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Partie rédactionnelle
système geteilt. Vermesser und Geographen

erfahren, welche tiefgreifenden
Umwälzungen sich in ihren Wissenschaften
durch den Einsatz der Informatik ergeben.
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Azimuth transport and the
problem of orientation within
geodetic traverses and geodetic
networks
E. W. Grafarend

Mina herrar,
landmätaren mäste stämplas som plattlus,
han kan inte se i rymden därför at han inte
läser beskrivande geometri.

Gentlemen, the surveyor must be considered

a "plattlus", because he cannot see
into the space having not taken my course
in threedimensional geometry.

(R. Woxen, f.d. rektor,
Kungl. Tekn. Högskolan
Stockholm, Sverige)

Due to the variation of the local vertical, in which any local positioning system
(LPS) operates, standard formulae for computing traverses and networks, separating

horizontal and vertical control, generate model errors of the order of 10-30
cm in local regions of less than 1000 m. Here it is demonstrated that line-type
traverses are impossible for computation as long as only distance and horizontal/
vertical direction have been measured. In contrast, triangular chain-type traverses

allow the computation of the variation of the local vertical, e. g. expressed in
terms of astronomical longitude/latidude, the variation of the azimuth/vertical
direction and therefore the threedimensional rectangular coordinates in the horizontal

reference system attached to the initial point. In cases where prior information
about model longitude/latitude and the variation of vertical deflections is available,

a specific computational scheme for threedimensional rectangular coordinates
is derived. Finally rigorous threedimensional observational equations for

horizontal/vertical directions and distances within local geodetic networks are set-up.
They are expressed in terms of a horizontal reference system attached to the chosen

initial point and include three orientation unknowns like in photogrammetrie
networks, namely the conventional orientation unknown in the local horizontal
plane and the differences of astronomical longitude/latitude between the LPS
placement and the network initial point. Throughout the order of magnitude of any
effect which can be attributed to the variation of the local vertical is estimated.

1. Introduction
For the determination of local point
positions the local positioning system (LPS)
consisting of a direction measurement
system, the theodeolite, and a distance
measurement system based on electromagnetic

wave propagation (EDM) has been proven

to be most useful. Powerful software
has been developed in order to allow a
nearly online positioning. All computer
packages to be known to me from technical

reports and engineering journal
publications neglect the influence of the variation

of the local vertical for local applications.

Typical is the separation of local
horizontal and local vertical control. Horizontal
direction measurements are modelled by
the arctan-function of the ratio of horizontal

y- and x-coordinate difference, in
contrast to the vertical direction measurements

which are related exclusively by the
vertical z-coordinate difference between
target point and LPS placement. As the
distance the Euclidean twodimensional
metric, the twodimensional Pythagoras
formula is used.
We have shown in another publication
(1987) that in geodetic networks of about
500 m extension the systematic model
errors which are caused by neglecting the
change of the local vertical due to the
earth's variable gravity field will amount to
10-30 cm! Thus the set-up of LPS-obser-
vational equations has to take into account
the variation of the local vertical to which

any LPS refers by the "horizontation
procedure", the task of the present contribution.

Once the "right" observational equations

have been found and being classified
as nonlinear they can be linearized with

respect to prior positioning information in

"geometry and gravity space" and be handed

over to the standard linear adjustment
procedures.
Chapter one is therefore devoted to set-up
the computational equations for geodetic
point positioning in a traverse. With refe-
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Fachteil
Aufgrund der Variation der lokalen Vertikalen, aufdie sichdie Horizontierung eines
lokalen Positionierungssystems (LPS) bezieht, weisen die Standardformeln, mit
denen Polygonzüge und Netze im lokalen Bereich berechnet werden, Modellfehler
in der Grössenordnung 10-30 cm auf, falls das Gebiet, in dem sich das Netz
erstreckt, kleiner als 1000 m ist. Wir zeigen insbesondere, dass linienförmige
Polygonzüge überhaupt nicht ausgewertet werden können, falls ausschliesslich die
Messungen von horizontalen und vertikalen Richtungen sowie von Distanzen
vorliegen. Im Gegensatz dazu beweisen wir, dass dreieckige, kettenartige Polygonzüge

perfekt berechenbar sind, da sie gestatten, die Variation der lokalen Vertikalen,

z. B. parametrisiert durch astronomische Länge/Breite, ausserdem die Variation

des Azimutes/der vertikalen Messrichtung und damit der dreidimensionalen
rechtwinkligen Koordinaten in einem horizontalen Bezugssystem zu bestimmen,
welches dem Anfangspunkt des Netzes angeheftet wird. In solchen Fällen, in
denen Vorinformation über die sphärischen Längen/Breiten der Messpunkte sowie
über die Variation der Lotabweichungen vorliegt, werden wir eine Rechenprozedur

vorstellen. Schliesslich stellen wir die strengen nichtlinearen Beobachtungsgleichungen

für horizontale / vertikale Richtungen und Distanzen innerhalb lokaler

geodätischer Netze auf. Sie beziehen sich aufein einheitliches horizontales
Bezugssystem, welches am ausgezeichneten Anfangspunkt des Netzes angeheftet
ist, und schliessen drei Orientierungsunbekannte wie in photogrammetrischen
Netzen, nämlich die konventionelle Orientierungsunbekannte in der lokalen
Horizontalebene und die Differenz der astronomischen Längen/Breiten zwischen dem
LPS-Standpunkt und dem Anfangspunkt des Netzes, ein. Durchgehend geben wir
die Grössenordnung derjenigen Effekte an, die der Variation der lokalen Vertikalen
zuzuordnen sind.

