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Fachteil

Einige Bemerkungen zur
Fehlerellipse und zum Fehler-
ellipsoid
K. Linkwitz

Die Bestimmung von Kofaktoren für gedrehte Koordinatensysteme führt auf die
Ermittlung der Extremwerte einer quadratischen Form mit quadratischen
Nebenbedingungen. Das bei der Lösung auftretende lineare homogene Gleichungssystem

hat die Form eines Eigenwertproblems, dessen Eigenwerte und Eigenvektoren
die gesuchten Extremumeigenschaften haben. Nach einer Hauptachsentransformation

in das System der Eigenvektoren lassen sich die Kofaktoren Qtt bzw.

\ Q,, für eine beliebige Richtung t als zu t affine Radiusvektoren in einem Fehlerel-
lipsoid bzw. einer Fehlerellipse darstellen. Der jeweils gleiche Kofaktor Qtt bzw.

\ Qtt tritt zusätzlich als Radiusvektor in der zugehörigen Fusspunktfläche bzw.
-kurve auf.
Fehlerellipsen/-ellipsoide gehören auch zu nicht überbestimmten geometrischen
Konfigurationen.
Ausgehend von der vermittelnden Ausgleichung mit Bedingungsgleichungen -
und ohne die Theorie elastischer Systeme heranziehen zu müssen -wird dann
gezeigt, dass den Punkten eines geodätischen Netzes «Verschiebungs- und
Mitverschiebungsellipsen» zugeordnet sind, deren Halbachsen die Quadrate der
Halbachsen der Fehlerellipsen sind und deren Orientierung mit der der Fehlerellipse

identisch ist. Diese Ellipsen beschreiben einerseits reale Deformationen des
Netzes bei realen, zusätzlichen Zwangsanschlüssen. Andererseits bilden sich in
ihnen die Fehlereigenschaften des geodätischen Netzes als virtuelle Verschiebungen

unter Einheitsbelastungen in einem elastomechanischen Analogen ab. Dies
erlaubt eine anschauliche Beschreibung und Analyse der stochastischen
Eigenschaften des Netzes durch zugehörige elastomechanische virtuelle Belastungsund

Verschiebungszustände.

La détermination des cofacteurs pour des systèmes de coordonnées soumis à
des rotations conduit au calcul des extrema d'une forme quadratique, avec conditions

quadratiques complémentaires. Le système d'équations linéaires
homogène correspondant à cette solution est un problème de valeurs-propres, dont
les valeurs et vecteurs-propres ont les propriétés d'extrema souhaitées. Après
une transformation d'axes principaux dans le système des vecteurs-propres, les
cofacteurs Q„, respectivement \/Qttpourune direction quelconque tpeuvent être
interprétés comme les vecteurs radiaux affines de t dans l'ellipsoïde ou l'ellipse
d'erreur. Dans chaque cas, le même cofacteur Qtt, respectivement VQ,t est en
outre le vecteur radial de la surface, respectivement de la courbe «pédale».
Les ellipses et ellipsoïdes d'erreur existent aussi dans le cas de configurations
géométriquement non surdéterminées.
En partant de la méthode des observations médiates avec équations de conditions

- et sans qu'il soit nécessaire de faire appel à la théorie des systèmes élastiques!

- on montre qu'aux points d'un réseau géodésique sont associées des
«ellipses de déplacement et de codéplacement», dont les demi-axes sont le carré de
ceux des ellipses d'erreur, et dont les orientations sont identiques à celles-ci. Ces
ellipses décrivent d'une part les déformations réelles du réseau lors de l'adjonction

de contraintes supplémentaires réelles de raccordement; d'autre part, elles
expriment en elles-mêmes le comportement du réseau géodésique face aux
erreurs en tant que déplacements virtuels sous des charges unitaires dans un
modèle élastomécanique analogue. Ce fait nous autorise à proposer une description

très parlante et une analyse des propriétés stochastiques du réseau en nous
appuyant sur des considérations de charges et de déplacements virtuels élasto-
mécaniques.

schaulicher Weise die Genauigkeit eines
durch Messungen bestimmten Punktes
dar. In klassischer Weise kann sie
folgendermassen hergeleitet werden:
Die rechtwinkligen x,y-Koordinaten eines
Punktes P seien durch eine Ausgleichung
bestimmt worden. Aus der Ausgleichung
seien auch die Kofaktoren Q^, Q^ und Qxy

als die entsprechenden Elemente der
Inversen des Normalgleichungssystems
bekannt.

Gesucht seien die Kofaktoren Q„, Quu, Qtu

des gleichen Punktes in einem gegenüber
dem x,y-System um cp gedrehten
rechtwinkligen t,u-System, Fig. 1.

4> /^y

*

Abb. 1 : Koordinatentransformation

Zur Lösung setzt man die
Koordinatentransformation an

t coscp + y sincp

u -x sincp + y coscp

und erhält mit dem allgemeinen
Fehlerfortpflanzungsgesetz sofort

Formel (1)

Die Formeln (1) sind bereits das Ergebnis
unserer kleinen Aufgabe; für jeden
vorgegebenen Winkel çp erlauben sie die Ermittlung

der Kofaktoren Q„, Quu und Qtu im
gedrehten Koordinatensystem, oder, in

etwas anderer Betrachtungsweise: mit (1)
bestimmt man die Genauigkeit des Punktes

P in der um cp gedrehten Richtung t und
der um (cp + 1009) gedrehten Richtung u.
Wir fragen nach Extremwerten von Q„ und
Quu. Diese finden wir leicht, indem wir die
Funktionen Q„ und Quu nach der unabhängigen

Variablen cp ableiten und die Ableitung

null setzen

Formel (2)

Professor R. Conzett hat sich immer wieder

mit der Frage der Genauigkeit und
Zuverlässigkeit geodätischer Netze beschäftigt

und dabei auch nach neuen Wegen
und Darstellungsarten zur Beschreibung
dieser Netzeigenschaften gesucht.

Der folgende Beitrag behandelt die klassischen

Darstellungsmittel Fehlerellipse/
Fehlerellipsoid für Punktgenauigkeiten
und zeigt sie in einem erweiterten Kontext.

Bekanntlich stellt die Fehlerellipse in an-

Der Vergleich von (2) mit (1) zeigt weiter,
dass für cp -> 6 der gemischte Kofaktor Qtu

verschwindet.
Zur Bestimmung der Extremwerte Q„ max

min setzt man (3) in (1) ein und erhält nach

einigen (etwas mühsamen) Umformungen
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Partie rédactionnelle
Qtt cos2 Qxx + 2 Qxy sincp coscp + sin2cp Q^
Quu sin2Qxx - 2 Qxy sincp coscp+cos2cpQyy
Qtu sincp coscp (Qyy - Qxx) + Qxy (cos2 - sin2)

dQ« 22 _—- -2 sincp coscp 0,0,+ (cos cp-sin cp) 2 Qxy+2 sincp coscp Qyy= 0
dcp

2 2
0 -2 sincp coscp (Q„- Q^) + (cos cp - sin cp) 2 Q^

(1)

Der Vergleich von (*) mit (4) zeigt, dass der
Lagrange-Multiplikator selbst gerade
gleich den gesuchten Extremwerten ist.

Dies können wir auch direkt zeigen.
Multiplizieren wir nämlich die beiden homogenen

Gleichungen (7)

aQ„+ b Qxv aX
xy

(2) aQxy+ bQyy bX

a

b

mit der Lösung

tang 2<p
2Q xy

max,min r\ /-,
uxx~ wyy

¦- tang 20

mit a und b und addieren sie, so erhalten
wir gerade (6).

(3) Nachdem X ermittelt ist, können auch die
Unbekannten a und b bestimmt werden.
Setzt man

Qtt max.min4(Q-+QyV)4^-:^Ä^ (4)
Qxx : Qxx - ^

Qyy : Qyy " *

so erhält man aus den homogenen
Gleichungen die (normierte) Lösung

Die Form der bisherigen Herleitung ist
allerdings wenig geeignet, auf den
dreidimensionalen Fall verallgemeinert zu werden.

