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Einige Bemerkungen zur
Fehlerellipse und zum Fehler-
ellipsoid

K. Linkwitz

Die Bestimmung von Kofaktoren fiir gedrehte Koordinatensysteme fiihrt auf die
Ermittlung der Extremwerte einer quadratischen Form mit quadratischen Neben-
bedingungen. Das bei der Lésung auftretende lineare homogene Gleichungssy-
stem hat die Form eines Eigenwertproblems, dessen Eigenwerte und Eigenvekto-
ren die gesuchten Extremumeigenschaften haben. Nach einer Hauptachsentrans-
formation in das System der Eigenvektoren lassen sich die Kofaktoren Q,, bzw.
V/Q, fiir eine beliebige Richtung t als zu t affine Radiusvektoren in einem Fehlerel-
lipsoid bzw. einer Fehlerellipse darstellen. Der jeweils gleiche Kofaktor Q,, bzw.
VQ,, tritt zusatzlich als Radiusvektor in der zugehérigen Fusspunktflache bzw.
-kurve auf.

Fehlerellipsen/-ellipsoide gehdren auch zu nicht Giberbestimmten geometrischen
Konfigurationen.

Ausgehend von der vermittelnden Ausgleichung mit Bedingungsgleichungen —
und ohne die Theorie elastischer Systeme heranziehen zu miissen (!) — wird dann
gezeigt, dass den Punkten eines geodatischen Netzes «Verschiebungs- und Mit-
verschiebungsellipsen» zugeordnet sind, deren Halbachsen die Quadrate der
Halbachsen der Fehlerellipsen sind und deren Orientierung mit der der Fehlerel-
lipse identisch ist. Diese Ellipsen beschreiben einerseits reale Deformationen des
Netzes bei realen, zusitzlichen Zwangsanschliissen. Andererseits bilden sich in
ihnen die Fehlereigenschaften des geodétischen Netzes als virtuelle Verschiebun-
gen unter Einheitsbelastungen in einem elastomechanischen Analogen ab. Dies
erlaubt eine anschauliche Beschreibung und Analyse der stochastischen Eigen-
schaften des Netzes durch zugehdrige elastomechanische virtuelle Belastungs-
und Verschiebungszustéande.

La détermination des cofacteurs pour des systémes de coordonnées soumis a
des rotations conduit au calcul des extrema d’une forme quadratique, avec condi-
tions quadratiques complémentaires. Le systéme d’équations linéaires ho-
mogeéne correspondant a cette solution est un probléme de valeurs-propres, dont
les valeurs et vecteurs-propres ont les propriétés d’extrema souhaitées. Aprés
une transformation d’axes principaux dans le systéme des vecteurs-propres, les
cofacteurs Q,,, respectivement \/Q,, pour une direction quelconque t peuvent étre
interprétés comme les vecteurs radiaux affines de t dans I’ellipsoide ou I’ellipse
d’erreur. Dans chaque cas, le méme cofacteur Q,, respectivement \/Q,, est en
outre le vecteur radial de la surface, respectivement de la courbe «pédale».

Les ellipses et ellipsoides d’erreur existent aussi dans le cas de configurations
géométriquement non surdéterminées.

En partant de la méthode des observations médiates avec équations de condi-
tions — et sans qu’il soit nécessaire de faire appel a la théorie des systémes élasti-
ques! — on montre qu’aux points d’un réseau géodésique sont associées des «el-
lipses de déplacement et de codéplacement», dont les demi-axes sont le carré de
ceux des ellipses d’erreur, et dont les orientations sont identiques a celles-ci. Ces
ellipses décrivent d’une part les déformations réelles du réseau lors de I’adjonc-
tion de contraintes supplémentaires réelles de raccordement; d’autre part, elles
expriment en elles-mémes le comportement du réseau géodésique face aux er-
reurs en tant que déplacements virtuels sous des charges unitaires dans un
modeéle élastomécanique analogue. Ce fait nous autorise a proposer une descrip-
tion trés parlante et une analyse des propriétés stochastiques du réseau en nous
appuyant sur des considérations de charges et de déplacements virtuels élasto-
mécaniques.

Professor R. Conzett hat sich immer wie-
der mit der Frage der Genauigkeit und Zu-
verlassigkeit geodéatischer Netze beschéf-
tigt und dabei auch nach neuen Wegen
und Darstellungsarten zur Beschreibung
dieser Netzeigenschaften gesucht.
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Der folgende Beitrag behandelt die klassi-
schen Darstellungsmittel Fehlerellipse/
Fehlerellipsoid fir Punktgenauigkeiten
und zeigt sie in einem erweiterten Kontext.

Bekanntlich stellt die Fehlerellipse in an-

Fachteil

schaulicher Weise die Genauigkeit eines
durch Messungen bestimmten Punktes
dar. In klassischer Weise kann sie folgen-
dermassen hergeleitet werden:

Die rechtwinkligen x,y-Koordinaten eines
Punktes P seien durch eine Ausgleichung
bestimmt worden. Aus der Ausgleichung
seien auch die Kofaktoren Q,,, Q,, und Q,,
als die entsprechenden Elemente der In-
versen des Normalgleichungssystems be-
kannt.

Gesucht seien die Kofaktoren Q,, Q,,, Q,,
des gleichen Punktes in einem gegentber
dem x,y-System um ¢ gedrehten recht-
winkligen t,u-System, Fig. 1.

Abb. 1: Koordinatentransformation

Zur Loésung setzt man die Koordinaten-
transformation an

t = cosg +ysing
u = —Xxsing+ y cosg

und erhalt mit dem allgemeinen Fehlerfort-
pflanzungsgesetz sofort

Formel (1)

Die Formeln (1) sind bereits das Ergebnis
unserer kleinen Aufgabe; fur jeden vorge-
gebenen Winkel ¢ erlauben sie die Ermitt-
lung der Kofaktoren Q,, Q,, und Q,, im ge-
drehten Koordinatensystem, oder, in et-
was anderer Betrachtungsweise: mit (1)
bestimmt man die Genauigkeit des Punk-
tes P in der um ¢ gedrehten Richtung tund
der um (¢ + 1009) gedrehten Richtung u.

Wir fragen nach Extremwerten von Q, und
Q,,. Diese finden wir leicht, indem wir die
Funktionen Q, und Q,, nach der unabhéan-
gigen Variablen ¢ ableiten und die Ablei-
tung null setzen

Formel (2)

Der Vergleich von (2) mit (1) zeigt weiter,
dass flr ¢ — 6 der gemischte Kofaktor Q,,
verschwindet.

Zur Bestimmung der Extremwerte Q, ..,
win S€tzt man (3) in (1) ein und erhélt nach
einigen (etwas mihsamen) Umformungen
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Partie rédactionnelle

sin2Q,, —2Q,,singcosy + cos’p Q,, (1)

Q, = cos;Q,, +2Q, sinpcose + sin%p Q,
QLILI =

Q, = singcosy (Q, — Q,) +Q,, (cos? — sin?).
dQ

bl S, sing cose Q,, + (COSz(p - sin2¢) 2 Q,y+ 2 sing cosg Qy,=0,
d

¢
0= -25sinp cos Q- Qyy) + (cosch -sin’e) 2 Qyy . @)

mit der Lésung

Q
tang 20 o min= 6—3 =tang 26 . (©)
o My
1 1 2 2
 max,mn =3 @t Qpy) £ 2V Q- Q) 4 40, (4)
= Qe Qg

Die Form der bisherigen Herleitung ist al-
lerdings wenig geeignet, auf den dreidi-
mensionalen Fall verallgemeinert zu wer-
den. Wahrend namlich in der ebenen Koor-
dinatentransformation ein unabhangiger
Drehwinkel zur Festlegung der Transfor-
mation genlgt, missen zur dreidimensio-
nalen Transformation zwischen zwei recht-
winkligen Koordinatensystemen drei un-
abhangige Grossen — die drei Euler’schen
Winkel — vorgegeben werden. Die danach
analog (1) zu bildende quadratische Form
muss nach den drei unabhangigen Euler-
'schen Winkeln partiell abgeleitet werden.
Durch Nullsetzen jeder dieser partiellen
Ableitungsgleichungen erhélt man drei Be-
stimmungsgleichungen fur die drei Winkel.
Nachrechnen zeigt, dass diese drei Glei-
chungen nichtlinear und unhandlich sind
und nicht direkt gelést werden kénnen.
Wir wéhlen deshalb einen anderen Weg,
der sich leicht verallgemeinern lasst. Dazu
fihren wir in der quadratischen Form (1)
an Stelle der unabhangigen Variablen ¢
jetzt die zwei gegenseitig abhangigen Va-
riablen sing, cosg ein, welche durch die
Nebenbedingung sinp + cos?p — 1 =0
miteinander verkn(ipft sind. Um den Uber-
gang auf andere Variable ganz deutlich zu
machen, fuhren wir fir den Moment die
Bezeichnungen ein

sing: = b, cosg: = a. (5)

Die quadratische Form (1), deren Extrem-
werte gesucht sind, hat dann die Darstel-
lung

Q,=a2Q,+2abQ, +b2Q,, (6)
Nebenbedingung a2+ b> -1 =0.