A cause de la variation des verticales locales, verticales qui servent de référence
au calage d'un système de positionnement local, les formules standards de calcul
des polygonales et des réseaux peu étendus peuvent conduire à des erreurs de 10
à 30 cm, même lorsque la région sur laquelle s'étendent les mesures est plus
petite que 1000 mètres. Nous montrons en particulier que des polygonales simples
ne peuvent pas être traitées au cas où les mesures ne comprennent que des directions

horizontales et verticales, ainsi que des distances. Nous prouvons, au
contraire, que des chaînes de triangles sont parfaitement calculables car elles
permettent de déterminer la variation des verticales locales (verticales données par
exemple par la longitude et la latitude astronomique), ainsi que celle de l'azimut, la
direction de l'axe principal de l'appareil de mesure, et par là les coordonnées
orthogonales tridimensionnelles dans un système horizontal de référence calé à
l'origine du réseau. Dans de tels cas, lorsque des informations sur les longitudes et
les latitudes des points de mesure, ainsi que sur la variation des déviations de la
verticale sont connues a priori, nous présentons une procédure decalcul. Nous
établissons enfin des équations d'observation exactes et non linéaires pour les
directions horizontales ou verticales et les distances à l'intérieur d'un réseau local.
Elles se rapportent à un système de référence horizontal dépendant du point
origine du réseau et à trois inconnues d'orientation comme en photogrammetrie,
c'est-à-dire l'inconnue d'orientation conventionnelle dans le plan horizontal local
et les différences de longitude et de latitude astronomiques entre le lieu de station
du système de positionnement local et l'origine du réseau. Nous donnons finalement

l'ordre de grandeur des influences qui dépendent de la variation des verticales

locales.

rence to the Appendix it is proven that line-
type traverses are impossible for computation

if no prior information but the actual
LPS observations is available. In contrast
we prove that triangular chain-type traverses

allow beside the computation of
positions the determination of the local vertical
variation, namely the variation in azimuth
and vertical or the variation of astronomical

longitude and astronomical latitude.
On the other side if prior information of the
variation of the local vertical is available,
say in terms of variation of model longitude
and latitude and the vertical deflection
components, any type of traverse is ready

for coordinate computation. (The variation
of the vertical deflection vector is proportional

to the second derivative of the gravity
disturbing potential. Thus a triangular LPS
can be considered a gravity gradiometer.)
In chapter two we finally set-up the "right"

x x + r „ cosa „ cosß „ + r
Y a aß aß 'aß ßy

y y + r 0 sina „ cosß „ + r„Y a aß aß aß ßy

nonlinear observational equations for
direction measurements of horizontal and
vertical type and for threedimensional
distance measurements, namely in a horizontal

reference system attached to the
network initial point. We emphazise that in
local geodetic networks there appear - like
in photogrammetrie networks - three
orientation unknowns which describe the
variation of the LPS horiziontal reference
triad from point to point. These orientation
unknowns are the conventional theodolite
orientation unknown in the horizontal
plane being referred to South and the
differences in astronomical longitude and
astronomical latitude between the initial
point and the LPS placement.
Throughout we have tried to color the
various equations by numerical examples. To

some extend the contribution is a follow-
up of my others (1975, 1981, 1985 and
1987). Here we have concentrated on the
azimuth variation and the problem of orientation

of a geodetic traverse and a geodetic

network. R. Conzett has dealt with the
threedimensional orientation problem in

the report by R. Conzett and E. Frei (1985);
he focussed on the LPS in the publication
by R. Conzett and R. Scherrer (1985) and
on the condition equations in geodetic
networks in the publication R. Conzett (1985).

2. Geodetic traverses
For local positioning traverses play a central

role, namely in inertial positioning. In

surveying they are used in a line-type
structure as outlined in Figure 1. Conventionally

the Cartesian coordinates of

points in a traverse are computed according

to

where (xa, ya, za) are the coordinates of
the initial point Pa, aaß the initial azimuth
and ßaß the initial vertical direction of the
line PaPß - here measured from the
horizontal plane and being complementary to
the zenith distance -, raß the initial
threedimensional or Euclidean distance of the
line PaPa-ln contrast (aaßy, ßaßy)are tne
horizontal, vertical, respectively, angles
measured at the point Pß between the
lines Pß Pa, Pß Pyi ray denotes the
distance of the line Pß Py. (xy, yy, Zy) are the
coordinates of the point Py, here arbitrarily
being chosen. Conventionally raßcosßaß,
rßycos (ßaß + ßaßy) are called horizontal
distances of the lines of sight PaPß, pßpy>
respectively, while raßsinßaß, rßysin
(ßaß + ßaßy) are referred to as heights.
We have outlined in the Appendix that

sin(V%Y)C0S(V<W (1-2)

z z + r a sinß „ + r„ sin(ß
Y et aß Haß ßy a fi aßY'

1.3]
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Figure 1: Line-type and triangular
chain-type traverse (the line-type
traverse does not allow a threedimensional

computation in contrast to the triangular

chain-type traverse)

Rp(A ,<t> )r'(A ,<)>t y Y E a a

(A r;a

RfU„.*y>*e<VV

Figure 2: Commutative diagram of
three orthonormal triads of horizontal
type in a triangular traverse

once we take up the real local horizontal
reference system as the true one being
materialized in a theodolite or in a local
positioning system (LPS) the formulae
(1.1), (1.2) and (1.3) can no longer be
applied. They are systematically being wrong
due to the very nature of the local horizontal

reference frame to change from point to
point. Instead the above operational equations

have to be replaced by (A20), (A21)
and (A22): Beside the initial azimuth aaß
there appear now also the variations (Aa,
Aß) of the local vertical!