Während nämlich in der ebenen
Koordinatentransformation ein unabhängiger
Drehwinkel zur Festlegung der Transformation

genügt, müssen zur dreidimensionalen

Transformation zwischen zwei
rechtwinkligen Koordinatensystemen drei
unabhängige Grössen -die drei Euler'schen
Winkel -vorgegeben werden. Die danach
analog (1) zu bildende quadratische Form
muss nach den drei unabhängigen
Euler'schen Winkeln partiell abgeleitet werden.
Durch Nullsetzen jeder dieser partiellen
Ableitungsgleichungen erhält man drei
Bestimmungsgleichungen für die drei Winkel.
Nachrechnen zeigt, dass diese drei
Gleichungen nichtlinear und unhandlich sind
und nicht direkt gelöst werden können.
Wir wählen deshalb einen anderen Weg,
der sich leicht verallgemeinern lässt. Dazu
führen wir in der quadratischen Form (1)
an Stelle der unabhängigen Variablen cp

jetzt die zwei gegenseitig abhängigen
Variablen sincp, coscp ein, welche durch die
Nebenbedingung sin2cp + cos2cp -1=0
miteinander verknüpft sind. Um den Übergang

auf andere Variable ganz deutlich zu
machen, führen wir für den Moment die
Bezeichnungen ein

partiell nach den Variablen a, b, X differenzieren

und die Ableitungen null setzen

3F

3a

3F

3b

a_F

dX

2aQxx+2bQxy-2aX. =0

2aQxy+2bQyy-2b?i =0 (7)

9F 22— a +b -1

Die ersten beiden Gleichungen sind das
für die Unbekannten a und b homogene
Gleichungssystem

(Qxx - X) a + Qxy b =0
Qxy a + (Qyy->L)b =0,

welches nur dann nichttriviale Lösungen
für a und b hat, wenn die Koeffizientende-
terminate verschwindet. Es muss also
sein

det
Qxx"^ Qxy

Qxy Qyy-^

sincp: b, coscp: a. (5)

sodass man für den Lagrange-Multiplikator
X die quadratische Gleichung

(Qxx - X) (Qyy - X) - Q2y 0 erhält. Sie
hat die Lösung

Formel (8)

und man überzeugt sich durch Nachrechnen

- unter Verwendung der Additionstheoreme

-, dass die Gleichungen (8) der
Darstellung (3) äquivalent sind.

Unser Weg ab den Gleichungen (5) ff. zur
Lösung der Extremwertaufgabe lässt sich

jedoch auch als die Formulierung und

Lösung eines Eigenwertproblems auffassen.
Dazu schreiben wir ihn noch einmal mit
Hilfe von Matrizen an:

Die Kofaktoren von P ordnen wir in der Ko-
faktorenmatrix

Qxx
QxxQxy^

Qyx Qyy/

an, und die coscp und sincp fassen wir im
Einheitsvektor

coscp |

x
I sincp J

zusammen. Die quadratische Form (1) hat
dann die Gestalt

CL xT Q. (1a)

sie soll mit der Nebenbedingung (xTx - 1

0) zum Extremum werden.

Die quadratische Form (1), deren Extremwerte

gesucht sind, hat dann die Darstellung

Q„ a2 Q,..

Nebenbedingung

+ 2abQxy + b2Qyy, (6)

a2 + b2 - 1 0.

Zur Bestimmung der Extremwerte müssen
wir jetzt nach Lagrange verfahren und die
mit dem Lagrange-Multiplikator X erweiterte

Funktion

F: a2 Q,, + 2ab Qxy + b2 CL, - X (a2 + b2 -1

346

'1.2 :l(Qxx+Qyy)±lV(Qxx-Qyy) 2 2
+ 4Q xy

-Q xy

/=2 2~
V Qxx + Qxy

Qx

V^ ~2
Qxx + Q xy

:COS9

:Sin6
> tang 9 :

Qx

-Q xy

M

(8)
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Fachteil
Dazu muss das erweiterte Gleichungssystem

F xTQxxx -X(xTx - 1)

differenziert werden

(6) ff.

dF
dx:
dF
ÓX

2Qxxx -2ÄJC

(xTx-1) :0

und wir erhalten die homogenen Gleichungen

Qxx X X X

bzw. (Qxx - E • X) x 0

XX 1. (7) ff.

Aus der Form dieser Gleichungen lesen
wir sofort ab

1. Die Lösung x ist Eigenvektor von Qxx,
und da Qxx symmetrisch und positiv-
definit ist, sind sämtliche Eigenwerte
reell und positiv.

2. Der Lagrange-Multiplikator ist Eigenwert

von Qxx.

Für die Eigenvektoren x als Lösung nimmt
nun wegen xTx 1 die quadratische
Form (1) gerade die Gestalt des Raleigh-
Quotienten

r
xQxxx

r= ^ =X

X X

an, welcher für die Eigenvektoren zum
Extremwert und gleich dem Eigenwert selbst
wird.
Die praktische Lösung des Eigenwertproblems

folgt wieder dem oben angegebenen

Weg. Aus der Forderung nach
verschwindender Koeffizientendeterminate
erhält man (*) und danach die Unbekannten

entsprechend (8).

Damit die Lösung einfach geometrisch
gedeutet werden kann, soll die Darstellung
(1a) von Q„ Qn (Qxx, Qxy, Qyy, cp)

umgewandelt werden in eine Form

Qtt Qtt(QK,QwQç,>1'),

gleichbedeutend mit einer Transformation
ins t, ,T)-System.

form der Eigenwerte, unmittelbar auf die

Hauptachsendarstellung

Q„=t Kt mit K:Zwischen dem Richtungswinkel cp im x,y-
System, dem Richtungswinkel ip im t, ,r\-
System und dem Drehwinkel 0 zwischen
den beiden Systemen bestehen die Bezie- ausführlich
hungen

cos cp cos (0 + \p) cos 0 cos op - sin 0 sin op

sin cp sin (0 + ip) sin 0 cos \p + cos 0 sin op.

0

An 0 Qnn/

(9)

Mit den Matrizen

COS0

sin0
X2:

cos(9 + 100a)

sin(0 + 1OO9)

- sin 9

COS 9

COS\|/

sin ip

[coscp

\sincp;

sowie der Modalmatrix, welche als Spalten

die Eigenvektoren enthält
Q«=Q^cos V + Qnnsìn V '

Vq,, Vq^cos xp + Q^sin \|/

(10)

x2)
cos 9

sin 9

-sin 0

cos 9

können die Gleichungen (9) zusammen-
gefasst werden zu

x X t, bzw. xT tTXT. (9)

Einsetzen von (9) in die ursprüngliche
Gleichung (1a)

Qn tTXTQxxXt
führt, da

XTQxxX diag. (X) : K

gleichbedeutend ist mit einer orthogonalen
Transformation auf die reelle Diagonal-

Die Gleichung (10) kann in zweifacher
Weise geometrisch interpretiert werden,
nämlich

- VQtt lässt sich als zur Richtung xp affi¬

ner Radiusvektor mit dem Richtungswinkel

y aus einer Ellipse - «Fehlerellipse»

- entnehmen, welche die grosse
Halbachse a y/Q~ und die kleine
Halbachse b y/Qm hat,
und/oder

- vQtt ist Radiusvektor mit dem
Richtungswinkel ap in der zur Fehlerellipse
gehörenden «Fusspunktkurve» mit den

gleichen Halbachsen.

A

PI|.T|)\
ai

W
® SJt \^y

6%
4\ \ /

Abb. 2 Abb. 3: Fehlerellipse
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Partie rédactionnelle
a) Beweis für die «Behauptung Fehlerel¬

lipse», Abb. 3

Ausser den bereits oben eingeführten
Vektoren/Matrizen t und K definieren wir noch
den Radiusvektor y für einen Ellipsenpunkt

P mit den Koordinaten t,t\

- für den Normalenvektor n im Ellipsenpunkt

P mit den Koordinaten y gilt

^d(yV1y)
dy

(14)

Ellipsengleichung (13) genügen

y}K-1yi 1 (\JK\)V
(15)! c2

sodass für c folgt

Da K Diagonalmatrix ist, gilt

1 vcw 0 /jLn\
K2:

0 Vq
K

nn i

Qy
1

\ Qnn/

Wir suchen nun diejenige Normale n,, in

einem Ellipsenpunkt P, (y,), welche zur
Richtung t ^ t parallel ist. Die Ellipsentangente

in P, steht dann senrecht auf n, und
damit auch auf t | | nr Somit ist der
Schnittpunkt R dieser Tangente mit dem
Richtungsstrahl t gerade ein Punkt der
Fusspunktkurve mit den Halbachsen

ì-VTk t

und der gesuchte Vektor y, ist nach (15)

Kt
•F

(16)

t Kt

a VQ^ und b ¦¦ /Q
nn

Die Parameterdarstellung der Fehlerellipse

mit den Halbachsen

/Qçç und b VQ^ ist dann

Wegen (14) gilt für den gesuchten
Normalenvektor n.