Zur Bestimmung der Extremwerte mussen
wir jetzt nach Lagrange verfahren und die

mit dem Lagrange-Multiplikator A erwei-
terte Funktion

F:=a2Q, +2abQ,, +b?Q, - h(a?+b?—1)
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partiell nach den Variablen a, b, A differen-
zieren und die Ableitungen null setzen

a—F=2aC),<,(+2bOxy-2ak =0

oa

oF

—=2aQ,+2bQ,,-2bA =0 (7)
ob

F  2eplq =0 .

oA

Die ersten beiden Gleichungen sind das
fir die Unbekannten a und b homogene
Gleichungssystem

(Qu—1) a+Q,b =0
Q,, a+(Q,-4b =0,

welches nur dann nichttriviale Lédsungen
fur a und b hat, wenn die Koeffizientende-
terminate verschwindet. Es muss also
sein

Qu-} Qy
Q, Qy-A

det

)

sodass man flr den Lagrange-Multiplika-
tor A die quadratische Gleichung

Qx =M (Q, -} — Q2 =0 erhilt. Sie
hat die Lésung

Der Vergleich von (*) mit (4) zeigt, dass der
Lagrange-Multiplikator ~ selbst  gerade
gleich den gesuchten Extremwerten ist.
Dies kénnen wir auch direkt zeigen. Multi-
plizieren wir namlich die beiden homoge-
nen Gleichungen (7)

aQ+bQ, =ai|-a
aQ,,+bQy, =bxr|-b

mit a und b und addieren sie, so erhalten
wir gerade (6).

Nachdem A ermittelt ist, kbnnen auch die
Unbekannten a und b bestimmt werden.
Setzt man

QXX = QXX - )\'

Q,:=Q4;—M

so erhalt man aus den homogenen Glei-
chungen die (normierte) Lésung

Formel (8)

und man Uberzeugt sich durch Nachrech-
nen — unter Verwendung der Additions-
theoreme —, dass die Gleichungen (8) der
Darstellung (3) aquivalent sind.

Unser Weg ab den Gleichungen (5) ff. zur
Losung der Extremwertaufgabe Iasst sich
jedoch auch als die Formulierung und L6-
sung eines Eigenwertproblems auffassen.
Dazu schreiben wir ihn noch einmal mit
Hilfe von Matrizen an:

Die Kofaktoren von P ordnen wir in der Ko-
faktorenmatrix

Q. Q
Q= | x My
XX (ny ny)

an, und die cosg und sing fassen wir im
Einheitsvektor

cosQ
sing

zusammen. Die quadratische Form (1) hat
dann die Gestalt

Q,=x"Q,, x; (1a)
sie soll mit der Nebenbedingung (x™x — 1
= 0) zum Extremum werden.

1 1 2 2
}‘1,2=§(Qxx+0yy)i§W[(Oxx'ny) +4Qxy - (%)

a=——2 Oy 5 :=CoS 0
Wit Cly tang ©
b= Qo :=sin®

XX (8)
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Dazu muss das erweiterte Gleichungssy-
stem

F=xTQ,x—A(X'x—1)
differenziert werden

g_i=20xxx'27‘x=0

ﬁ=(xTx-1)=O ,
dA

2 (6) ff.

und wir erhalten die homogenen Gleichun-
gen
Q,x=hkx
Q,—-E-M)x=0
x'x = 1. 2 (7) ff.

bzw.

Aus der Form dieser Gleichungen lesen
wir sofort ab

1. Die Losung X ist Eigenvektor von Q,,,
und da Q,, symmetrisch und positiv-
definit ist, sind samtliche Eigenwerte
reell und positiv.

2. Der Lagrange-Multiplikator ist Eigen-
wert von Q..

Far die Eigenvektoren X als Losung nimmt
nun wegen XX = 1 die quadratische
Form (1) gerade die Gestalt des Raleigh-
Quotienten

X Quy X
~Ta
X X

r= =A

an, welcher fur die Eigenvektoren zum Ex-
tremwert und gleich dem Eigenwert selbst
wird.

Die praktische Losung des Eigenwertpro-
blems folgt wieder dem oben angegebe-
nen Weg. Aus der Forderung nach ver-
schwindender Koeffizientendeterminate
erhalt man (*) und danach die Unbekann-
ten entsprechend (8).

Damit die Lésung einfach geometrisch ge-
deutet werden kann, soll die Darstellung
(1a) von Q, = Q, (Q,,, Q,;, Q,, ®) umge-
wandelt werden in eine Form

X
3
.l
.'/ /’t
® AU P
: 7
N
e ’
s,
~
-0

Q= Q. (Q, Q,, Q. W),

gleichbedeutend mit einer Transformation
ins € ,n-System.

_Fachteil

form der Eigenwerte, unmittelbar auf die
Hauptachsendarstellung

T . Ay O Q&y; 0
Zwischen dem Richtungswinkel ¢ im x,y- Qe=t Ktmit K= vl o a
System, dem Richtungswinkel v im € n- 2 m
System und dem Drehwinkel 6 zwischen
den beiden Systemen bestehen die Bezie-  ausflhrlich
hungen
cos ¢ = cos (0 + y) = cos Bcos ¢ —sin O siny
sin @ =sin (6 + 1) =sin Bcos 1 + cos O sin . 9)

Mit den Matrizen

-~ [cos®| - cos (6 +100°) _|[-sin®
"“\sine|" 27 |sin(@+100%) | | cos®
_[cosv| |, _[cose
“lsiny | " \sing

sowie der Modalmatrix, welche als Spal-
ten die Eigenvektoren enthalt

-sin®
cos 0

kénnen die Gleichungen (9) zusammen-
gefasst werden zu

x = Xt, bzw. x" = t'X". = (9)

cos 6

X=X, X,)=
(X1, Xz) (sine

Einsetzen von (9) in die urspringliche
Gleichung (1a)

Q=t'X"Q, Xt

fahrt, da

X'Q, X =diag. () : = K

gleichbedeutend ist mit einer orthogona-
len Transformation auf die reelle Diagonal-

Qn=0§§cos2w+ Qny sinzw ’ (10)

V Qq ='\/Q§§coszw+ ansinzw .

Die Gleichung (10) kann in zweifacher
Weise geometrisch interpretiert werden,
namlich

- \/Q, lasst sich als zur Richtung v affi-
ner Radiusvektor mit dem Richtungs-
winkel y (!) aus einer Ellipse — «Fehlerel-
lipse» — entnehmen, welche die grosse

Halbachse a = Q.. und die kleine
Halbachse b = \Q,, hat,
und/oder

- VQ, ist Radiusvektor mit dem Rich-
tungswinkel ¢ in der zur Fehlerellipse
gehodrenden «Fusspunktkurve» mit den
gleichen Halbachsen.

p;

Abb. 2

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

Abb. 3: Fehlerellipse
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Partie_ rédactionnelle

a) Beweis fur die «Behauptung Fehlerel-
lipse», Abb. 3

Ausser den bereits oben eingefuhrten Vek-
toren/Matrizen t und K definieren wir noch
den Radiusvektor y fur einen Ellipsen-

punkt P mit den Koordinaten Cn
g

y:=
n

Da K Diagonalmatrix ist, gilt

Die Parameterdarstellung der Fehlerel-
lipse mit den Halbachsen

a=~Qg undb=~Q,, istdann
§=+Qgg cos y
N=+Qu,siny

wobei y der zur Richtung t affine Radius-
vektor mit dem Richtungswinkel v ist. Aus
(11) folgt sofort

y'y =t'Kt = (10) Q,,

und die Lange des Radiusvektors ist

VyTy -Vtke -, ;

=(10)

damit ist die Behauptung bewiesen.