2.1 Geodetic traverses without other
information
In case just distances and horizontal/vertical

directions are measured by a LPS in a

line-type structure of a traverse we are
unable to compute the coordinates

a a a
(x ,y ,Z

Y Y Y

in the local reference frame e*

of horizontal type attached to the initial
point, even if we assume the initial values
for the azimuth aaß and the vertical direction

ßaß to be known. The changes (Aa,
Aß) of the local vertical cannot be determined:

With any new point in a line-type
traverse we introduce two additional
unknowns (Aa, Aß)!
What can we do in order to overcome this
situation?
The solution is simple: We have to change
the geodetic traverse from line-type to
triangular chain-type as we have illustra¬

ted in Figure 1. The result that now the
variations of the local vertical (Aa, Aß) are
estimable will now been proven. We
depart from the commutative diagram of

Figure 2 where the three horizontal frames

at the points Pa, Pß and Py are connected.
(All definitions are taken over from the
Appendix.) From the commutative diagram
we road

e* - 2* RE(V*X<WS* {I + A( W}** (1.4)

I* + e* re(xy,^)rJ(ap,*p)!* {I + AU^,*^)} I* (1.5)
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e* RC(A ,« )r!(A ,+ )ê* {I + A(A ,* )} e*
E y y E Y a ay ay

where I is the unit matrix and A an
antisymmetric matrix given by (A9) and once
we have taylorized the Eulerian rotation
matrices close to the identity. From the
connection matrices we pick up the identities

up to terms of second order 02

:i.6)

d + MA^.^HI + A<Aaß,4ae)} d + *<VV>
I A^ßy>V + A(W + °2 l + «VW
Xaß Sin*a + Aßy Sin*ß Aay SÌ"*a

'aß yßy

(1.7)

(1.8)

(1.9)

(1.10)
'ay

or

A
D

+ A„ A
aß ßy ay "aß Yßy ay (1.11)

Thus the commutative diagram has led us
to two constraints (or holonomity equations)

which will help the estimability of
(Aa, Aß). To this end we take advantage of
the transformation (A10), (A11) (AA, AO))

-» (Aa.Aß), namely its inverse

Aaß aaß Aaaß + baß Aßaß

*«ß Caß Aaaß + daß Aßaf

(1.12)

(1.13)

or

aß

Kaß

aß

"aß

aß

aß

Aa
aß

Aß.

(1.14)

tanß „cos* +cosa „sincòKaß a aß a

¦cosa
aß

+sina „tanßaß afi

-sina Ocos<j> -cosa 0tanA „cos<j>
aß a aß aß a

-sirict)

Aa
aß

Aß
aß

or

Vermessung, Photogrammetrie, Kulturtechnik, 7/88 317



Partie rédactionnelle

3aß "

baß

Caß

daß

cosa „aß
tanß „cose +cosa „sin*aß a aß a

sina „tanß „aß aß
tanß „cos* +cosa „sin*aß a aß a

sina „cos*aß a
tanß „cos* +cosa „sin*

aß a aß a

C0SaaßtanPaßC0SVSin$a

tanßaßC0S$a+C0SaaßSin*a

(1.15)

Finally the two constraints (1.11) can now
be transformed into variations of the
azimuths and vertical directions:

A
a

+ A„ A
aß ßy ay aß *ßy "ay

a Aa + b Aß + a Aa + b„ Aß„ a Aa + b Aß
aß aß aß paß ßy ßy ßY ßY ay ay ay pay

C Aa + d Aß + C Aa + d Aß„ C Aa + d Aß
aß aß aß paß ßy ßy ßY PßY ay ay ay pay

(1.16)

(1.17)

The two constraints (1.16), (1.17) contain
three unknown variations Aaaß, Aaßy,
Aaay of the azimuths since the variations
of the vertical direction are determined
directly from measurements, namely Aßaß

ßßa - ßaß. Aßßy ßyß - ßßy, Aßay
ßya _ ßay- Therefore we are missing one
additional constraint (or holonomity condition).

Since we are working in a
threedimensional Euclidean space, there are
three holonomity conditions, for instance

a a a
södx 0 0dy 0 0dz 0 (1.18)

In order to find the missing third constraint
we recall the definition of horizontal angles
(A12),

a „ -a „ a„ - a„ a„ - a „ - Aa
aßy yßa ßy ßa ßy aß aß

a„ =-a „ a -a„=a -a„ - Aa
ßya ayß ya yß ya ßy ßy

a „ -a„ =a„-a =a„-a -Aayaß ßay aß ay aß ya ya

(1.19)

which leads us to

a„ +a„ +a „=-(Aa„+ Aa„ + Aa
aßy ßya yaß aß ßy ya

:i.2o)

-yw]mW:MMM%y::5
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The sum of the horizontal angles in a
triangle equals the sum of azimuth variations.

We refer to the sum of horizontal
angles as the "horizontal excess": Once
the azimuth variations vanish, so does the
sum of horizontal angles. (Due to our
peculiar definition of horizontal angles they
do not sum up to 180°). Note that Aoya
Aaay holds. The three constraints (1.16),
(1.17) and (1.20) are finally written in the
matrix form

Fachteil

-a - a„ - a „aßy ßya yaß

b Aß - b „Aß „ - b„ Aß„
ay "ay aß Haß ßy ßy

d Aß - d Aß „ - d„ Aß„ay "ay aß paß ßy Hßy

aß ßy ay

aß ßy ay

Aa
aß

Aa
ßY

Aa
ya

:i.2ii

From the inversion of (1.21) we directly
derive the azimuths variations.