Skalarmultiplikation von (16) mit tT ergibt
aber gerade - da t Einheitsvektor ist - die
Projektion OR von y, auf die Richtung t

«Tyt=
tTKt

MrtfK\
VTtkT=or vqb

% 40^ cos \p

11 70^ sin \p

in Matrizen y K2 t (11)
(17)

wobei y der zur Richtung t affine Radius- n, K_1y,
vektor mit dem Richtungswinkel y ist. Aus
(11) folgt sofort

und da n, parallel zum Einheitsvektor t
sein soll auch

yTy tTKt (10)Q„,

und die Länge des Radiusvektors ist

VyTy=VtTKt V^ ;

d.h. der zu P, gehörende Radiusvektor OR
der Fusspunktkurve hat gerade, wie
behauptet, die Länge VQtt!

Der Radiusvektor y, hat eine weitere
bemerkenswerte Eigenschaft:

(10)

t=cK" y-, bzw. y — t K und y-i -c c

mit einem noch unbekannten Faktor c.
Nun muss y, auch der

Kt (15)

damit ist die Behauptung bewiesen.

Für den Richtungswinkel y der zu ip affinen
Richtung folgt aus (11)

tang y —tang \|/
a

/Qnn

/Q
tang y (12)

tt

b) Beweis für die «Behauptung Fuss¬

punktkurve», Abb. 4

Per definitionem ergibt sich jeder Punkt R

der zur Ellipse gehörenden Fusspunktkurve

als Schnitt des mit dem Winkel ip
variablen Richtungsstrahls t mit derjenigen
Ellipsentangente, welche auf t senkrecht
steht. Als Vorbereitung für den Beweis
vergegenwärtigen wir uns:

- aus der Parameterdarstellung der El¬

lipse (11) erhalten wir ihre Mittelpunktgleichung

nach Linksmultiplikation mit

K2y=t
KtI),K,-,.., (13)

\

^

3

X

1

1
(0

\

/
n /y
/VzX^"—

\
\
\ *

; \
i

—

.^-njt

& \
\ X

Abb. 4: Fusspunktkurve
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Fachteil
Nach (11) ist der zum Einheitsvektor t
(Richtungsstrahl t) gehörende affine
Ellipsenvektor y K1/2t.

Wir bilden nun den zu y gehörenden
Einheitsvektor ye (mit

Q« xTQy (1a)

und für den Extremfall Qtt Extremum das
homogene Gleichungssystem

(Q,

y
i_

K2t

- XE)x 0

x x -1=0
(7)ff

^[yTy VtTKt VtTKt Die Eigenwerte von Qxx bestimmt man aus
der charakteristischen Gleichung

erneut nach (11 affin ab in einen Vektor u: det (Q - XE) 0,

u K2y6
K2K2t Kt

{7ki VtVt(16)
yi

m.a.W: y, entsteht aus t durch zweimalige

affine Abbildung von t.

Der Richtungswinkel e, ist dann (ausführliches

Anschreiben von (16))

welche jetzt dritten Grades ist, und erhält
die drei positiven Extremwerte für Q„

Qtt Extremum 1 : Q£= Xi

Q„ Extremum 2: Q^ X2

Q„ Extremum 3: Q:: =X3.

Die mit diesen Eigenwerten ermittelten
Eigenvektoren x„ x2, x3 bilden eine neues,
rechtwinkliges |, r\, ç-System.

V a cosi)/
VQ„

Q
çç

/er COSxp

b Sin VI/ Qrin
Ti1 —- =—= sin\p1

VQ,, VQ^

,tang e1 —-tang \p
a

Q

Wir werden weiter unten sehen, dass die
Richtung e eine zusätzliche interessante
Deutung hat.

Fehlerellipsoid
Unsere Herleitung der Fehlerellipse als
Extremwertaufgabe mit quadratischen
Nebenbedingungen oder - äquivalent - als
Anwendung der Eigenwerttheorie von
Matrizen lässt sich ohne Schwierigkeiten zum
Fehlerellipsoid für einen dreidimensional
bestimmten Punkt erweitern.

Für die Koordinaten x,y,z eines Punktes P
sei die Kofaktorenmatrix

nn

V
tang \p

Sind nun die Richtungscosinus von t im

neuen System

cos a

cos ß

cosy/

so vermittelt die Modalmatrix

durch die Transformation

x X t bzw. t XTx (9)

die Beziehungen zwischen altem x,y,z-Sy-
stem und neuen |, r\, ç-System. Die
Gleichungen (9) führen aber durch Einsetzen
in (1a) sofort auf die Hauptachsendarstellung

Q„ tTXTQ,

welche wegen

Xt tTKt, (10)

'^ 0 0

I 0 X20

0 0 X

\

3/

iQft 0

0 Q

0
nn
0 Q «/

ausführlich angeschrieben werden kann
zu

Formel ± (10)

In (10) lässt sich vAt als Radiusvektor in

einem dreiachsigen Ellipsoid mit den
Halbachsen \/CL, y/bm, VQK deuten:

(18) Setzt man nämlich

Formel A (11)

Formel A (13)

d.h. man erhält gerade die gesuchte Identität

(10).
Auch die weiteren Überlegungen zur
Fehlerellipse bezüglich ihrer Fusspunktkurve
lassen sich sinngemäss auf das Fehlerellipsoid

übertragen; man erhält dann die
zugehörige Fusspunktfläche.

cos a1 cos a2 cos oc3

I cosß1 cos ß2 cos ß3

cosYi cosy2 COSY3

Qxx Qxy Qxz

X -1 Qyx Qyy Qyz

,Qzx Qzy Qzz/

gegeben, und die Richtung t, für welche Qn
gesucht ist, sei durch ihre Richtungscosinus

cosa, cosß, cosy beschrieben.

Mit dem Vektor

cos a \

cos ß

cos y j
und der Nebenbedingung xTx - 1 0
erhalten wir für Q„ allgemein die quadratische

Form

2— 2~~ 2~
Qtt=Q^cos a+ 0^^005 ß + Q^cos y

/Q^ V 2— 2~ 2~
Q^cos a h-Q^cos ß + QccCos y

£, VOçç cos a ri VCL,,, cos ß ç VO^ cos y

so gilt

222Ç TI Ç 2— 2- 2-
-^— + -y— + -ß— cos a + cos ß + cos y 1

Q^ Qnn Qçç

und weiter

Vç +T1 +ç =Vq

=(10)

=(11)

=(13)

~~2~= 2~= 2"^
ççcos a + Q^cos ß +Qçç cos y 40*
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Partie rédactionnelle
Zunächst erscheint der Hinweis gerechtfertigt,

dass Fehlerellipsen und Fehlerellip-
soide nicht auf die Genauigkeitsbeschreibung

von Punkten beschränkt sind, die
aus einer Ausgleichung hervorgehen.
Einzige Voraussetzung ist, dass für den Punkt
P die Kofaktorenmatrix

|
Qxx Qxy

Qyx Qyy

bekannt ist. Diese braucht natürlich nicht
notwendigerweise aus einer Ausgleichung

zu stammen. Damit können die
Fehlerellipsen für alle bekannten einfachen

Punktbestimmungsaufgaben -
Vorwärts- und Rückwärtseinschnitt, Bogen-
schnitt, Polygonzug, usw. - angegeben
werden. Dies sei an 2 Beispielen -
Vorwärtseinschnitt und Polygonzug -
exemplarisch gezeigt.

1) Vorwärtseinschnitt

x / - 1

• -" /

-y p2 ^q

Abb. 5

I + v Ax

ansetzen und dann (ATPA)~1 Qxx aus
(ATPA) ermitteln. Dabei ist (ATPA) regulär;
die Inverse kann immer gebildet werden.
Allerdings ist die Inversenbestimmung
umständlicher als die direkte Herleitung über
das Fehlerfortpflanzungsgesetz.