Fir den Richtungswinkel y der zu v affinen
Richtung folgt aus (11)

an

V Qe

tangy:%tangw: tangy . (12)

b) Beweis fir die «Behauptung Fuss-
punktkurve», Abb. 4

Per definitionem ergibt sich jeder Punkt R
der zur Ellipse gehoérenden Fusspunkt-
kurve als Schnitt des mit dem Winkel y va-
riablen Richtungsstrahls t mit derjenigen
Ellipsentangente, welche auf t senkrecht
steht. Als Vorbereitung fiir den Beweis ver-
gegenwartigen wir uns:

— aus der Parameterdarstellung der El-

lipse (11) erhalten wir ihre Mittelpunkt-
gleichung nach Linksmultiplikation mit

1

, in Matrizen y=K§t ,

— fur den Normalenvektor n im Ellipsen-
punkt P mit den Koordinaten y gilt

2Ky

n= 0y =K'y . (14)
Wir suchen nun diejenige Normale n,, in ei-
nem Ellipsenpunkt P, (y,), welche zur
Richtung t £ t parallel ist. Die Ellipsentan-
gente in P, steht dann senrecht auf n, und
damit auch auf t | | n, Somit ist der
Schnittpunkt R dieser Tangente mit dem
Richtungsstrahl t gerade ein Punkt der
Fusspunktkurve mit den Halbachsen

a=«/Q§§ und b =~Qyy -

Wegen (14) gilt fir den gesuchten Norma-
lenvektor n,

(1)

n, = Ky,

und da n, parallel zum Einheitsvektor t
sein soll auch

t=cK'y, bzw. yI:%tTK und y1=1EKt

mit einem noch unbekannten Faktor c.
Nun muss y, auch der

Ellipsengleichung (13) genligen

T 1

T,
yiK y=1=
( c

15)!
sodass fur c folgt
C= tT Kt ,

und der gesuchte Vektor y, ist nach (15)

(16)

Skalarmultiplikation von (16) mit t7 ergibt
aber gerade — da t Einheitsvektor ist — die
Projektion OR von y, auf die Richtung t

-Vt'Kt =OR=Q5 ,

(17)

t'Kt
t'Kt

.
tys=

d.h. der zu P, gehérende Radiusvektor OR
der Fusspunktkurve hat gerade, wie be-
hauptet, die Lange VQ,!

Der Radiusvektor y, hat eine weitere be-
merkenswerte Eigenschaft:

(15)

Abb. 4: Fusspunktkurve

Mensuration, Photogrammeétrie, Génie rural, 7/88



Nach (11) ist der zum Einheitsvektor t
(Richtungsstrahl t) gehérende affine Ellip-
senvektor y = K'2t.

Wir bilden nun den zu y gehérenden Ein-
heitsvektor y, (mit

1
_ Yy _y K2t

Ye=—r==—rm—"=
\/y y W/t Kt \/t Kt

erneut nach (11) affin ab in einen Vektor u:

)

LA
K2K2t Kt

= = Y1
Vi'kt Vi'kt ®

;
u-= KEye=

m.a.W.: y, entsteht aus t durch zweima-
lige affine Abbildung von t.

Der Richtungswinkel ¢, ist dann (ausfihrli-
ches Anschreiben von (16))

a’cosy Qe
&1 == =

= COS
Qg Jag Y
. =bzsimp= Qqn siny a
U JQy /Oy

Wir werden weiter unten sehen, dass die
Richtung ¢ eine zusatzliche interessante
Deutung hat.

Fehlerellipsoid

Unsere Herleitung der Fehlerellipse als
Extremwertaufgabe mit quadratischen Ne-
benbedingungen oder — aquivalent — als
Anwendung der Eigenwerttheorie von Ma-
trizen lasst sich ohne Schwierigkeiten zum
Fehlerellipsoid fir einen dreidimensional
bestimmten Punkt erweitern.

Fur die Koordinaten x,y,z eines Punktes P
sei die Kofaktorenmatrix

Quy Quy Qyz
Qxx = ny ny Qyz
Q. Qqy Q,

gegeben, und die Richtung t, fur welche Q,
gesucht ist, sei durch ihre Richtungscosi-
nus cosa, cosp, cosy beschrieben.

Mit dem Vektor

cos o
cos fB
cos y

X =

und der Nebenbedingung x™x — 1 = 0 er-
halten wir fir Q, allgemein die quadrati-
sche Form

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

Q
tang e1=b—ztang v = Q—Zz tangy .

Fach_tej

Q, =x"Q, x 2 (1a)

und flir den Extremfall Q, = Extremum das
homogene Gleichungssystem

Q,,-AE)x=0
( XX . ) é(7)ff
Xx x-1=0.

Die Eigenwerte von Q,, bestimmt man aus
der charakteristischen Gleichung

det (Q,, — AE) = 0,

welche jetzt dritten Grades ist, und erhalt
die drei positiven Extremwerte fur Q,,

Q, Extremumi: =Q.. =},
Q, Extremum2: =Q, =,
Q, Extremum3: =Q_ =),
Die mit diesen Eigenwerten ermittelten Ei-

genvektoren X,, X,, X, bilden eine neues,
rechtwinkliges €, n, c-System.

Sind nun die Richtungscosinus von t im
neuen System

cos o
t=| cosp

cosy

so vermittelt die Modalmatrix

durch die Transformation
x =Xt bzw. t = X"x 2 (9)

die Beziehungen zwischen altem x,y,z-Sy-
stem und neuen &, 1, ¢-System. Die Glei-
chungen (9) fihren aber durch Einsetzen
in (1a) sofort auf die Hauptachsendarstel-
lung

Q,=tTX"Q, Xt = t'Kt, 2 (10)
welche wegen

A,00 Qg 0 0
K= 02,0 |=| 0 Q; O

002, 0 Ogg

ausflhrlich angeschrieben werden kann
zu

Formel 2 (10)

In (10) lasst sich \/Q, als Radiusvektor in
einem dreiachsigen Ellipsoid mit den Halb-
achsen VQ.., VQ,,, Q.. deuten:

Setzt man namlich

Formel £ (11)

Formel £ (13)

d.h. man erhalt gerade die gesuchte Iden-
titat (10). i

Auch die weiteren Uberlegungen zur Feh-
lerellipse bezuglich ihrer Fusspunktkurve
lassen sich sinngemass auf das Fehlerel-
lipsoid Ubertragen; man erhélt dann die zu-
gehorige Fusspunktflache.

COS 0.4 COS O, COS O.q

~ ~

X:=(X1,X2,X3) =

cos B, cos B, cos Py

COSY; COSY, COS Y,

Q= Qee cos’ o + Qqn coszﬁ + Qggcosz§

NQy = ’\/Ogg cos’ o + Qun coszg + Oggcosz§

§=voggcos& ,n=«/0,mcosﬁ , g=«/Qggcosy_(

so gilt

2
g . .n
Qéé an Q;@

und weiter

2— 2= 2-
=cos o+cos B+cos y=1

VE +m +¢ =A/Q§§cose&+chos2ﬁ+0%cosz§ =Ty ,
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Partie rédactig_nnelle

Zunéchst erscheint der Hinweis gerecht-
fertigt, dass Fehlerellipsen und Fehlerellip-
soide nicht auf die Genauigkeitsbeschrei-
bung von Punkten beschrankt sind, die
aus einer Ausgleichung hervorgehen. Ein-
zige Voraussetzung ist, dass fir den Punkt
P die Kofaktorenmatrix

Q,x Q
Qxx — XX XXy
(ny Oyy)
bekannt ist. Diese braucht naturlich nicht
notwendigerweise aus einer Ausglei-
chung zu stammen. Damit kénnen die
Fehlerellipsen fir alle bekannten einfa-
chen Punktbestimmungsaufgaben — Vor-
warts- und Ruckwartseinschnitt, Bogen-
schnitt, Polygonzug, usw. — angegeben
werden. Dies sei an 2 Beispielen — Vor-
wartseinschnitt und Polygonzug — exem-
plarisch gezeigt.

1) Vorwartseinschnitt

Abb. 5

Es ist zweckmassig, beim Vorwértsein-
schnitt (und auch beim Bogenschnitt) in
ein figureneigenes h,g-Koordinatensystem
Uberzugehen. Es hat seinen Ursprung in
P., und die Achsen h und g sind parallel zur
Hohe h, und zur Grundseite P,P,. Es gibt
nun 2 Maoglichkeiten, die Kofaktoren von P
zu ermitteln:

— Bestimmung Uber einen Ausgleichungs-
ansatz,

— direkte Bestimmung uber die allge-
meine Fehlerfortpflanzung.

Im ersten Fall missten wir nach der Tech-
nik der vermittelnden Ausgleichung 2 li-
nearisierte Fehlergleichungen des Typs

| + v =Ax

ansetzen und dann (A'PA)~'= Q,, aus
(ATPA) ermitteln. Dabei ist (ATPA) regular;
die Inverse kann immer gebildet werden.
Allerdings ist die Inversenbestimmung um-
standlicher als die direkte Herleitung tiber
das Fehlerfortpflanzungsgesetz.