Aa
aß

1 1 1 -1 -a - a„ - a „aßy ßya yaß

—,

Aa„
ßY aaß %Y a

ay
b Aß - b „Aß -
ay ay aß aß bßY&ßßY

Aa
ya

c „aß CßY c
ay

d Aß - d 0Aß „ -
ay ay aß aß VßßY

(1.22)

In summarizing we can make the following determined they are used to compute the
statement: variations of the local vertical, namely the
Within a triangular chain-type traverse we variations in astronomical longitude and
are able to compute station coordinates astronomical latitude according to (1.14).

according to (A20), (A21 (A22) where the A numerical example illustrates the coordi-
azimuth variations are computed from nate computation in a triangular chain-
(1.22) and the variations of the vertical di- type traverse,
rection are directly determined from fore-
ward and backward vertical direction
measurements. Once the variations of the azi- Example 1

muths and vertical directions have been input

aß
45e

b „ 6°7, Aß 0 -0.25"
aß ' "aß

ßy
1290, Aß„ -0.25"

ßY

¦1.21 * 10 RAD

-1.21 * IO"6 RAD

ya
-1396, Af

ya
+0.25" ~ +1.21 * 10 RAD

489783

Yßa

ßay

horizontal angles

270° + 0.75",
ayf

-599036,243 - 0.5"

1499036,243 + 0.5"
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inner triangular angles

it - a „ -90
Yßa

_Qno _ 0.25", it - a „ 309963,757 - 0.5"
ayß

it - aD 2399036,243 + 0.5"
ßay

sum of inner triangular angles
180°-0.25"

horizontal excess

a r,
+ a„ + a -0 25" - - 1 21 * 10~^ RAHaßy ßya yaß cl iu Kmj

output

aaß - 1.160,515,8

baj5 + 0.136,329,2

caß - 0.764,678,5

daß - 1.324,384,6

ao "'= - 1.804,565
ßY

ßY
0.383,572

C„ + 1.666,954
ßY

(here the following approximations have
been used:

cosa„ cos(a „ * a „ tanß. cos*„ßy aß aßy" Kßy ß
tanß„ cos*

ßy a

a - 1.700,953
ay

b + 0.102,876
ay

c + 0.280,195
ay

d - 1.047,723
ay

(here, note cosa cos(a „ + a„ and the approximation
ay aß ßay rr

tanß cos* tanß cos*
ay a ya a

:(1.22):

Aa

Aa
ßY

Aa
ya_

2.611 *

1.517 0.909 0.104

1.626 1.045 0.540

-2.760 -1.954 -0.644

1.21 * IO"6 RAD

-0.42 * IO"6 RAD

1.68 * IO-6 RAD

We have explicitly written the factor
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aß

'aß

ßY

'ßY

ay

ay

1

2.611 0.383

which is the inverse of the determinant we
have to invert within (1.22).

Aaaß 4.25 * IO"6 RAD - 0.9"

Aaß^ 6.37 * IO-6 RAD ~ 1.3"

AV ~9-41 * 10~6 RAD ~ _1-9"

Aa + Aa„ + Aa a „ + a „ + a„aß ßy ya yßa ayß ßay

"(a D
+ a„ + a 0.25"aßy ßya yaß'

At the end we depart, in addition to the
horizontal and vertical direction, from measured

distances

r s 42.720 m r. 72.284 m r 84.853 m
aß ßy ya

in order to compute the coordinate
differences

a a
- + 30 m x„ + 50 m x - 80 m

ßy ya

+ 30 m

+ 5 m

ßY

a
50 m y + 20 m

+ 15 m z
ßy ya

20 m

2.2 Geodetic traverse with prior
information

In the previous paragraph we have
demonstrated that line-type traverses cannot

be computed from LPS-type measurements

since we have no information about
the variation of the local vertical available.
Another situation is met once we get exter¬

nal information about the variation of
azimuth and vertical direction, e.g. from a
computation based on vertical deflection
(ôA,ô0) according the threedimensional
Laplace condition as we shall outline now.
In order to simplify the notation we write
only in this paragraph real quantities by
capital letters, their model approximations by
small letters, e.g.

Aaß aaß
+ 6aaß

Baß ßaß + ^aß

A A + ÔA
a a a

$ * + 6*
a a a

X x + Ax
a a a y + AX Z z + AZ

a a a a a

(1.23)
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The astronomical azimuth is additively de-
comped into the model azimuth aaß, also
referred to as the geodetic azimuth, and
the azimuth disturbance oaaß. Or,
astronomical longitude is additively decomposed

into the model longitude, also called
geodetic longitude A, and the longitude
disturbance, the vertical deflection component.

Note that geodetic longitude and
geodetic latitude are as spherical coordinates

of the model gravity vector

grad w

related to its rectangular coordinates by

A arc tan y /y'y 'x (1.24)

\hl +
Yyf

where w denotes the model gravity
potential, also called "normal potential". In its
most simple, the spherical form it is
represented by

gjTi

3w gmv — — J— yYi 3x. 3 xi
i r

(1.25)

(1.26)

gm represents the product of the gravitational

constant and the earth's mass.
Within this model choice we derive

A arc tan y/x (1.27)

n—r* -arc tan z/|fx + y

-f2 2 ^ 2
+ y + z

defines the radial distance of the earth's
centre from the topocentre of an LPS. (x, y,
z) (x*, y*, z") are the topocentric coordinates

in the equatorial frame of reference
ev Once (x, y, z) - prior coordinate
information is available we are able to compute
spherical longitude and latitude of the local
vertical! For instance, we can read (A, 0))
from a spherical map where we have located

the topocentre. In a similar way we can
compute the geodetic azimuth and the
approximate vertical direction

a „ arc tan y*„/x*„ arc tan
aß °aß aß

-sinA xV + cosA y*
a aß aJaß

cosa sin* xV+sinA sin* y* -cos* zV
a a aß a a aß a aß

ßgß arC tan z* /i/x*2 + v*2
aß'« aß ^aß

arc tan
cosA cos* xV+sinA cos* yV+sin* zV

g a gß g g aß g gß

\KcosA sin* x*„+sinA sin* y,„-cos* z*„) +(-sinA x*„+cosA y*„)
y g g gß a g aß a gß a aß a aß