Im zweiten Fall bilden wir direkt die totale
Differentiale

dx aTAI

dy bTAI
bzw.

dh f/AI
dq f2TAI

und finden die gesuchte Kofaktorenmatrix
zu

f|Q||fi i!Qii12

fJQnfi fJQ||f2;

Für diesen zweiten Fall können wir die
Differentialformeln ansetzen, siehe z.B. [8]

dh —— (b sin ß da + a sin a dß) fJAI
sin y

Eine nähere Untersuchung zeigt, dass Qhq

für pa Pp, a b verschwindet und für y
90° auch Qhh Qqq wird; diese weiterführende

Diskussion ist jedoch nicht Gegenstand

der Untersuchung.

2) Einseitig angeschlossener Polygonzug

Auch hier haben wir prinzipiell die beiden
für den Vorwärtsschritt angedeuteten
Möglichkeiten zur Bestimmung der Kofaktorenmatrix.

Allerdings mussten wir bei einem
Ausgleichungsansatz ein System für

(n-1) Winkel- und (n-1) Streckenbeobachtungen

ansetzen und danach ein
System (ATPA) mit 2(n-1) Zeilen und Spalten

- welches zwar viel Nullelemente enthält

- invertieren. Der direkte Ansatz mit
den Differentialformeln nach z.B. [8] ergibt

dxn X(yi-yn)dßl+Xcoscpji+1dsi f1AI

dq=-—(-bcosßda + acosadß)=f2Al dyn X(xi " xn) dß|+Xsin «Pi.i+i dsi f2Al
sin y ;

(19) "1 l=1

und finden

1 2 2 1 2 2 1

Qhh= -^(bsin ß — + asin oc—)
Pa Pß

und führt danach sofort auf das Ergebnis

sin y

Q qq_

1 2 2 1 2 2 1

— (b cos ß — + a cos a —)
2 Pa Pßsin y

Es ist zweckmässig, beim Vorwärtseinschnitt

(und auch beim Bogenschnitt) in Qqn
ein figureneigenes h,q-Koordinatensystem sin y
überzugehen. Es hat seinen Ursprung in

P„ und die Achsen h und q sind parallel zur
Höhe hp und zur Grundseite P1P2. Es gibt n"1

2 1 1

nun 2 Möglichkeiten, die Kofaktoren von P Qx x X(yj-yn) —+XC0S 'Pü+iTr-
zu ermitteln:

n " i-1 Pß' 1-1 Ps>

1
/ u2 ¦ o o

1 2 ¦
1

X— (-b sin ß cos ß — + a sina cos a —)
Pa Pß

n-1

,2 1
n-1

1

1.1+1

- Bestimmung über einen Ausgleichungsansatz,

_
n-1

-direkte Bestimmung über die allge- uynyn_ 2w(xi"xn)
p +Z,pS|Sin <P

meine Fehlerfortpflanzung.
Im ersten Fall mussten wir nach der Technik

der vermittelnden Ausgleichung 2 Ii- n _y, w 1 y- 1

noariciortoFohlornloirhiinnon Hoc Tunc UXn y n" Z. W i " * n M*i " *n n+Z, n _

oob «PiJ+1 bln *Pi,i+1

(22)

nearisierte Fehlergleichungen des Typs
1=1 Pß, =1 fs.

IX

5.

<bo51

uy
n-1

Abb. 6
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Fachteil
Auch hier sollen die Formeln nicht weiter
diskutiert werden bis auf den Hinweis,
dass offenbar die Fehlerellipse ganz
erheblich durch die Gewichte ppi und psi d.h.
durch die Genauigkeit der Beobachtungen
an den dafür wirkungsvollsten Stellen,
beeinflusst werden kann.

"Verschiebungsellipsen» in
geodätischen Netzen.
Die Fehlerellipse in geometrischen
Konfigurationen kann auch in gänzlich anderer
Weise, nämlich als «Verschiebungsellipse»

gedeutet werden und dann als
Hilfsmittel zur Beurteilung netzartiger Konfigurationen

herangezogen werden. Diese
Interpretation würde besonders dann deutlich

werden, wenn man die Analogie
zwischen der Ausgleichung und fehlertheoretischen

Analyse von geodätischen Netzen
und der elastomechanischen Analyse von
Fachwerken und Netzen heranzöge: für
jedes geodätisch-geometrische Netzgebilde

gibt es ein elastomechanisches Ana-
logon, in dem sich die Ausgleichung und
Fehleranalyse des geodätischen Netzes
als das Auffinden von Gleichgewichtsfiguren

und Verschiebungszuständen darstellen.

Wir wollen jedoch hier diese Analogie
nicht weiter heranziehen, um die
Verschiebungsellipse herzuleiten. Vielmehr knüpfen

wir an die bekannten Formeln der
vermittelnden Ausgleichung mit Bedingungsgleichungen

für die Unbekannten an.
Diese sind in allen Standardlehrbüchern
der Ausgleichungsrechnung enthalten
(z.B. [1], [2], [3]):

Es seien die linearisierten Fehlergleichungen

I + v Ax

und die zusätzlichen linearisierten
Bedingungsgleichungen für die Unbekannten

BTx u.

Dann sind die Normalgleichungen zur
Ermittlung von Unbekannten x und Korrelaten

k

ATP A

Die gleiche Aufgabe kann in Teilschritten
gelöst werden. Im ersten Teilschritt
bestimmt man (vorläufige) Unbekannte x derart,

dass die Bedingungsgleichungen ausser

Betracht bleiben, d.h. man setzt

x := x + Ax
(Bemerkung: Ax nicht im Sinne eines
Differentials!)

Auch die Verbesserungen werden in die
der beiden Teilschritte aufgeteilt

A PI

mit der Definition

x: (ATPA)~1 ATPI.

v := v + Av
v: Ax-I. (24)

Im zweiten Teilschritt werden zunächst
Widersprüche für die Bedingungsgleichungen

der Unbekannten ermittelt, und dann
bestimmt man die zugehörigen Korrelaten
aus den zu den Bedingungsgleichungen
gehörenden Normalgleichungen:

BT (x + Ax) u => BTAx (u-BTx)
[B^ATPAJ-'B] k w

k [BT(ATPA)1B]-1w.

Danach lassen sich die Zuschläge Ax zu
den Unbekannten x ermitteln

Ax (A^A)"1 Bk. (27)

Die Verbesserungen des zweiten
Teilschrittes sind

Av A Ax, (28)

und für die Quadratsumme der Av gilt:

AvT PAv kTBT Ax kTw (29)

Schliesslich findet man aus der Inversen
(ATPA)_1 des ersten Teilschrittes auch die
endgültige Inverse Qxx nach Hinzunahme
der Bedingungen im zweiten Teilschritt zu

Mit dem Formelsatz (23) bis (30) machen
wir nun ein Gedankenexperiment. Ein
geodätisches Netz mit vorgegebenem Datum
liege bereits ausgeglichen vor; wir nehmen

weiter an, dass in dieser ersten
Teilausgleichung an die Ermittlung der
Unbekannten keine zusätzlichen Bedingungen
geknüpft gewesen seien. Der Typ des Netzes,

welches wir für unser gedankliches
Experiment heranziehen, ist völlig beliebig.

Es kann ein Streckennetz, ein Rich-

w (25)

(26)

tungsnetz oder eine Kombination aus
Strecken- und Richtungsbeobachtungen
vorliegen. Als Voraussetzung genügt es
völlig, dass kein Datumseffekt vorhanden
ist und damit (ATPA) und (ATPA)_1 regulär
sind. Ein mögliches Netz - ohne
Beschränkung der Allgemeinheit! - ist in Abb.
9 skizziert. Wir greifen einen beliebigen
Punkt P, des Netzes heraus und stellen an
ihn die zusätzliche Bedingung, dass er
einem Zwangsanschluss genüge: gegenüber

den aus der ersten Teilausgleichung
hervorgegangenen Koordinaten x„ y, soll
P( die Lage x, x, + Axjt y y + Ay,
haben. Etwas anders ausgedrückt bedeutet

Qxx (ATPA)"1 - (ATPA)1 B [BT(ATPA)-1B]-1BT(ATPA)

R
*i

1

yi ;2 ' y2

R

*; ' yi

(30)

ph

*h
h

yh

P2

y,

ph

9 v Ql.2 9.; °i,h

2.1 QZ2 (ATP fi ;r1 92,h

L i l 1 1 I I

i i

I I

I I

I I

l |

1 l

1 1

1
1

1

1
1

1 1

i i

I I

I I

I I

1 1

1 1

9i.i %2
Q*;*i Qx;yi

Qy,x; Qy,-v,-

Q;.h

| i i i i

>

i

I I

1 1

1 1

1

l

i i

i i

i i

i i 1 1

9m 9h,2 SlM Qrü!