Im zweiten Fall bilden wir direkt die totale
Differentiale
dx=a'Al dh = f,TAl
dq = f,7Al

und finden die gesuchte Kofaktorenmatrix
zu

bzw.
dy =bTAl

T T
fQufy f,Qf;
T T
fiQufy f,Quf;

XX~

Fur diesen zweiten Fall kdnnen wir die Dif-
ferentialformeln ansetzen, siehe z.B. [8]

dh=—""(bsin B do+asina dp) 2] Al
siny
(-b cos B do: + a cos o d) 2 f3 Al

(19)

dg=

siny

und finden

Qun=—7 (bzsin2 B L a’sin’o g—)

sin 'y . B

Q

(bzcoszﬁ L - a2c052(x pl)

aq™=
sin 'y o B

Qqn=
sin vy &

n-1 n-1
2 1 2 1
Qy x,= 2 Vi~ Yn) ——+,C0S Qj,1—
i=1 "

pBi i=1 Ps

n-1

1
Qx,y,= ;(Yi'Yn) (Xi- Xn)p—Bi Z s

(-bzsin B cos B pl + azsin o COoS O pl) .

Eine nahere Untersuchung zeigt, dass Q,,,
fir p, = py, @ = b verschwindet und fr y =
90° auch Q,, = Q,, wird; diese weiterflh-
rende Diskussion ist jedoch nicht Gegen-
stand der Untersuchung.

2) Einseitig angeschlossener Polygonzug

Auch hier haben wir prinzipiell die beiden
fuir den Vorwartsschritt angedeuteten Mog-
lichkeiten zur Bestimmung der Kofaktoren-
matrix. Allerdings missten wir bei einem
Ausgleichungsansatz ein System fir
(n—1) Winkel- und (n—1) Streckenbeob-
achtungen ansetzen und danach ein Sy-
stem (ATPA) mit 2(n —1) Zeilen und Spal-
ten — welches zwar viel Nullelemente ent-
halt — invertieren. Der direkte Ansatz mit
den Differentialformeln nach z.B. [8] ergibt

-1 n-1 T
dxy= 2, (Yi- Yn) dB;+ D, COS @; 4 ds;=f; Al
=1 i

n-1

n-1 ) T
dyn= 2, (Xi-X,) dB;+ Zsm 9,1 dsi=12Al

i=1 i=1

und fuihrt danach sofort auf das Ergebnis

B

(22)

Abb. 6
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Auch hier sollen die Formeln nicht weiter
diskutiert werden bis auf den Hinweis,
dass offenbar die Fehlerellipse ganz er-
heblich durch die Gewichte p, und p,; d.h.
durch die Genauigkeit der Beobachtungen
an den dafur wirkungsvollsten Stellen, be-
einflusst werden kann.

«Verschiebungsellipsen» in
geodatischen Netzen.

Die Fehlerellipse in geometrischen Konfi-
gurationen kann auch in ganzlich anderer
Weise, namlich als «Verschiebungsel-
lipse» gedeutet werden und dann als Hilfs-
mittel zur Beurteilung netzartiger Konfigu-
rationen herangezogen werden. Diese In-
terpretation wirde besonders dann deut-
lich werden, wenn man die Analogie zwi-
schen der Ausgleichung und fehlertheore-
tischen Analyse von geodatischen Netzen
und der elastomechanischen Analyse von
Fachwerken und Netzen heranzége: fir je-
des geodéatisch-geometrische Netzge-
bilde gibt es ein elastomechanisches Ana-
logon, in dem sich die Ausgleichung und
Fehleranalyse des geodatischen Netzes
als das Auffinden von Gleichgewichtsfigu-
ren und Verschiebungszustéanden darstel-
len.

Wir wollen jedoch hier diese Analogie
nicht weiter heranziehen, um die Verschie-
bungsellipse herzuleiten. Vielmehr knlp-
fen wir an die bekannten Formeln der ver-
mittelnden Ausgleichung mit Bedingungs-
gleichungen fir die Unbekannten an.
Diese sind in allen Standardlehrbiichern
der Ausgleichungsrechnung enthalten
(z.B. 1], [2], [3]):

Es seien die linearisierten Fehlergleichun-
gen

|+ v=Ax

und die zusatzlichen linearisierten Bedin-
gungsgleichungen fiir die Unbekannten

B™x = u.

Dann sind die Normalgleichungen zur Er-
mittlung von Unbekannten x und Korrela-

ten k
X
i IF

Die gleiche Aufgabe kann in Teilschritten
gelést werden. Im ersten Teilschritt be-
stimmt man (vorlaufige) Unbekannte x der-
art, dass die Bedingungsgleichungen aus-
ser Betracht bleiben, d.h. man setzt

A'PI
u

A'PA B

B' 0

X=X+ AX
(Bemerkung: Ax nicht im Sinne eines Dif-
ferentials!)

mit der Definition

x: = (ATPA)~' ATPI. (23)
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Auch die Verbesserungen werden in die
der beiden Teilschritte aufgeteilt

Vi=V+Av

v: = Ax-l. (24)
Im zweiten Teilschritt werden zunachst Wi-
derspriche fir die Bedingungsgleichun-
gen der Unbekannten ermittelt, und dann
bestimmt man die zugehdrigen Korrelaten
aus den zu den Bedingungsgleichungen
gehdérenden Normalgleichungen:

BT (x + Ax) = u =>B"Ax = (u—-B"X): =
[BT(ATPA)-'B] k = w
k = [BT(ATPA)'B]~'w.

Danach lassen sich die Zuschlage Ax zu

den Unbekannten x ermitteln
Ax = (ATPA)~' Bk. (27)

Die Verbesserungen des zweiten Teil-
schrittes sind

Av = A AX, (28)

und flr die Quadratsumme der Av gilt:

AVTPAvV = Kk'BTAx = kTw (29)
Schliesslich findet man aus der Inversen
(ATPA)-" des ersten Teilschrittes auch die

endglltige Inverse Q,, nach Hinzunahme
der Bedingungen im zweiten Teilschritt zu

Fachteil

Mit dem Formelsatz (23) bis (30) machen
wir nun ein Gedankenexperiment. Ein geo-
datisches Netz mit vorgegebenem Datum
liege bereits ausgeglichen vor; wir neh-
men weiter an, dass in dieser ersten Teil-
ausgleichung an die Ermittlung der Unbe-
kannten keine zusétzlichen Bedingungen
geknipft gewesen seien. Der Typ des Net-
zes, welches wir fir unser gedankliches
Experiment heranziehen, ist véllig belie-
big. Es kann ein Streckennetz, ein Rich-

(25)
(26)

tungsnetz oder eine Kombination aus
Strecken- und Richtungsbeobachtungen
vorliegen. Als Voraussetzung genlgt es
véllig, dass kein Datumseffekt vorhanden
ist und damit (ATPA) und (ATPA)~" regular
sind. Ein mdgliches Netz — ohne Be-
schrénkung der Allgemeinheit! —ist in Abb.
9 skizziert. Wir greifen einen beliebigen
Punkt P, des Netzes heraus und stellen an
ihn die zusatzliche Bedingung, dass er ei-
nem Zwangsanschluss genlige: gegen-
Uber den aus der ersten Teilausgleichung
hervorgegangenen Koordinaten X, y, soll
P, die Lage x, = X, + AX, Yy, =, + Ay, ha-
ben. Etwas anders ausgedriickt bedeutet

Q,, = (ATPA)~' — (ATPA)-' B [BT(A"PA)-'B]-'BT(ATPA)~" (30)
P P P P
Uy oxy Ty mmm - A it X, " Yh
S R I IS I I
R Q; Q,, Q,; Q,,
Y, i N
2 N .
. -1
P Qzs Q22 (_TE A) Qzn
Ly 1 1 | |70 "
P ISR E I IO [ B SO SV IPUY W DU S EOSEpS Hpu I P
B
l | ! l I : : I ! ! I : I
| | I | | ' | ! ! | [ I
0 T T e T O e (R Y A B T ] I
o T B e e Beowy Oy | ===
R Qi Q;, Qin
v | | | Quix; Qypy; | = == ==~
! ! . ! ! ! ! L | O A Y SO
3 I A R R o i
IR R R RN N
BN Rttt all Bt aitul il B ity Rl Bt el it Sl Mt it
*“! 1 |o____- |-
R Qn Qp2 Qp @hh
Y A R R
Abb. 7
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Partie rédactionnelle

dies, die aus dem ersten Teilschritt ausge- -

glichene Lage von P, (x,, y,) weise die Koor-
dinatenwiderspriiche w,; und w,, gegen-
Uber dem Sollwert P, auf.