(1.28)

Where (Xaß'yaß'Zaß} (X#ß " Xâ • A " K 'Z#ß " Za>

are the relative equatorial coordinates in a
spherical approximation of the model relative

position vector

-aß-

For instance, in spherical coordinates

(xaß'yaß'zaß]

allow the standard representation

x* r„cosA„cos*„ - r cosA cos*
aß ß ß rß a a Ta

y* r„sinA„cos*„ - r sinA cos*
aß ß ß Tß a a Ta

z" rDsin*„ - r sin*aß ß Tß a Ya

being mainly used in "geometric geodesy"
(Vermessungskunde).
Finally we are going to relate to disturbances

of the azimuth oaaß and the vertical
direction 6ßaß to the disturbances of
astronomical longitude 6Aa and astronomical
latitude 60)a via the threedimensional
Laplace condition (for a derivation let us refer
to E. Grafarend and B. Richter [1977])

Sa „ -(cosa „ tanß „ cos* + sin* )6A
aß aß aß a a a

- sina „ tanß „ 6*
aß aß a

6ß „ sina „ COS* SA
aß aß a a

cosa „ 6*
aß a

(1.29)

(1.30)

(1.31)

or in matrix form
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6a
aß

6ß
aß

("D
cosa „tanß „cos* + sin* sina „tanßaß raß a a aß 'aß

¦sina „cos*aß Ya cosa
aß

ÔA

6*

(1.32)

which looks formally similar to (A10), (1.32), respectively, to calculate the distur-
(A11 but of course with different contents. Dances of the azimuth ôa and the vertical
In conclusio, when the vertical deflection direction oß.
components öAcosdO, 60) are available We are left with the problem to compute
from a map or can be computed by a pro- the variations
gram we are then able via (1.30), (1.31) or

AAaß Aßa " Aaß V " aaß
+ 6(Xßa _ 6<Xaß

aBaß Bßa - Baß ßßa " ß«ß + %* ' 6ßaf

(1.33)

of the real azimuth and the real vertical di- mation (1.29) we obtain the important re-
rection. Namely in the spherical approxi- suit that

AA „ Aa „ + 6a„ - 6a a + a„aß aß ßa aß aß ' ßa

AB
aß

(1.34)

Af5aß + %* - ^aß > ^ * Pßa

the variation of the real azimuth and the
real vertical direction is the sum of the
variation of the spherical azimuth and the
spherical vertical direction plus the
difference of the disturbances of azimuth and
vertical direction or via (1.32) can be com¬

puted from the difference or changes of
vertical deflections oAß - ôAa, oG)ß - ô0al
Within the above framework of approximation

and representation we rewrite the
fundamental geodetic traverse equations
(A16) and (A17) by

A. A + I A, + I A(Aa. + 6a.)
ì j-l.j.j+l j=1

Bi * Bo + £ BJ-iJJ*l + £ «"* + **i

(1.35)

where Ao is the initial azimuth, Bo the
initial vertical direction, Aj-ijj+1 the
horizontal angle (Brechungswinkel) and

Bj-ijj+1 the vertical angle from the LPS-
topocentre Pj to the target point Pj_i and
Pj+1 within a line-type traverse. Aòaj
ôaj-ôaj_-|, Aoßj 5ßj - oßj_i denotes
the incremental variation of azimuth/vertical

direction which can be replaced via the
three-dimensional Laplace condition
(1.32) by incremental variation of longitude
ôAj-ôAj_i and latitude O0)j-o0)j_i. Similarly

(A20)-(A22) could be rewritten.
A basic question would be how accurate

the information of vertical deflections
would be needed. Especially the bias
problem within prior deflections of the vertical
is open for investigation, a future task.
An example, also including "trigonometric
height determination" might be useful at
the end.

Example 2

(trigonometric height determination):

Once we introduce the additive decomposition

of the change of the local vertical
into a model (or normal) part and disturbing

part, the height difference

ßY

between a point Pß and a point Py in the
reference system E*(Pa) of horizontal type

attached to the point Pa can be represented

from (A22) by

Vermessung, Photogrammetrie, Kulturtechnik, 7/88 323



Partie rédactionnelle
::: -. a y yyy

a a a
Zck z " Z. R„ sin B„

ßY Y ß ßy ßy

+ * „ RD cos(A „ + A „ cos B
aß ßy v

aß aßy' ßy
:i.36)

A cos* R„ sin(A „ + A „ cos B
aß a ßy v

aß aßy' ßy

where

fi + 6*„ - SA
a ß Ta

Z Z

arc sin J=- - arc sin 5^ + S*„ - 6*
H„ K Saß a

A A„ - A + SA - SA
aß ß a ß a

arc tan

n — arc tan + SA. - 6A
Z~s7T ß al/x'^+Y*

V a a

:i.37]

is the difference in latitude and longitude,
respectively.

denote the prior rectangular coordinates of
the point Pa and Pß in the equatorial frame
of reference E*. Once the arc sin-function
within (1.37) is taylorized we meet a
formula which corresponds to a known one in

"geometric geodesy" (Vermessungskunde).