(23) Abb. 7
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Partie rédactionnelle
dies, die aus dem ersten Teilschritt
ausgeglichene Lage von P, (x„ y,) weise die
Koordinatenwidersprüche wx, und wy, gegenüber

dem Sollwert P, auf.

Zur Lösung dieser Aufgabe führen wir den
oben skizzierten zweiten Teilschritt der
Ausgleichung durch. Dazu denken wir uns
die Unbekannten in folgender Numerierung

in der Ausgleichung angeordnet:

Die Neupunkte P, seien von i 1, h

durchnumeriert. Die Matrizen (ATPA) und
(ATPA)_1 haben dann, da jedem P, ein x(

und y, entspricht, 2 h Zeilen und Spalten;
diese denken wir uns als Doppelzeilen
und Doppelspalten derart angeordnet,
dass in der i-ten Doppelzeile (Doppelspalte)

zunächst die x, und dann jeweils
die y, stehen.

Bei den zwei zusätzlichen Bedingungen
hat BT zwei Zeilen und 2 h Spalten ù= h

Doppelspalten.

Die allgemeine Bedingungsgleichung

BTAx w (25)

geht dann über in die spezielle
Bedingungsgleichung

BjAXi Wi, (25i)

ausführlich

Pi p2 Pl Ph

ll]
0

AXj

Ayi

w

(°\
0

0

Wx,

wy,

n

0 0 0 0
0 0 0 0

0...0
0...0

+1 0
0+1

0...0
0...0

00
0 0

B, AXi

Ebenso nehmen die allgemeinen
«Normalgleichungen» für die Korrelaten

[BT (ATPA)"1 B] k w (26)

die spezielle Form an

[B}(ATPA)"1 BJ k, w„ (260

ausführlich

so dass jetzt gilt

[B[(ATPA)"1 BJ QM (31)

und damit (26) â (26i) die Darstellung hat

Q,, k, w„

ausführlich

Wj

y.xi y,y, I yJ y/

Die Normalgleichungsmatrix [B[(ATPA)_1
BJ für die Korrelaten k{ des vorgesehenen
Zwangsanschlusses in P, ist also gerade
die in (ATPA)_1 enthaltene2x2-Untermatrix

Qu für den Punkt P,.

Die Gleichung (32) erlaubt die Bestimmung

von kx, und ky, für jedes beliebig
vorgegebene Paar von Koordinatenan-
schlussbedingungen wxi und wy, in P;; dazu
braucht man nur die zu (32) inverse
Gleichung

(32) k, Q",1, w,

zu bilden.

Abb. 8

352

i te Doppelspalte

Pi

BJ (AtPA)"'î i'te Doppelzeile von lATPA)"1

*h Vh

y, Qytx,- Qy,y;

p2 (ATPA r1

X

ite Doppelzeile p

Qx,x, Qx;y, Qxixi Qx;«

Q«xi Qy;y; °y;xh Qx,yh

*h

Ph

pi p2 Pi ph yh
Q«ixi Qyh«

o ; o

0 | 0

o o
i

o ; o

0

0

1 ; o

0 I
1

i

0

0

o ; o

0 | 0 QK*,Qy,y,

0 0

0 0

0

0

0

0

1

0

0

1

0

0

0

r

0

QxjX; <¦**

Qyi*i Qy;y;

Q;.;
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Fachteil
Durch den Zwangsanschluss in P, bewegen

sich alle Neupunkte Pv (v 1, h)
um die Koordinatenänderungen Axv und
AyY entsprechend Gleichung (27), welche
jetzt die spezielle Form annimmt

Ax [(ATPA)-' BJ k, (27i)

mit dem Vektor der Koordinatenänderungen
Ax:

/:\
Axv

Ayv

Ax,

AVi

M

\z

Ax,

AX,

Ax

AX

[(ATPA)"1 BJ ist gerade, wie Abb. 8 erkennen

lässt, die i'te Doppelspalte von
(ATPA)-\
Wir erhalten also aus (27i) mit Abb. 8 die
ausführlichen Darstellungen

'Axx

Ayi
(Oxtx,

Ox,y,

Qyix, Qy,y,
ÄAXi-Qljk|

(33)

'axv*

vAyv,

v 1,

'Qxvx Qx

i QyvXi Qyvy. I y

h.

vy'll^lâAxv Qv,iki

Für den Punkt P, selbst bekommen wir, wie
es gefordert war und daher sein muss

AX;

ki QMW|
=> AXl W; (34)

d.h. die Koordinatenänderungen in P, sind
gleich den vorgegebenen Widersprüchen.

Wir kehren noch einmal zurück zur
Gleichung (32), die wir jetzt mit den w, auf der
anderen Seite folgendermassen anschreiben

wx

wv

JAXj
UyJ

Ox|X, Qx,y,l|kx|j
l yix, y^i/l yj

(35)

Jetzt lesen wir diese Gleichung jedoch
nicht in der vertrauten Weise «vorgegeben
ein Gleichungssystem mit den rechten
Seiten wx, wy, aus denen unbekannte
Korrelaten kx, und ky, zu ermitteln sind»,
sondern als eine lineare Zuordnung zwischen
Grössen ky, und kvl und durch sie bewirkten

Koordinatenänderungen Ax, und Ay, im
Punkt P,: zu jedem vorgegebenen Wertepaar

k, gehört dann ein Wertepaar Ax,
(Ax„ Ay).
Wir fragen nun nach «allen» zugehörigen
Wertepaaren Ax,, Ay, wenn kxi, ky, «alle
möglichen» Wertepaare annimmt. Dazu
fassen wir kxl und ky, nicht nur im Sinne der
Matrizenrechnung sondern auch im
geometrischen Sinne als Komponenten eines
Vektors k, auf. Damit dieser Vektor alle
möglichen Werte annehme, wird er
normiert:

kx,+ky,= 1«*k| ki 1

Durch die Normierung können wir die
Komponenten kx, und kyi als coscp und sincp
darstellen; sollen diese alle möglichen
Werte annehmen, so können wir k, als
Radiusvektor im Einheitskreis auffassen,
welcher alle Werte für cfl s= cp < 4009 durchläuft.

Zu jedem vorgegebenen cp gehört dann
ein entsprechendes

coscp

sincp

mit zugehörigen Ax„ Ay.
Z.B. werden für cp 09 : coscp 1 und
sincp 0, d.h. k, (J) und die zugehörigen
durch k, hervorgerufenen Verschiebungen
in P, sind nach (35)

Ax, Qx,X|

Ay, Qy,x,.

(36)

Wählen wir cp 1009, so wird k, (°), und
die zugehörigen Verschiebungen sind Ax,

Qx,y, und Ay, Qy,y,. (37)

Wir denken uns den Einheitsvektor k, im
Punkt P, angetragen. Dann besagt (36):
Der in x-Richtung weisende Vektor | k, |

1 «bewirkt» eine Verschiebung von P, in

x-Richtung im Betrag von QxjX,, und (37)
besagt: der in y-Richtung weisende Vektor

| ki | =1 «bewirkt» eine Verschiebung
von P, in y-Richtung im Betrag von Qy,y,.

Verallgemeinert drückt also die Gleichung
(35)

Ax, QM k, (35)

aus, dass zu jedem vorgegebenen
Richtungswinkel cp des in P, «angreifenden»
Einheitsvektors k, eine bestimmte
Gesamtverschiebung Ax, von P, gehört.
In dieser Interpretationsweise drängt es
sich förmlich auf, k, als eine in P, angreifende

Einheitskraft zu interpretieren, welche

entsprechende Verschiebungen Ax,
von P, bewirkt.