Zur Lésung dieser Aufgabe flihren wir den
oben skizzierten zweiten Teilschritt der
Ausgleichung durch. Dazu denken wir uns
die Unbekannten in folgender Numerie-
rung in der Ausgleichung angeordnet:

Die Neupunkte P, seienvoni =1, ..., h
durchnumeriert. Die Matrizen (ATPA) und
(A"PA)~" haben dann, da jedem P, ein x;
und y; entspricht, 2 h Zeilen und Spalten;
diese denken wir uns als Doppelzeilen
und Doppelspalten derart angeordnet,
dass in der i-ten Doppelzeile (Doppel-
spalte) zunéchst die x; und dann jeweils
die y, stehen.

Bei den zwei zusatzlichen Bedingungen
hat BT zwei Zeilen und 2 h Spalten 2 h
Doppelspalten.

Die allgemeine Bedingungsgleichung
BTAx=w (25)

geht dann Uber in die spezielle Bedin-

o\ | 0\
" 0
Py P .. P .. Py 5 '
0 0[0 0[0..0[+1 0]0..0[o0] | O |_| ©
000 0][0..0] 0+1]0..0/0 0] | ax, w,
\A:Yi in
O H
B/ A =W

Ebenso nehmen die allgemeinen «Nor- [Qy y, Qy,y,
malgleichungen» flr die Korrelaten Bl L o

oo

T (AT - =
[ [ATREG Bl =wr (26) Die Normalgleichungsmatrix [BT (ATPA)~!
die spezielle Form an B fur die Korrelaten k; des vorgesehenen
_ . Zwangsanschlusses in P, ist also gerade
[BT(APA)' Bl k = w, (@6)  gie in (ATPA)-" enthaltene 2x 2 — Unterma-

trix Q;; far den Punkt P

Die Gleichung (32) erlaubt die Bestim-
mung von k,; und k,, flr jedes beliebig vor-
gegebene Paar von Koordinatenan-
schlussbedingungen w,; und w,;in P;; dazu
braucht man nur die zu (32) inverse Glei-

ausflhrlich

so dass jetzt gilt

[BI(ATPA)"'B] = Q; (31)
und damit (26) & (26i) die Darstellung hat

gungsgleichung chung
BT Ax = w;, (251))  Q; ki =w, (82) k=Q7w,
ausfuhrlich ausfuhrlich zu bilden.
i'te Doppelspalte
P ) B mErERd R B;
X 'y 2 X ' Y; % " Y ~
X 528§ B3 R .
! Q% Oxy; 0.0
= [ R P
1 |
..... ¢ R § E 0 0
¥ Qye; Qyyy; |
I
010
¢ (ATp a)!
0o
1
)
|
1
:
X | Qx, Quy, Qux Gy | =7 | O, Oy, 1 E 0
i'te Doppelzeile p Qi AT
Yo | e ok mE rass | 8. s ass 0o,
¥ | Qyix Qyiy Qyixi Qyiy; Qyixp Qxiyn L
. - ’
I
1
I
I
* Qi Ay, 00
R g
1
P P, P R h i Oy 00
0, 0]|0:0/|o0 1,0 o _0__:_0_ Oxixy Oy, Ofi‘_:%‘f'.
| i i | |
IwB L BB &1 0 O 1 O |l Quimy Qg [ = vovv o | e s | omn e Qyixi 1 Qs
gl BT (ATPA)"2 i'te Doppelzeile von (ATPA)-! Qi
Abb. 8
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Fachteil

Durch den Zwangsanschluss in P, bewe-
gen sich alle Neupunkte P, (v =1, ..., h)
um die Koordinatenanderungen Ax, und
Ay, entsprechend Gleichung (27), welche
jetzt die spezielle Form annimmt

Ax = [(APA)-" B] k. (27i)

mit dem Vektor der Koordinatenanderun-
gen Ax:

Ax
AXV
Ay, Ax,
: = = AX
AX;
Ay; ax

[(ATPA)-" B] ist gerade, wie Abb. 8 erken-
nen lasst, die i'te Doppelspalte von
(ATPA)-.

Wir erhalten also aus (27i) mit Abb. 8 die
ausflhrlichen Darstellungen

A Kl s

X1 — QX1Xi QX1Yi xiéAX1=Q1,iki
Ay1] | Qy,x Qy,y/\ky,
............................................. (33)
A Qy,x. Qxy.

Xo | _ [ Sxyx Mxyy, Ky, A Ax, = Qyk;
Ayy va X OYV Yi kyi
v=1,...,h

Fir den Punkt P, selbst bekommen wir, wie
es gefordert war und daher sein muss

Ax;=Qj;k;
4 = A=W, (34)
Ki=Q;j; w;
d.h. die Koordinatenénderungen in P, sind
gleich den vorgegebenen Widerspriichen.

Wir kehren noch einmal zuriick zur Glei-
chung (32), die wir jetzt mit den w, auf der
anderen Seite folgendermassen anschrei-
ben

WYi

Jetzt lesen wir diese Gleichung jedoch
nicht in der vertrauten Weise «vorgegeben
ein Gleichungssystem mit den rechten
Seiten w,, w,, aus denen unbekannte Kor-
relaten k,; und k; zu ermittein sind», son-
dern als eine lineare Zuordnung zwischen
Grossen k,; und k; und durch sie bewirkten

AX;
Ay

(35)

QXiXi QXiYi kxi
QYixi QYiVi kYi .

Vermessung, Photogrammetrie, Kulturtechnik, 7/88

Koordinatenanderungen Ax; und Ay, im
Punkt P;: zu jedem vorgegebenen Werte-
paar k, gehért dann ein Wertepaar Ax; =
(Ax,, Ay,).

Wir fragen nun nach «allen» zugehdrigen
Wertepaaren Ax;, Ay, wenn k,;, k;; «alle
moglichen» Wertepaare annimmt. Dazu
fassen wir k,; und k, nicht nurim Sinne der
Matrizenrechnung sondern auch im geo-
metrischen Sinne als Komponenten eines
Vektors k; auf. Damit dieser Vektor alle
maoglichen Werte annehme, wird er nor-
miert:

Korko=1e ki ki=1.

Durch die Normierung kénnen wir die
Komponenten k,; und k; als cose und sing
darstellen; sollen diese alle mdglichen
Werte annehmen, so kénnen wir k; als Ra-
diusvektor im Einheitskreis auffassen, wel-
cher alle Werte fiir 0¢ < ¢ < 4009 durch-
lauft.

Zu jedem vorgegebenen ¢ gehort dann
ein entsprechendes
Ky

. |COos o
ki=[ %] :=
I (kYi (Sin (P)

mit zugehdrigen Ax,, Ay..

Z.B. werden fir ¢ = 09 : cosp = 1 und
sing = 0, d.h. k; = ({) und die zugehdrigen
durch k; hervorgerufenen Verschiebungen
in P, sind nach (35)

AX, = Qx;x;
Ayi = Qyixi.

(36)

Wahlen wir ¢ = 1009, so wird k; = (9), und
die zugehorigen Verschiebungen sind Ax;
= Qxy; und Ay, = Qyy.. (37)
Wir denken uns den Einheitsvektor k; im
Punkt P, angetragen. Dann besagt (36):
Der in x-Richtung weisende Vektor | k; |
= 1 «bewirkt» eine Verschiebung von P, in
x-Richtung im Betrag von Qx;x;, und (37)
besagt: der in y-Richtung weisende Vektor
| k| = 1 «bewirkt» eine Verschiebung
von P; in y-Richtung im Betrag von Qy,y;.

Verallgemeinert driickt also die Gleichung
(35)

Ax = Q; k

{5 R = (35)
aus, dass zu jedem vorgegebenen Rich-
tungswinkel ¢ des in P, «angreifenden»
Einheitsvektors k; eine bestimmte Ge-
samtverschiebung Ax; von P, gehort.

In dieser Interpretationsweise drangt es
sich férmlich auf, k; als eine in P, angrei-
fende Einheitskraft zu interpretieren, wel-
che entsprechende Verschiebungen Ax;
von P, bewirkt.

