ein Modell zur Auswertung heterogener Daten in der
Vermessung liefert die sogenannte «Integrierte Geodäsie». Der vorliegende Artikel
berichtet über ihre Methoden und über Erfahrungen bei deren praktischen Anwendung

im Schweizerischen GPS-Testnetz Turtmann (Kanton Wallis).

Comme de nombreuses méthodes d'observations contribuent à la détermination
de réseaux tridimensionels, il est nécessaire d'avoir à sa disposition un modèle
élaboré pour la compensation de cette multitude de données géodésiques
hétérogènes. La géodésie intégrée, dont les fondements théoriques et des
expériences pratiques dans le réseau de Tourtemagne sont décrits dans cet article,
remplit ces exigeances.

zwei Stationen, noch ist man auf schönes
Wetter angewiesen. Dies erleichtert
verschiedene Anwendungen. Man denke
zum Beispiel an übergeordnete Grundlagenetze

(Basislinien bis mehrere tausend
Kilometer sind möglich [2]), an Tunnelnetze

oder Deformationsmessungen. Damit

kann die Geodäsie zu einem interessanten

Datenlieferanten für geodynami-
sche Fragestellungen werden. Anderseits
sind geodätische Beobachtungen stark
mit dem Schwerefeld der Erde korreliert
(Lotabweichungen, Geoidundulationen).
Damit erhebt sich die Frage, wie man alle

heterogenen Daten, die zur Lösung
geodätischer Aufgaben beitragen (nebst
Richtungs-, Höhenwinkel-, Distanzbeobachtungen,

astronomischen Messungen und
nivellierten Höhenunterschieden also
auch GPS-, VLBI-, SLR- und geophysikalische,

zur Hauptsache gravimetrische Be-

1. Einleitung
Die Geodäsie und Vermessungstechnik
befindet sich in den letzten Jahren im
Umbruch. Die Palette der geodätischen
Beobachtungsinstrumente wurde in dieser Zeit
um wichtige Messinstrumente erweitert.
Man denke zum Beispiel an VLBI (Very
Long Baseline Interferometry), SLR
(Satellite Laser Ranging) und GPS (Global
Positioning System). Speziell GPS wird in
absehbarer Zeit bei vielen Vermessungsaufgaben

nicht mehr wegzudenken sein.
Einschränkende Bedingungen bei traditionellen

Beobachtungsmethoden fallen bei
GPS-Messungen weg: Weder braucht es
eine direkte Sichtverbindung zwischen

'Jf^''

Institut für Geodäsie und Photogrammetrie,
ETH-Hönggerberg, CH-8093 Zürich,
Separata Nr. 124.

«Integrierte Geodäsie» am Fusse des Matterhorns: Geodäsie-Studenten und
-Assistenten mit GPS, Zenitkamera und Gravimeter im Diplomvermessungskurs der
ETH Zürich, 1987.
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