Diese Interpretation hält in derTat einer
genauen Untersuchung stand [6] (die wir
jedoch hier nicht weiter heranziehen wollen
und nicht heranzuziehen brauchen):
Denken wir das geodätische Netz durch
ein elastisches Analogon materialisiert
und das Ausgleichungsproblem in ein ela-
stomechanisches Problem übersetzt, so
ist am Analogen die Grösse k, tatsächlich
eine in P, angreifende Einheitskraft, welche

elastische, mit dem Gleichgewichtszustand

des Analogons verträgliche
Punktverschiebungen Ax, hervorruft!

Die Gleichung (35)

Ax, Q,, k, ù, (35)

erlaubt aber geometrisch die Interpretation

einer Abbildung, durch welche der
«Kraftvektor» k, mit Hilfe der quadratischen

Matrix Q,; in den Verschiebevektor
Ax, abgebildet werden kann. Da Qi, vom
Grad 2 und positiv définit ist, erhält diese
Abbildung das zusätzliche Charakteristikum

einer affinen Abbildung, und da die
Spitze des Vektors k, beim Durchlaufen
aller Wertepaare (coscp, sincp) einen
Einheitskreis beschreibt, durchläuft die Spitze
des Bildvektors Verschiebungsvektor)
Ax, eine Ellipse als affines Bild des
Einheitskreises. Diese Ellipse wollen wir als
«Verschiebungsellipse» von P, bezeichnen;

ihre Konstanten können durch eine
Hauptachsentransformation leicht
bestimmtwerden.
Seien X\ und V2 die Eigenwerte von Q,,, x\
und 5fc,die zugehörigen, auf die Länge 1

normierten Eigenvektoren und X: (xi,, x'2)

die (orthogonale) Modalmatrix.
Dann bewirkt Links- und Rechtsmultiplikation

von Qi, mit Xfund X, eine Transformation

auf Diagonalform

/ i

^0
vo^ (9,10)! 0 Q

1,11,

Andererseits kann wegen X}X, X,X}= E

die Matrix Q,, in der Form

Qu X, K, X| (38)

dargestellt werden,

sodass aus Gleichung (35) wird

Ax, X, K, X}k,

bzw., nach Linksmultiplikation mit XT

X}Ax, K,X|k,. (39)

Damit ist die Hauptachsentransformation
schon vollzogen, denn die Linksmultiplikation

von Ax, und k, mit X} entspricht -
siehe Seite 347 - der Transformation ins
ellipseneigene |, t)-System:

(t
1

11 i/

xTki=ti=fC0SV
sin\|/

y^K.ti (40)
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Partie rédactionnelle
(40) ist die Parameterdarstellung der
Verschiebungsellipse in P, mit den Halbachsen

a, Qtit„ b, CL,„„ ausführlich

1, QaÈI cos»P
^1 ,PÇ1

ti, O,,,, sinV.
A (40)

Die Mittelpunktgleichung findet man aus
(40) nach Linksmultiplikation mit K~1

T„-i jHViKi Yi-*|t|-1 (41)
yi Ki =ti

ausführlich

2 2

Si "Hi

Q^2 Q.,ii2
(41)

und der Richtungswinkel 8, der grossen
Halbachse ist (bestimmt analog den
Gleichungen (8) und (3))

tang 2 6;
2Q *,y

Qx,x,-Q
(3)

y,y

Schliesslich finden wir die Projektion des
Verschiebungsvektors y, auf die Kraftrichtung

t, durch das skalare Produkt f[y,; dies
ist wegen

y, K,t,

gleich

t|y, tIK,t}(10)Qtiti!

(40)

(42)

Der Richtungswinkel ¦& des
Verschiebungsvektors y ist

yi
Kt

VtTKt Vt^K.t,
(44)

Der richtungsvariable Kofaktor Qliti im
Punkt P, ist stets gleich der in Kraftrichtung
fallenden Komponente der Totalverschiebung

Ax,, bewirkt durch eine in P, angreifende

richtungsvariable Einheitskraft k,.
Die Spitzen aller Kofaktorenvektoren t, =ä

Qliti beschreiben eine Fusspunktkurve, Insbesondere
welche die gleichen Konstanten hat, wie
die Verschiebungsellipse.

Für genau zwei ausgezeichnete Richtungen,

nämlich 6, und 8,2 Richtungen der
Halbachsen - fallen die Kraftrichtung cp û:

*P und die Verschiebungsrichtung e

zusammen.

Unsere Analyse zeigt weiter, dass beim
Anbringen einer Einheitskraft | k, | =1
im Punkt P, sich nicht nur dieser Punkt
selbst sondern alle übrigen Punkte Pv

mitverschieben, Gleichung (27i) Seite 351.
Dabei gilt insbesondere: wird P, mit einer
in x-Richtung fallenden Kraft k, (J) belastet,

so sind die in die x-Richtung fallenden
Komponenten der Mitbewegungen Axv
der übrigen Punkte Pv, v 1 i-1, i+1,

h) gleich den gemischten Kofaktoren
Qxixv, und die in die y-Richtung fallenden
Komponenten der Mitverschiebungen
sind gleich den gemischten Kofaktoren
Q̂xi yv
Die totale Mitverschiebung eines Punktes
Pv als Folge von k, (J) ergibt sich als die
vektorielle Summe von QXIXV und Qxiyv,

Analog gilt für eine in P, in y-Richtung
angreifende Kraft k, (°):
Die Komponenten der Mitverschiebungen
in y- bzw. x-Richtung in den Punkten Pv

sind gleich den Kofaktoren Qyiyv und Qyixv.

Die Mitverschiebung Axv, welche die in P,

angreifende Kraft k, (%*%) im Punkt Pv

hervorruft, ist gleich der Mitverschiebung
Ax,, welche die in Pv angreifende Kraft k,

(^) im Punkt P, hervorruft.

Dies ist der bekannte Maxwell'sche Satz
von der Gegenseitigkeit der Formänderungen.

mit k (J) Einheitskraft in x-Richtung
und k ^ Einheitskraft in y-Richtung

geben in (ATPA)~1 die gemischten Kofaktoren

QxiXk Qxkx„ Qy,yk Qyky und Qx,yk
Qykx, jeweils den Einfluss der i'ten

Einheitskraft auf den k'ten Punkt - und umgekehrt

- in x- und y-Richtung an.

Die «quadratischen» Verschiebungen
Ax,, welche die Einheitskräfte in x- und y-
Richtung in Richtung und im Sinne von
sich selbst hervorrufen, ergeben sich als
die quadratischen Kofaktoren Qx,x,, Qyy.
welche in der Hauptdiagonalen von
(ATPA)"1 stehen.

Schliesslich zeigt die Form der Gleichung
(33), dass auch alle Mitverschiebungen
Axv sich als affine Abbildungen der in P,

angreifenden Einheitskraft k, ^)
mit allerdings nicht symmetrischen
Abbildungsmatrizen Qiv, Qvl auffassen lassen:
Lässt man k, (%ffl in P, alle Werte 09

< cp < 4009 durchlaufen, so beschreiben
die Radiusvektoren Axv der Mitverschiebungen

in allen Punkten Pv, v 1, i-1,
i+1 h, «Mitverschiebungsellipsen».
Mitverschiebungsellipsen sollen hier nicht
detailliert dargestellt werden, lediglich
einige Bemerkungen seien angefügt:

tangdi -i —-Lh _IlL'tang v
Si Q^cosip- 0Uj

Diese Ergebnisse wollen wir in Worte
fassen:

Jedem Neupunkt eines geodätischen Netzes

sind eine Fehlerellipse und eine
«Verschiebungsellipse» zugeordnet. Die
Richtungswinkel 0 der grossen Halbachse beider

Ellipsen sind identisch. Die Halbachsen

der Verschiebungsellipse Qt^Q^ sind
die Quadrate der Halbachsen vtL, VQ™

» ÇÇ1 » ï|ï]
der Fehlerellipse. Die von der Einheitskraft
kT (coscp, sincp) bzw. tT (cos^F, sinW)
bewirkte Totalverschiebung ergibt sich
in der Verschiebungsellipse als zur
Kraftrichtung affiner Ellipsenvektor mit

Q
dem Richtungswinkel tange ^- ¦ tangW,

und sie ergibt sich in der Fehlerellipse als
doppelt affin abgebildeter Ellipsenvektor
entsprechend (16)

tange (43)

Wegen der Symmetrie von (ATPA)_1 gilt
aber

- Die Eigenwerte X[v, X2V mit den zugehörigen

Eigenvektoren x)v, x*v ergeben
diejenigen Totalverschiebungen in Pv,

welche zur Kraftrichtung k, im Punkt P,

parallel sind.