Diese Interpretation hélt in der Tat einer ge-
nauen Untersuchung stand [6] (die wir je-
doch hier nicht weiter heranziehen wollen
und nicht heranzuziehen brauchen):
Denken wir das geodatische Netz durch
ein elastisches Analogon materialisiert
und das Ausgleichungsproblem in ein ela-
stomechanisches Problem Ubersetzt, so
ist am Analogen die Grosse k; tatséchlich
eine in P, angreifende Einheitskraft, wel-
che elastische, mit dem Gleichgewichtszu-
stand des Analogons vertragliche Punkt-
verschiebungen Ax; hervorruft!

Die Gleichung (35)
Ax = Q; kK 2 (35)

erlaubt aber geometrisch die Interpreta-
tion einer Abbildung, durch welche der
«Kraftvektor» k; mit Hilfe der quadrati-
schen Matrix Q,; in den Verschiebevektor
Ax; abgebildet werden kann. Da Q;; vom
Grad 2 und positiv definit ist, erhalt diese
Abbildung das zuséatzliche Charakteri-
stikum einer affinen Abbildung, und da die
Spitze des Vektors k; beim Durchlaufen al-
ler Wertepaare (cosg, sing) einen Ein-
heitskreis beschreibt, durchlauft die Spitze
des Bildvektors (= Verschiebungsvektor)
Ax; eine Ellipse als affines Bild des Ein-
heitskreises. Diese Ellipse wollen wir als
«Verschiebungsellipse» von P; bezeich-
nen; ihre Konstanten kénnen durch eine
Hauptachsentransformation leicht be-
stimmt werden.

Seien A, und )\, die Eigenwerte von Q;, X;
und X, die zugehorigen, auf die Lange 1

normierten Eigenvektoren und X; = (X}, X.)

die (orthogonale) Modalmatrix.

Dann bewirkt Links- und Rechtsmultiplika-
tion von Q;; mit XTund X; eine Transforma-
tion auf Diagonalform

Ay 0

.
X:Q: Xi=K = =
PEMTTT T 0y (9,10)!

Qee, 0
0 Quy

Andererseits kann wegen XTX, = X XT=E

die Matrix Q;; in der Form
Qi,i =X K XT

dargestellt werden,

(38)

sodass aus Gleichung (35) wird

Ax = X K XTk,

bzw., nach Linksmultiplikation mit X™
XTAx, = K XTk;. (39)
Damit ist die Hauptachsentransformation
schon vollzogen, denn die Linksmultiplika-
tion von Ax; und k; mit XT entspricht —

siehe Seite 347 — der Transformation ins
ellipseneigene &, n-System:

T &
X; AX1=Vi=(nl.
. ; =Yi=Kit; (40)
X; ki=ti=(°‘.’s“’
siny
353
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(40) ist die Parameterdarstellung der Ver-
schiebungsellipse in P, mit den Halbach-
sen a = Q., b, = Q,;,;, ausflhrlich

& = Qg cosW

nini?

2 (40)

n = Q,, siny.

nini

Die Mittelpunktgleichung findet man aus
(40) nach Linksmultiplikation mit K-/

Ky, =t
i Yi=t T 2 T
T a4 1(=2VYViKiy=tit=1 (41)
yi Ki =t
ausfuhrlich
§2 2
oo
g 2 41
Ei&; nimi

und der Richtungswinkel 6, der grossen
Halbachse ist (bestimmt analog den Glei-
chungen (8) und (3))

tang294=ﬂ =(3)
I anxi- QYiyl

Schliesslich finden wir die Projektion des
Verschiebungsvektors y; auf die Kraftrich-
tung t, durch das skalare Produkt tTy,; dies
ist wegen

v =Kt 2 (40)
gleich
tTy, = tTK t7(10) Q! (42)

Der Richtungswinkel 9 des Verschie-
bungsvektors y; ist

o Qo SIN Q
tang §,= Ji= UM LI
& Qg cosy Qe

nini

Diese Ergebnisse wollen wir in Worte fas-
sen:

Jedem Neupunkt eines geodatischen Net-
zes sind eine Fehlerellipse und eine «Ver-
schiebungsellipse» zugeordnet. Die Rich-
tungswinkel 6 der grossen Halbachse bei-
der Ellipsen sind identisch. Die Halbach-
sen der Verschiebungsellipse Q;, Q,, sind
die Quadrate der Halbachsen \féEg N,
der Fehlerellipse. Die von der Einheitskraft
k™ = (cosq, sing) bzw. t7 = (cosW, sinW)
bewirkte Totalverschiebung ergibt sich
in der Verschiebungsellipse als zur
Kraftrichtung affiner Ellipsenvektor mit

Q
dem Richtungswinkel tange = Q—““ - tang¥,
33
und sie ergibt sich in der Fehlerellipse als
doppelt affin abgebildeter Ellipsenvektor
entsprechend (16)

354

tangy=tange .

— Kt i _ Y

Yi=—/— = F—/— ==
tTKt t;rKltl Otiti

Der richtungsvariable Kofaktor Q,; im
Punkt P, ist stets gleich der in Kraftrichtung
fallenden Komponente der Totalverschie-
bung AXx;, bewirkt durch eine in P, angrei-
fende richtungsvariable Einheitskraft k;.
Die Spitzen aller Kofaktorenvektoren t, &
Q,; beschreiben eine Fusspunktkurve,
welche die gleichen Konstanten hat, wie
die Verschiebungsellipse.

. (44)

Fir genau zwei ausgezeichnete Richtun-
gen, namlich 6, und 6,, = Richtungen der
Halbachsen — fallen die Kraftrichtung ¢ &
W und die Verschiebungsrichtung & zu-
sammen.

Unsere Analyse zeigt weiter, dass beim
Anbringen einer Einheitskraft | k | =1
im Punkt P, sich nicht nur dieser Punkt
selbst sondern alle tbrigen Punkte P, mit-
verschieben, Gleichung (27i) Seite 351.
Dabei gilt insbesondere: wird P, mit einer
in x-Richtung fallenden Kraft k, = (}) bela-
stet, so sind die in die x-Richtung fallenden
Komponenten der Mitbewegungen AX,
der Ubrigen Punkte P, v =1, ..., i—1,i+1,
..., h) gleich den gemischten Kofaktoren
Q,,,, und die in die y-Richtung fallenden
Komponenten der Mitverschiebungen
sind gleich den gemischten Kofaktoren
Q!

Diey totale Mitverschiebung eines Punktes
P, als Folge von k; = ({) ergibt sich als die
vektorielle Summe von Q,;,, und Q

Analog gilt fur eine in P, in y-Richtung an-
greifende Kraft k; = (9):

Die Komponenten der Mitverschiebungen
in y- bzw. x-Richtung in den Punkten P,
sind gleich den Kofaktoren Q,;,, und Q

Xixv xiyv®

(43)

Wegen der Symmetrie von (ATPA)~" gilt
aber

Qx,x\,: vaxi =
Qyy,=Qy x,

geninP;:

Analog gilt fir die in P, angreifende Kraft in
y-Richtung (%) und die durch sie verursach-
ten Mitbewegungen in P,

=Q
=Q

yvyi

QinV
Qyixv xvyi*

Da die Komponente der Mitverschiebun-
gen Vektorcharakter haben, kénnen wir
zusammenfassend formulieren:

Die Mitverschiebung Ax,, welche die in P,
angreifende Kraft k; = (5%57) im Punkt P,
hervorruft, ist gleich der Mitverschiebung
AX;, welche die in P, angreifende Kraft k,
= ($s7) im Punkt P; hervorruft.

Dies ist der bekannte Maxwell’sche Satz
von der Gegenseitigkeit der Formanderun-
gen.

Insbesondere
mitk = (}) £ Einheitskraft in x-Richtung
und k = (9) £ Einheitskraft in y-Richtung

gebenin (ATPA)~" die gemischten Kofakto-
ren Qxixk = Qxxis Qyiyk = kayi und Qxiyk
= Qy, x; jeweils den Einfluss der i'ten Ein-
heitskraft auf den k’ten Punkt — und umge-
kehrt —in x- und y-Richtung an.

Die «quadratischen» Verschiebungen
AX;, welche die Einheitskrafte in x- und y-
Richtung in Richtung und im Sinne von
sich selbst hervorrufen, ergeben sich als
die quadratischen Kofaktoren Qx;x;, Qy,yi,
welche in der Hauptdiagonalen von
(ATPA)~" stehen.