Instead (1.36), (1.37) compromize
the exact equations up to first order. Note
that the difference in latitude and longitude
(1.37) includes the differences in the vertical

deflections between the point Pa and
Pß. Let us summarize the observations
and the prior information quantities being
needed for the computation of local height
differences
a
Z„ :

(i) the distance Rßy and the vertical di¬

rection Bßy as well as the horizontal
angle Ayßa from the point Pß to the
target point Py and the initial point Pa
have to be measured;

(ii) the azimuth Aaß of the initial direction
has to be known (or to be determined
by a South seeking gyroscope or by
star observations);

(iii) prior rectangular coordinates of the in¬

itial point and the LPS location in the

equatorial frame of reference have to
be known in order to be able to compute

the model longitude and latitude
differences;

(iv) the vertical deflection components
have to be known with respect to a
spherically symmetric gravity field
between the initial point and the LPS
location.

Similar to the above representation of
(A22) for the vertical control in (1.36),
(1.37) the formulae (A20) and (A21) can be
transformed for the horizontal control.

3. Geodetic networks
In part one we have shown that line-type
structured polygon traverses are impossible

as long as we have no other information

about the variation of the gravity field
available. Instead we have emphasized
that triangular chain-type polygon traverses

can be computed without any other
information. Once we move over to local
geodetic networks we have to remember
this fundamental result from geodetic
traverses. Indeed triangular chain-type
traverses have a network structure of band
type. It is therefore not difficult to set-up
observational equations in the most general
form, say for direction and distance
measurements of the line PßPy, but whose
reference coordinate system is attached to
the initial point Pa.
The spherical coordinates of the relative
position vector
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~ßY'

the horizontal direction tßy aßy - aß - a (complement of zenith distance) and the
denotes the horizontal orientation un- distance rßy in vacuo are related to their
known - the vertical direction sßy ßßy rectangular counterparts

,ß ß ß

(VyßY'V
in the horizontal frame of reference

t. a„ßY ßY

ß ß
a arc tan y„ /x„

ß JßY ßY

ß

'ßY Vß2
ß2

>C + y„ßy Jßyrfl

¦fljvi2 +52 +I2
ßy |/ Aßy yßy ^ßy

(2.1)

In order to be able to compute the network
in the coordinate system of the initial point
Pa, the horizontal frame of reference

we have to apply to the transformation

°L ß
e* -* e*

according to (1.4) which leads us to

ß a
ßY

1 A „sin* * » x„aß Ta aß ßY

ß a
yßY — -A „sin* 1 -A „COS* y„aß Ta aß Ya JßY

ß a
ZßY "*aß 1 _v

(2.2)

once we assume that the parameters neral form of the LPS observational equa-
which describe the change of the local ver- tions expressed in the chosen reference
tical, namely (A,0), are close to the identity, frame
(2.1), (2.2) combined give us the most ge-

at the initial point Pa:

'ßY

a a a
-A .sin* x. +y„ -A „cos* z„

arc tan -SÊ a PT ^ *P !çs_§l

arc tan

a a
x„ +A „sin* y„ +* „z„ßy aß Vßy ¥aß ßy

"aßXßY+XaßC°S<i,ayßY+ZßY_
'ßy ""* -"",7Ô2" ag a 3 ff

1/x +v -2A
ßy yßy a

/Ct1"

l/xo +yo "2A Dcos* y0 zD +2* „x„ z„|f ßy Jßy aß YaJßy ßy yaß ßy ßy

/ap ap a?
r =1/X + v + Z

ßY 1/ ßY yßY ßy

(2.3)
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tßT arc tan ö11 - °f
XßY

a a
x„ zr

(sin*a +
a2 a2
a9^a9T cos*JA
X +v

ßy yßy

ßjLs arc tan -^
x +v

ßy 7ßy

gX.
a2 a2
X +v

ßy *ßy

COS* A „a aß

a a
y„. zfr fr

a' aß a2 «2
X +v

ßy 7ßy

EL
a2 a2
X +v

ßy *ßy

ßy

a2 a2 a2
X + V + z

ßy *ßy ßy

*aß

(2.4)

ßaß (measured from the horizontal plane,
complement of zenith distance) such that

r cosa „ cosß „aß aß aß

„ r „ sina „ cosß
aß aß aß ap

(AI)

aß
'- raß Sln^aß

holds. The superscript a indicates that the
coordinate differences xaß := xß - xa,
yaß: =yß-ya.Zaß:=zß-za with respect
to the horizontal triad

refer to the reference frame at the point
Pa. Correspondingly, the reverse relative
position vector

-ßa -aß

Within the range where local networks
apply we can consider the changes of the
local vertical Aaß, Q)aß as small. Thus we
are permitted to taylorize (2.3):

Obviously, the distance in vacuo is
independent of the choice of the reference
system, here of its orientation and origin. In

contrast, the direction observations
depend on it. The observational equations for
horizontal and vertical directions contain
three orientation unknowns, namely the
conventional orientation unknown oß in
the local horizontal plane between "zero"
of the LPS's horizontal circle and South of
astronomic type, and the differences in
astronomical longitude Aaß and astronomical

latitude (J)aß between the initial point
Pa and the point Pß of LPS's placement. In

addition, the coordinate differences

a a a
(xßy'yßY'ZßY!

between target point Py and set-up point
Pß of the LPS appear as unknowns. Further

linearization with respect to approximate

placement coordinates is standard
and will not be presented here.