- Die extremen Mitverschiebungen Axv

QX|Xv=Qx

Q
x,y.

Q
yvx,

«Die von der in P, angreifenden Einheitskraft | k, | =1 in Pv

erzeugten Mitverschiebungen sind gleich den von der in Pv

angreifenden Einheitskraft | k, | =1 erzeugten Mitverschiebungen

in P,:

Analog gilt für die in P, angreifende Kraft in

y-Richtung (°) und die durch sie verursachten

Mitbewegungen in Pv

^*yi yv ^yv yi

Q =Q^"yixv ^*xvyi

Da die Komponente der Mitverschiebungen
Vektorcharakter haben, können wir

zusammenfassend formulieren:

max, min ergeben sich als die Wurzeln
der Eigenwerte der Matrix (Q^ Qvl).

Für bestimmte Kraftrichtungen k, in P,

treten Parallelbewegungen der Punkte
P, und Pv auf, d.h. die vektoriellen
Totalverschiebungen in P, und Pv sind bis auf
einen Proportionalitätsfaktor gleich.
Diese lassen sich als Eigenwerte und

Eigenvektoren der Matrix [Q-,1, ¦ Q, J
finden.
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Fachteil
Unsere Darstellung erlaubt auch, für die
Formel AvT PAv kTw kT Ax eine plausible

Deutung: Beim Angriff in Preisten die
Kräfte k eine Arbeit längs der in Kraftrichtung

fallenden Verschiebungskomponenten.
Diese Arbeit ist aber gerade gleich der

Hälfte des Skalarproduktes kTw. Bei den
Verschiebungen der P, wird aber auch in
allen inneren (elastisch zu denkenden)
Elementen â Beobachtungen
Verformungsarbeit geleistet, nämlich zur
Herstellung des neuen Verformungszustandes.

Diese Arbeit ist \ AvTP Av. Innere und
äussere Arbeit müssen aber bei der
Überführung des ersten in den zweiten,
benachbarten Gleichgewichtszustand einander

gleich sein. Daher folgt AvTPAv
kTw.

Schliesslich sei ein weiterer Hinweis gegeben:

Das dem geodätischen Netz entsprechende

elastomechanische Analogon,
welches hier statisch aufgefasst wird -
Betrachtung von virtuellen Gleichgewichtszuständen

- kann auch als dynamisches ela-
stomechanisches Analogon betrachtet
werden. Dazu braucht man nur den elastischen

Elementen des Analogons die
entsprechenden Federungseigenschaften -
z.B. Hooke'sches Gesetz - und den Punkten

entsprechende Massen zuzuordnen.
Dann lassen sich unter verschiedenen
Kopplungsbedingungen Bewegungsgleichungen

für das elastische System
aufstellen. Sie führen auf den harmonischen
Oszillator. In ihm beschreiben die Fehlerel¬

lipsen Schwingungsvorgänge,
spiel dazu ist in [4] gegeben.

Ein Bei-

Praktisches Beispiel
Abb. 9 zeigt das Testnetz in Stuttgart-Vai-
hingen, bestehend aus 8 Punkten; davon
sind für eine Ausgleichung die Punkte 1

und 5 als Fest- und die übrigen als
Neupunkte angenommen. Es wurden 56
Richtungen und 33 Strecken beobachtet; die
mittleren Fehler der ausgeglichenen
Koordinaten liegen zwischen 1 mm und 5 mm
und die Halbachsen der Fehlerellipsen
zwischen 1 und 5 mm.
Wir zeigen nun in einer kleinen Analyse
die hier entwickelten Hilfsmittel der Ver-

schiebungs- und Mitverschiebungsellipsen.
Wir greifen z.B. die Punkte P4 und Pe

TESTNETZ

VAIHINGEN

MASSSTAB 1 :3000

0 30 60 90 120

q Neupunkt

^ Festpunkt

Vergrößerung -.

Pfeile; 10,00

«AGB UNI STGT

Abb. 9
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Partie rédactionnelle

x2 H x3 Y3 x4 y4 x6 H x7 y? x8 *8

x2 4,424 0,046 1,784 0,0539 1,549 0,0067 0,396 0,353 1,968 -0,188 1,600 0,392

h 0,046 0,126 0,017 0,125 0,028 0,145 0,031 0,233 0,061 0,126 0,063 0,146

x3 1,784 0,017 3,775 -0,085 1,857 -0,059 0,423 0,440 2,075 0,362 2,033 0,357

*3 0,0539 0,125 -0,085 0,474 0,036 0,434 0,098 0,680 -0,264 0,292 0,158 0,374

x4 1,549 0,028 1,857 0,036 3,801 -0,060 0,585 0,533 1,760 0,816 3,057 -0,635

h 0,0067 0,145 -0,059 0,434 -0,060 1,464 0,253 1,488 -0,538 0,494 0,190 0,678

x6 0,585 0,253 2,206 1,124 -0,027 0,019 0,813 0,063

*6 0,533 1,488 6,856 -1,145 0,814 1,395 1,527

x7 1,760 -0,538 4,536 0,686 1,246 -0,354

*7 0,816 +0,494 4,935 0,589 0,409

x8 3,057 0,190 4,201 -0,416

h -0,635 0,678 2,402

Abb. 10

heraus. Aus der Abb. 10, welche die
Inverse (ATPA)_1 normiert auf E-04 enthält,
entnehmen wir die zu den beiden Punkten
P4 und P8 gehörenden Submatrizen Q44
und Qo„ zu

X,1 Q^ 4,2930;

^2=0^ 2,3100;

mn= + 2,161 mm.

/Q^ 2,0720;

/0^=1,5199;

Q4,4
3,801 -0,060
-0,060 1,464 '8,8:

4,201 -0,461
-0,461 2,402

und bestimmen daraus folgende Konstanten:

Punkt P4, Submatrix Q44 (der Punktindex
«4» wird im folgenden fortgelassen):

Eigenwerte

X,1 Q^ 3,8025;

X2=QnT1= 1,4624;

X,=4Qtt' 1,9500;

Vx2=40^ 1,2093;

m0 ±2,161 mm aus der Ausgleichung.

Grosse Halbachse Fehlerellipse:
1,9500 x 2,161 4,21 mm,

kleine Halbachse Fehlerellipse:
1,2093 x 2,161 2,61 mm.

Richtungswinkel 0 der grossen
Halbachse: e -1,649.

Punkt P8, Submatrix Q88:

Eigenwerte

Grosse Halbachse Fehlerellipse:
2,0720 x 2,161 4,47 mm,

kleine Halbachse Fehlerellipse:
1,5199 x 2,161 3,28 mm.

Richtungswinkel der grossen Halbachse 8

-13,789.

Wir machen mit dem Netz einige Experimente:

1 Punkt P4 wird mit der Einheitskraft k4

(~01) (d.h. k4 weist in die negative x-Richtung)

belastet. Die virtuellen x-Ver-

schiebungskomponenten sind dann
nach Gleichung (27i) Seite 353 die in

der P4-Doppelspalte von (ATPA)~1
stehenden Kofaktoren. Diese können wir
in beliebiger metrischer Einheit lesen,
sofern nur die virtuellen Verschiebungen

«klein» in dem Sinne sind, dass
die in (ATPA)_1 steckende Linearisierung,

welche sich auf den Taylorpunkt
«unbelasteter Zustand» bezieht, gültig
bleibt; oder, praktisch ausgedrückt,
dass die Verschiebungen klein sind im
Verhältnis zu den Gesamtabmessungen

des Netzes. Da m0 ±2,16 mm
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Fachteil
ist, ist z.B. eine plausible Lesart, den
Kofaktoren die Dimension mm zuzuteilen.