Schliesslich zeigt die Form der Gleichung
(33), dass auch alle Mitverschiebungen
Ax, sich als affine Abbildungen der in P,
angreifenden Einheitskraft k; = ( $5¢)

mit allerdings nicht symmetrischen Abbil-
dungsmatrizen Q,,, Q,; auffassen lassen:
Lasstmank = (%) in P, alle Werte 09
< @ < 400¢° durchlaufen, so beschreiben
die Radiusvektoren Ax, der Mitverschie-
bungen in allen Punkten P ,v =1, ...,i—1,
i+1, ..., h, «Mitverschiebungsellipsen».
Mitverschiebungsellipsen sollen hier nicht
detailliert dargestellt werden, lediglich

einige Bemerkungen seien angefugt:

— Die Eigenwerte 1!, 22, mit den zugeho-

rigen Eigenvektoren X!, X2, ergeben
diejenigen Totalverschiebungen in P,
welche zur Kraftrichtung k; im Punkt P,

parallel sind.
— Die extremen Mitverschiebungen AXx,

«Die von der in P, angreifenden Einheitskraft | k, | = 1inP, er-
zeugten Mitverschiebungen sind gleich den von der in P, an-
greifenden Einheitskraft | k, | = 1 erzeugten Mitverschiebun-

max, min ergeben sich als die Wurzeln
der Eigenwerte der Matrix (Q7; Q, ;).

— Fur bestimmte Kraftrichtungen k; in P,
treten Parallelbewegungen der Punkte
P, und P, auf, d.h. die vektoriellen Total-
verschiebungen in P,und P, sind bis auf
einen Proportionalitatsfaktor ~gleich.
Diese lassen sich als Eigenwerte und
Eigenvektoren der Matrix [Q~]; - Q;,] fin-
den.
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Unsere Darstellung erlaubt auch, fir die
Formel AVTPAv = k™w = k™ Ax eine plau-
sible Deutung: Beim Angriff in P, leisten die
Kréafte k eine Arbeit langs der in Kraftrich-
tung fallenden Verschiebungskomponen-
ten. Diese Arbeit ist aber gerade gleich der
Halfte des Skalarproduktes k™w. Bei den
Verschiebungen der P, wird aber auchin al-
len inneren (elastisch zu denkenden) Ele-
menten 2 Beobachtungen (!) Verfor-
mungsarbeit geleistet, namlich zur Her-
stellung des neuen Verformungszustan-
des. Diese Arbeitist} AvTP Av. Innere und
dussere Arbeit missen aber bei der Uber-
fihrung des ersten in den zweiten, be-
nachbarten Gleichgewichtszustand einan-
der gleich sein. Daher folgt AvVIPAv =
kKTw.

Fachteil

Schliesslich sei ein weiterer Hinweis gege-
ben:

Das dem geodatischen Netz entspre-
chende elastomechanische Analogon,
welches hier statisch aufgefasst wird — Be-
trachtung von virtuellen Gleichgewichtszu-
standen —kann auch als dynamisches ela-
stomechanisches Analogon betrachtet
werden. Dazu braucht man nur den elasti-
schen Elementen des Analogons die ent-
sprechenden Federungseigenschaften —
z.B. Hooke’sches Gesetz —und den Punk-
ten entsprechende Massen zuzuordnen.
Dann lassen sich unter verschiedenen
Kopplungsbedingungen Bewegungsglei-
chungen fur das elastische System auf-
stellen. Sie fihren auf den harmonischen
Oszillator. Inihm beschreiben die Fehlerel-

lipsen Schwingungsvorgange. Ein Bei-
spiel dazu ist in [4] gegeben.

Praktisches Beispiel

Abb. 9 zeigt das Testnetz in Stuttgart-Vai-
hingen, bestehend aus 8 Punkten; davon
sind fur eine Ausgleichung die Punkte 1
und 5 als Fest- und die Ubrigen als Neu-
punkte angenommen. Es wurden 56 Rich-
tungen und 33 Strecken beobachtet; die
mittleren Fehler der ausgeglichenen Koor-
dinaten liegen zwischen 1 mm und 5 mm
und die Halbachsen der Fehlerellipsen
zwischen 1 und 5 mm.

Wir zeigen nun in einer kleinen Analyse
die hier entwickelten Hilfsmittel der Ver-
schiebungs- und Mitverschiebungsellip-
sen. Wir greifen z.B. die Punkte P, und P,

L

Yy

TESTNETZ

VAIHINGEN

MASSSTAB 1 :3000
[ — i —]

0 30 60 90 120 m
Q Neupunkt
a Festpunkt

Vergroferung :

Pfeile: 10,00

IAGB UNI STGT

Abb. 9
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Partie @actionnelle

X2
P,
Y2
X
3
P3
Y3
X
4
Py
Yq
X
Pe %6
Y6
A
Py
Y7
*g
p
8 _y8
Abb. 10
356

P, Py P P P, Py

5 Yo X3 Y3 X4 Yy Xg Yg X7 Yy Xg Vg
4,824 0,046 1,784 0,0539 | 1,549 0,0067 | 0,396 0,353 | 1,968 -0,188 | 1,600 0,392
0,086 0,126 0,017 0,125 | 0,028 0,145 0,031 0,233 | 0,061 0,126 | 0,063 0,146
1,784 0,017 3,775 -0,085 | 1,857 =0,059 0,423 0,480 | 2,075 0,362 | 2,033 0,357
0,0539 0,125  |-0,085 0,474 | 0,036 0,434 0,098 0,680 |-0,264 0,292 | 0,158 0,374
1,549 0,028 1,857 0,036 | 3,801 -0,060 0,585 0,533 | 1,760 0,816 | 3,057 -0,635
0,0067 0,145  |-0,050 0,434 |-0,060 1,464 0,253 1,488 |-0,538 0,494 | 0,190 0,678
0,585 0,253 2,206 1,124 |-0,027 0,019 | 0,813 0,063

0,533 1,488 6,856 |-1,145 0,814 | 1,395 1,527

1,760 -0,538 4,53 0,686 | 1,246 -0,354

0,816 +0,494 4,935 | 0,589 0,409

3,057 0,190 4,201 -0,416

0,635 0,678 2,402

heraus. Aus der Abb. 10, welche die In-
verse (ATPA)-" normiert auf E-04 enthalt,
entnehmen wir die zu den beiden Punkten
P, und P, gehérenden Submatrizen Q,,
und Qgg ZU

a, (3801 -0,060 Q.. [ 4201 -0,461
4471.0,060 1,464 | * ~8871.0,461 2,402

und bestimmen daraus folgende Konstan-
ten:

Punkt P,, Submatrix Q, , (der Punktindex
«4» wird im folgenden fortgelassen):

Eigenwerte

)\.1 = QF,(‘, = 3,8025,
hp=Qpq=1,4624;

Yy =¥ Qg = 1,9500;
Vi, =/Qyy = 1,2093;

m, = £2,161 mm aus der Ausgleichung.

Grosse Halbachse Fehlerellipse:
1,9500 x 2,161 = 4,21 mm,

kleine Halbachse Fehlerellipse:
1,2098 x 2,161 = 2,61 mm.

Richtungswinkel 6 der grossen Halb-
achse: 6 = —1,649.

Punkt Pg, Submatrix Qg

Eigenwerte

Ay = Qg = 4,2030;
Ap=Qpy = 2,3100;

mo=+2,161 mm.

Grosse Halbachse Fehlerellipse:
2,0720 x 2,161 = 4,47 mm,

kleine Halbachse Fehlerellipse:
1,5199 x 2,161 = 3,28 mm.

Richtungswinkel der grossen Halbachse 6
= —13,789.

Wir machen mit dem Netz einige Experi-
mente:

1) Punkt P, wird mit der Einheitskraft k, =
() (d.h. k, weist in die negative x-Rich-
tung) belastet. Die virtuellen x-Ver-
schiebungskomponenten sind dann
nach Gleichung (27i) Seite 353 die in
der P,-Doppelspalte von (ATPA)~" ste-
henden Kofaktoren. Diese kénnen wir
in beliebiger metrischer Einheit lesen,
sofern nur die virtuellen Verschiebun-
gen «klein» in dem Sinne sind, dass
die in (ATPA)~' steckende Linearisie-
rung, welche sich auf den Taylorpunkt
«unbelasteter Zustand» bezieht, glltig
bleibt; oder, praktisch ausgedrickt,
dass die Verschiebungen klein sind im
Verhaltnis zu den Gesamtabmessun-
gen des Netzes. Da m, = £2,16 mm

Mensuration, Photogrammeétrie, Génie rural, 7/88

v }\.1 ='\/Ogg = 2,0720,
Vi, =Qy, = 1,5199;




Fachteil

ist, ist z.B. eine plausible Lesart, den
Kofaktoren die Dimension mm zuzutei-
len. Die Verschiebungen in x-Richtung
sind dann im Punkt P, selbst —3,8 mm,
und in den Ubrigen Punkten P,: —1,55
mm, P;: —1,86 mm, Ps: —0,58 mm, P.:
—1,76 mm, Pg: —3,06 mm.