Appendix:

Transport of horizontal and vertical
directions
Once we assume that the geodetic line of
sight within a local positioning system
(LPS, theodolite with EDM equipment)
has been reduced to its Euclidean standard

(refraction, instrumental errors,
station-reference-point), then we can represent

the relative position vector

-aß

from the standpoint *a

to the target point Xß

with respect to the local horizontal triad
{ south, east, vertical}

«¦ll* '?2* » ~2>*>

by spherical coordinates distance raß,
south-azimuth aaß and vertical direction

can be represented by

ß

Xßa " - r„ C0Sa„
ßa ßa

cosß„
ßa

ß

yßa - r„ sina„
ßa ßa cosß„ßa (A2

ß

Zßa - r„ sinß.
ßa ßa

a
§3*

ß

§3*

\ 1 "-^
\ /\/ / ß

a

x \ e\ A

// -7Z^v/sr

Figure A1 : Moving versus fixed frame of reference (moving: e*
e*, equatorial)

horizontal, fixed:
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e* east
M

e„* vertical

e,.

a 3

X
~a

11 X

south

x „II
-aß

horizontal

e„4 east

e.,,/ ^3

p south

-ßa

ga

e„a. vertica

/-3

ßa

horizontal

II x_ II

-ßa

Figure A2: Horizontal and vertical projection of the Euclidean line of sight at
points Pa versus Pß, horizontal aaß, aßa and vertical ßaß, ßßa directions

indicating that the coordinate differences

xßa := xa - xß, yßa := ya - yß. zßa := za
- zß with respect to the horizontal traid

now refer to the reference frame at the
point Pß. Figure A1 and A2 illustrate how
we have defined the spherical coordinates

«aß, ßaß. «ßa. ßßa of the direction sight

-aß

where

lx J|
aß

aß
IIX „Il
~aß

is the Euclidean standard distance. They
have been chosen in such a way that they
always parametrize

~3 ~aß -aß

and that

aaß aßa. ßaß ßßa holds if there is no
change of the local vertical e.,*

and of the horizontal directions

a ß
In general, of course, x ± - 5

aß ' ßa

etc. (but x
aß

a
-x ßa' Xaß -x

ßa

etc.) has to be taken into account, an effect
which is due to the moving frame e* x

e'

\{W/ \RE(W

a
e* ß

RE(VVRfï(V*a>
e*

Rtr(a „,ßE aß'paß' Rr(a„ ,ßEv ßa'pßa'

< < r

;. r3m |,

Figure A3: Commutative diagram of orthonormal triads (moving: e*, horizontal,
fixed: e*, equatorial)

According to Figure A3 we introduce the
commutative diagram of reference frames,
where a ß

e*, e*

are moving with respect to the fixed equatorial

frame {Greenwich direction in the
equatorial plane, orthogonal to Greenwich
in the equatorial plane, direction of the
terrestrial rotation vector)

(Si-.S2-.S3*>-
All reference frame are chosen orthonormal

such that they are connected by Eule-
rian rotation matrices Re (a, ß, y) :=

R3(y)R2(£ ß)R3(a) R3(Y)

indicates a rotation around the 3-axis by
an angle y etc. The observation triad e' is
defined by

~3' " ~3' x ~ r~aß aß

and the connection of

a
i1 f Si'» S2' t s2>

to the horizontal frame, such that

e' R3(h)e'.
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We have to mention that the spherical movement of the local horizontal triad e*
coordinates of the gravity vector, also cal- with respect to the global earth-fixed equaled

astronomical longitude A and astrano- torial triad e*as indicated in the commu-
mical latitude 0), describe the directional tative diagram.

From the commutative diagram we read

e* - !* RE(y*ß)RE(Aa,*a)e* R2(f - V^V^^f " V** <A3>

e* -> i* ¦ RE(V,ßßa)R3(C)RE(aaß,ßaß)e* (A4)

or

RE(aßa'ßßa)R3U)RE(aaß^aß) ¥Xß '*ß»RE( V»J (A5)

or

R3(Ç> " RESa> V^^'V^V^Kß'V
Now let us assume

(A6)

A A +A=A +AA,
ß a aß a

t, + * * + A**a *aß ya y

where G)A, A0 shall be small such that

cosA„ - cos(A +AA) cosA cosAA - sinA sinAA cosA - AA sinA (A7)
ß a a a .a a

sinA„ s sin(A +AA) sinA cosAA + cosA sinAA sinA + AA cosA (A8)
ß a a a a a

holds close to the identity. The connection
matrix

REUß,*ß)RE(Aa,*a)

1

¦AAsin*
c

-A*

+AAsin*
o

1

+AACOS*

+ A*

-AACOS*
c

1

(A9)

consists of the sum of the unit matrix and ßßa ßaß + Aß and apply (A7), (A8), e. g.
an antisymmetric matrix. Inserted into (A6) for the elements (3.1 and (3.2) of R3(h) af-
it leads us to a similar formula once we de- ter a tedious computation,
compose analogously aßa aaß +Aa,

Aa -(cosa „ tanß „ cos* + sin* )aa -
aß aß a Ta

- sinaaß tanßaß A*

Aß sina „ cos* AA - cosa „ A*
aß a aß T

(AIO)

(All)
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For the partisans of physical geodesy we
better mention that (A10), (A11) is similar
to the threedimensional Laplace condition
whose contents is, of course, different.
For geodetic traverses and geodetic
networks we need only a slightly more general

computation. Once we have identified
the origin of the coordinate system, e.g.
Pa as the initial point, the reference directions,

e.g. the horizontal direction aaß of
azimuth type and the vertical directions
ßaßi ßay of the relative position vectors

ayßa V " aßy' ßYßa ßßa " ßßy

for the horizontal and vertical angles, or

aßy V + aaßy' ßßy ßßa + ßaßy '

ttßY a + a + Aa
aß aßy

"fr" ß + ß + Aßpaß paßy p

(A12)

(A13)

(A14)

(A15)

-aß' ~ay!