Die Verschiebungen in x-Richtung
sind dann im Punkt P4 selbst -3,8 mm,
und in den übrigen Punkten P2: -1,55
mm, P3: -1,86 mm, P6: -0,58 mm, P7:

-1,76 mm, P8: -3,06 mm.
Wir erkennen aus der P4-Doppelspalte
aber auch, dass gleichzeitig
Mitverschiebungen der Punkte in y-Richtung
auftreten. Diese sind: P2: -0,03 mm,
P3: -0,04 mm, P4: +0,06 mm, P6:

-0,53 mm, P7: -0,82 mm, P8: +0,64
mm.
Die Totalverschiebungen ergeben sich
jeweils als die Vektorsumme der x- und
y-Komponenten. Sie sind in Abb. 9 im
Netz dargestellt.
Natürlich könnten wir die virtuellen
Verschiebungen auch in anderen
Masseinheiten angeben: cm, Zoll oder
vielfachen davon; lediglich im Vergleich
verschiedener Netze spielt die Kalibrierung

mit Hilfe von m0 eine Rolle.

2) Punkt P8 wird mit der Einheitskraft k8

(",}) belastet. Die entsprechenden
Mitverschiebungen stehen in der 8.
Doppelspalte von (ATPA)_1, Abb. 10, analog
Fall 1). Insbesondere ist die x-Kompo-
nente der Mitverschiebung in P4:

-3,06 mm gleich der Mitverschiebung
von P8 im Fall 1) Maxwell'scher
Satz.

3) Die Punkte P4 und P8 werden gemeinsam

betrachtet.

a) Bereits die Submatrix Q4„

In beiden Fällen sind die in Kraftrichtung
fallenden Komponenten der Totalverschiebung

gleich den gemischten Kofaktoren
Q.8.4 bzw. Qt4t8

b) Wir bestimmen die Eigenwerte von Q4 8

X, 3,0083, X2 0,7268,

die zugehörigen Eigenrichtungen
61 5,049, 92 83,59

(welche nicht aufeinander senkrecht
stehen!)

und die Eigenvektoren x, und x2, welche in
die parallelen Mitverschiebungen X, • x,
und X2 ¦ x2 abgebildet werden:

d) Wir ermitteln die Nachbarschaftsgenauigkeit

zwischen P8 und P4. Auch diese
bildet sich wieder als (relative) Verschiebung

von virtuellen Belastungszuständen
ab.
In sinngemässer Anwendung der
Gleichungen (33) ff. gilt für zwei Punkte P, und
Pk, geschrieben in Hypermatrizen, die
Gleichung

cose,

sin 6,

cos 9,

sin 9C

+0,996
+0,088

+0,256
+0,967

2,996
0,264

0,186]
0,703 Y

Ax
AX

Qu ki
Qk,k kk

(45)

Vi

y2

Dies bedeutet: Die Einheitskraft k8 im

Punkt P8 bewirkt für die Richtungswinkel
8, 5,049 und 92 83,59 parallele
Mitverschiebungen in P4 der Grösse y, bzw. y2.
Fehlertheoretisch liegt hier ein Fall
«ausgezeichneter» Korrelation vor.

c) Wir bilden

(QT O 1
(+9.3813

(Q4.8Q4.8)- _18124
-1,8124
+0,8629

Damit die Verschiebungsd/fferenzermittelt
werden kann, lassen wir in Pk eine
Einheitskraft kk -k, angreifen.
Mechanisch bedeutet dies, dass wir in P,

Pk ein Kräftepaar mit- in Abhängigkeit von
cp - Hebelarm variabler Länge angreifen
lassen.
Dann wird aus (45)

Ax,

Axk
Qu Q

Qk,i
i,k *i

'k,k k (46)

'4,8
+3,057-0,635
+0,190+0,678

mit den zugehörigen Eigenwerten

zeigt die hohe x-Korrelation zwischen den
beiden Punkten. Nach Gleichung (33)
beschreibt dann

Ax4

^Ay4

Ax4

+3,057-0,635 U cos cp8

sin cpg
I

kR

+0,190+0,678

Q4,8

die durch eine in P8 angreifende variable
Einheitskraft k8 in P4 verursachten
Mitverschiebungen.

Andererseits werden mit

'8,4
+3,057+0,190
-0,635+0,678

X^ 9,7509; VA,1 =3,1226,

X2= 0,4933; V X2 0,7024,

und den Eigenrichtungen 9, -12,819,
92 87,199 (welche jetzt wegen der
Symmetrie von (QTg Q48) aufeinander senkrecht

stehen):
Die maximalen und minimalen
Mitverschiebungen Qt4t8 max. 3,123 und Qt4t8

min. 0,7024 treten in P4 in den Richtungen

9, -12,81 und 92 87,19 auf. (Der
Beweis für die Gültigkeit dieser kleinen
Rechnung ist hier nicht mitgeteilt).

so dass wir erhalten

Formel (47)

Die Differenzmatrix D ergibt sich zu

^ /+1,888 -0,031
-0,031 +2,510

und ihre Eigenwerte sind

X,= 2,5105

Qaçaç=Vx7= 1,584

W2 1,374 QAt,A„

X2= 1,8875

AXi Qu- ki-Qik- ki

Axk 'k.i ki-Q kk'

und dem Ansatz

(ax8| _ [+3,057+0,190)(cos cp4

(Ay8) l-0,635+0,678|| sin cp4/

°8'4 k4
Axi-Axk=(Qu-(Qi,k+Qk,i) + Qk,k)- ki;

die Mitverschiebungen im Punkt P8 be- nier

schrieben, welche durch eine variable, in Ax4- Ax8=(Q44-(Q48 + Q84) + Qs,8) ¦ k4
P4 angreifende Einheitskraft k4 hervorge- | | | |

rufen werden. := d := D

(47)
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Partie rédactionnelle
mit den Eigenrichtungen 9, 103,19, 92

203,19.

Damit werden die mittleren Fehler

mA mA 1,58-2,16 mm ±3,4 mm

mA^ mAy 1,37-2,16 mm =±3,0 mm.

Die Koordinatendifferenzen in x und y sind

wegen des kleinen gemischten Elementes
-0,031 kaum miteinander korreliert; die

grosse Halbachse der Fehlerellipse für
Koordinatendifferenzen zwischen den
Punkten P8 und P4 fällt nahezu in y-Richtung,

und die Eigenwerte sind - wie es
dann sein muss - nahezu gleich den
Elementen in der Hauptdiagonalen.

Schlussbemerkungen
Die hier entwickelten Hilfsmittel der Ver-
schiebungs- und Mitverschiebungsellipsen

beschreiben in doppelter Weise wichtige

Aspekte der inneren Struktur eines
geodätischen Netzes (mit und durch die
Abbildung auf ein elastomechanisches
Analogon):

- Sie zeigen einmal in anschaulicher
Weise das Deformationsverhalten des
Netzes bei tatsächlichen Verschiebungen,

verursacht durch Zwangsanschlüsse

des Netzes an weitere
Festpunkte.

- Sie zeigen andererseits in ihrer
anschaulichen Abbildung auf ein
elastomechanisches Analogon die Struktur
des netzinternen Fehlerverhaltens des
geodätischen Netzes, welche sich in

der Gestalt virtueller Verschiebungen
unter Einheitskräften abbildet: Die
quadratischen Kofaktoren Qxx, Q^ Qtt
entsprechen virtuellen Verschiebungen un¬

ter Einheitsbelastung im betreffenden
Punkt, und die gemischten Kofaktoren
entsprechen Mitverschiebungen. Damit
sind sie ein Mass für die Nachgiebigkeit
bzw. Steifigkeit des Netzes und für die
Struktur des inneren Verbundes.
Mitverschiebungen bilden unmittelbar die
Korrelationen zwischen den ausgeglichenen

Punkten ab.
Die (immer vorhandene) Möglichkeit,
die Fehlerstruktur und das Fehlerverhalten

eines geodätischen Netzes in virtuellen

Verschiebungen eines elastome-
chanischen Analogons abzubilden,
lässt umgekehrt den Schluss zu, dass
z.B. bei Optimierungsaufgaben nach
entsprechender Lagerung nur solche
Matrizen (ATPA)_1 als erwünschte
Genauigkeitsstruktur vorgegeben werden
können und dürfen, die möglichen und
sinnvollen virtuellen Verschiebungszu-
ständen in einem elastomechanischen
Analogon entsprechen.

Schliesslich sei erwähnt, dass die hier
vorgestellten Methoden auch zur Analyse von
Deformationsmessungen mit herangezogen

werden können.
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