Wir erkennen aus der P,-Doppelspalte
aber auch, dass gleichzeitig Mitver-
schiebungen der Punkte in y-Richtung
auftreten. Diese sind: P,: —0,03 mm,
Py —=0,04 mm, P,: +0,06 mm, Pg:
-0,53 mm, P,: —0,82 mm, P,: +0,64
mm.

Die Totalverschiebungen ergeben sich
jeweils als die Vektorsumme der x- und
y-Komponenten. Sie sind in Abb. 9 im
Netz dargestellt.

Naturlich kénnten wir die virtuellen Ver-
schiebungen auch in anderen Mass-
einheiten angeben: cm, Zoll oder viel-
fachen davon; lediglich im Vergleich
verschiedener Netze spielt die Kalibrie-
rung mit Hilfe von m, eine Rolle.

2) Punkt P4 wird mit der Einheitskraft k, =
(73) belastet. Die entsprechenden Mit-
verschiebungen stehen in der 8. Dop-
pelspalte von (ATPA)~", Abb. 10, analog
Fall 1). Insbesondere ist die x-Kompo-
nente der Mitverschiebung in P,:
—3,06 mm gleich der Mitverschiebung
von Py im Fall 1) (!), Maxwell’scher
Satz.

3) Die Punkte P, und P, werden gemein-
sam betrachtet.

a) Bereits die Submatrix Q,

+3,057 -0,635

Qs8= +0,190+0,678

zeigt die hohe x-Korrelation zwischen den
beiden Punkten. Nach Gleichung (33) be-
schreibt dann

AXq _[+3,057 -0,635 || COS ¢g
Ays) = |+0,190+0,678 | sin o,
AXy = Qug Ksg

die durch eine in P4 angreifende variable
Einheitskraft k, in P, verursachten Mitver-
schiebungen.

Andererseits werden mit

Qg4=

+3,057 +0,190
-0,635 +0,678

und dem Ansatz

AXg| _[+3,057+0,190(COS ¢4
Ayg -0,635 +0,678/| sin 04
Axg = Qg4 k4

die Mitverschiebungen im Punkt P, be-
schrieben, welche durch eine variable, in
P, angreifende Einheitskraft k, hervorge-
rufen werden.
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In beiden Fallen sind die in Kraftrichtung
fallenden Komponenten der Totalverschie-
bung gleich den gemischten Kofaktoren
Q... bzw. Q

gty t41g

b) Wirbestimmen die Eigenwerte von Q, ¢
L, =3,0083, A\, =0,7268,

die zugehdrigen Eigenrichtungen
6,=5,049, 0,=83,5°

(welche nicht aufeinander senkrecht ste-
hen!)

und die Eigenvektoren X, und X,, welche in

die parallelen Mitverschiebungen i, - X,
und A, - X, abgebildet werden:

~ |cosBy) (10,996 2,996
X4 —( sin . )_(+0,088 A _(0,264)_y1

~ |cosb,| (10,256 0,186

Dies bedeutet: Die Einheitskraft k; im
Punkt P, bewirkt fur die Richtungswinkel
6, = 5,049 und 6, = 83,59 parallele Mitver-
schiebungen in P, der Grosse y, bzw. y,.
Fehlertheoretisch liegt hier ein Fall «aus-
gezeichneter» Korrelation vor.

c) Wir bilden

_(+9,3813

T -1,8124
(Qu8Q48)= -1,8124 )

+0,8629

mit den zugehorigen Eigenwerten

Ay=9,7509; A, =3,1226,
A,=0,4933; V1, =0,7024,
und den Eigenrichtungen 6, = —12,819,

6, = 87199 (welche jetzt wegen der Sym-
metrie von (Q}, Q,;) aufeinander senk-
recht stehen):

Die maximalen und minimalen Mitver-
schiebungen Q,,,, max. = 3,123 und Q4
min. = 0,7024 treten in P, in den Richtun-
gen 8, = —12,81 und 6, = 8719 auf. (Der
Beweis fur die Gultigkeit dieser kleinen
Rechnung ist hier nicht mitgeteilt).

AXi=Q;;- Ki-Qix- ki,
Axy=Qy;- ki-Qyk- ki ,

AX;- Axy= (Qj ;- (Qik+ Q) + QW - K ;
hier
AX4-Axg=(Q44-(Qqg+Qs4) +Qgg) - ks
| | |

=d =D

d) Wir ermittein die Nachbarschaftsge-
nauigkeit zwischen P, und P,. Auch diese
bildet sich wieder als (relative) Verschie-
bung von virtuellen Belastungszustdnden
ab.

In sinngeméasser Anwendung der Glei-
chungen (33) ff. gilt fir zwei Punkte P, und
P., geschrieben in Hypermatrizen, die

Gleichung
Qi [ ki|
Qx| | Kk

Axi| Qi
(82 <45>

Damit die Verschiebungsdifferenz ermittelt
werden kann, lassen wir in P, eine Ein-
heitskraft k, = —k; angreifen.

Mechanisch bedeutet dies, dass wir in P,
P, ein Kraftepaar mit—in Abhéngigkeit von
¢ — Hebelarm variabler Lange angreifen
lassen.

Dann wird aus (45)

Axi|_[Qi; Qi |[ ki
=" i ) 46
(Axk (Q ki Qi) ki (46)
so0 dass wir erhalten
Formel (47)
Die Differenzmatrix D ergibt sich zu
D - +1,888 -0,031
~1-0,081  +2,510
und ihre Eigenwerte sind
Ay=25105 , A,=1,8875
QA§A§= V 7\.1 = 1,584 ’
Vv )\42 = 1,374 = QATIAT]
(47)
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mit den Eigenrichtungen 6, = 103,19, 6, =
203,19.

Damit werden die mittleren Fehler
my,.=m,, = 158-216mm = £3,4 mm
m,,=~m,, = 137-216mm = +3,0mm.

Die Koordinatendifferenzen in x und y sind
wegen des kleinen gemischten Elementes
—0,031 kaum miteinander korreliert; die
grosse Halbachse der Fehlerellipse fur
Koordinatendifferenzen  zwischen den
Punkten P, und P, fallt nahezu in y-Rich-
tung, und die Eigenwerte sind — wie es
dann sein muss — nahezu gleich den Ele-
menten in der Hauptdiagonalen.

Schlussbemerkungen

Die hier entwickelten Hilfsmittel der Ver-
schiebungs- und Mitverschiebungsellip-
sen beschreiben in doppelter Weise wich-
tige Aspekte der inneren Struktur eines
geodétischen Netzes (mit und durch die
Abbildung auf ein elastomechanisches
Analogon):

— Sie zeigen einmal in anschaulicher
Weise das Deformationsverhalten des
Netzes bei tatsédchlichen Verschiebun-
gen, verursacht durch Zwangsan-
schiiisse des Netzes an weitere Fest-
punkte.

— Sie zeigen andererseits in ihrer an-
schaulichen Abbildung auf ein elasto-
mechanisches Analogon die Struktur
des netzinternen Fehlerverhaltens des
geodatischen Netzes, welche sich in
der Gestalt virtueller Verschiebungen
unter Einheitskraften abbildet: Die qua-
dratischen Kofaktoren Q,,, Q,, Q, ent-
sprechen virtuellen Verschiebungen un-

nelle

ter Einheitsbelastung im betreffenden
Punkt, und die gemischten Kofaktoren
entsprechen Mitverschiebungen. Damit
sind sie ein Mass fur die Nachgiebigkeit
bzw. Steifigkeit des Netzes und fir die
Struktur des inneren Verbundes. Mitver-
schiebungen bilden unmittelbar die Kor-
relationen zwischen den ausgegliche-
nen Punkten ab.

Die (immer vorhandene) Mdglichkeit,
die Fehlerstruktur und das Fehlerverhal-
ten eines geodatischen Netzes in virtu-
ellen Verschiebungen eines elastome-
chanischen Analogons abzubilden,
lasst umgekehrt den Schluss zu, dass
z.B. bei Optimierungsaufgaben nach
entsprechender Lagerung nur solche
Matrizen (ATPA)-" als erwilinschte Ge-
nauigkeitsstruktur vorgegeben werden
kénnen und durfen, die moglichen und
sinnvollen virtuellen Verschiebungszu-
stdnden in einem elastomechanischen
Analogon entsprechen.

Schliesslich sei erwahnt, dass die hier vor-
gestellten Methoden auch zur Analyse von
Deformationsmessungen mit herangezo-
gen werden kénnen.
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