and the scale, e.g. the length

~aß aß

of the relative position vector x
aß

- in short, we have decided upon an S-ba-
sis - we have to look into the horizontal
and vertical directions of the other lines of
sight. According to Figure A4 we place the
local horizontal triad

at the point Pß and measure "backwards"
to the reference point Pa and "forewards"
to the point Py. Note that we have defined
the directions aaß, ßaß. aßa, ßßa both at
the point Pa and Pß by e3,

a
e 3' e3"

This type of definition is for two reasons
helpful : (i) It avoids any factor n in the
computation (see standard textbooks for a
more cumbersome notation once we refer
to two dimensions or see P. Teunissen
(1985 p. 52 [2.52]) for a threedimensional
approach); (ii) the transport equations of
horizontal and vertical directions are
formally the same. Finally from Figure A4 we
read

In other words, we have found that the
azimuth (alternatively: vertical direction) of
the side

-ßy

is determined by

(i) the azimuth (alternatively: vertical di¬

rection) of the side

x „~aß

(ii) the horizontal angle (alternatively: ver¬

tical angle) between the sides

V' ~ßy'

(iii) and the change of azimuth (alternati¬
vely: vertical direction) from reference
point xr -a.

to the point x ¦

i i
a.

1 a„ + E a. 1
+ S Aa.° j=1 J-1,3,3+1 j=1 J

i i
ßi Bßo + ji1ßM.jj*i +

J;1Ä«ij

In turn, the changes of azimuth Aa and of

vertical direction Aß are caused by the

changes of the local vertical as expressed
in terms of AA, AO) according to (A10),
(A11) which are due to gravity gradients.
Once we enlarge the geodetic traverse, for
instance, azimuth and vertical direction
transport is mastered by the equations

where we have used the condensed notation

of a double index into one: a0 indicates

the azimuth of the side P0Pi (alternatively:

the vertical direction), Pj_-|PjPj+i
(alternatively: the vertical angle) and Aaj
the azimuth variation at the point Pj
(alternatively: variation of the vertical angle).
The index i runs 1,2 n-1 where n is the
total number of points Pn within the geodetic

traverse.
With the equations of transport (A15),
(A16) we have described the first effect of
the influence of the local gravity field on
the horizontal reference frame. Usually the
terms Aaj, Aßj or, equivalently, AAj, A0)j,
the changes of astronomical longitude/latitude,

are neglected. A numerical example
might illustrate the seize of the first effect.

(A16)

(A17)

local vertical local east
.P

J 1
ß

H* / I 1 3

?2*

i I /

^ P

y"^ a

i

^Y
P

^y a

(ßYßy- '%^ ß

local
ßßa

* '
horizontal V ^* K local south

Figure A4: horizontal and vertical angles in a local horizontal triad
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Example A1 :

A
0 1" ~ 4.85 * IO-6 RAD

-0.5" ~ 2.42 * 10 -6
RAD

i.783° (Stuttgart)

a 0 0°, ß „ 0°
aß ' 'aß

Aa -Sin* A „a aß
-0.75* -3.65 * 10 RAD

Aß -* +0.5" +2.42 * 10 ° RAD
aß

Example A2:

A 25" ~ 12,12 * 10 3
RAD

aß

Kaß
-15" -7,27 * 10* i «v~5

RAD

48.783° (Stuttgart

a „ 0°, ß „ 0°
aß ' paß

Aa

Aß

,-5•sin* A _ -18.8" -9.12 * 10"" RAD
a aß

+15" +7.27 * 10 RAD

The examples show that in spite of a
South/horizontally orientated relative point
placement there are most notable changes

in the azimuth and the vertical direction.

The second effect we are going to
describe now has to do with the coordinate

changes when computed in the local
reference frame of horizontal-vertical type.
As can be read from the commutative
diagram of Figure A3 (coordinate differences
transform like base vectors or triads) the
coordinate differences transform from the
frame ß

into the frame %

by

a
X*
XßY

a
y*yßY

a
z*

ßY

¥V*a>RÊ<VV

ßY

'ßY (A18)

or

ßy Xßy - Xaß SÌ% yßy " *aß Zßy

y* A „ sin* x* + y* + A „ cos* z„ßy aß ^a ßy Jßy aß Ta ßy

-Î <t> „ x* - A „ cos* y* + z*
ßy Taß ßy aß ya Jßy ßy

(A19)

330 Mensuration, Photogrammetrie, Génie rural, 7/88



Fachteil
(A19) as an approximation of (A18) close
to the identity expresses that the coordinates

of the relative position vector

*ßy

have to be transformed from the frame

g* to the reference frame a*

The transformation is necessary since the
observed spherical coordinates rßy, aßv,
ßßy or, equivalent^, the horizontal aaßy
and vertical ßaßY angles refer to the local
triad

k
but the holonomic coordinate computation
is only admissible in the chosen (and then
fixed) reference frame

at reference point Pa. Thus, in toto,
summarizing the two basic effects we have
discussed here lead to the coordinate computation

(in the

g* -frame; the star "*" has been neglec¬
ted)

We end up with an example for the second
effect.

a a
x x + r „ cosa „ cosß „ +

y a aß aß aß

+ r cos(a + a + Aa)cos(ß + ß + Aß)
ßy aß aßy aß aßy

- A sin* r„ sin(a „ + a „ + Aa)cos(ß „ + ß „aß a ßy aß aßy aß aßy

- * „ ro Sin(ß „ + ß
Q

+ Aß)
aß ßy aß aßy

y y + r sina cosß +
Y a aß aß aß

+ A sin* r„ COS(a „ + a „ + Aa)cos(ß „ + ß „aß a ßy aß aßy aß aßy

+ r„ sin(a „ + a „ + Aa)cos(ß „ + ß „ + Aß)
ßy aß aßy aß aßy

+ A cos* r„ sin(ß „ + ß 0
+ Aß)

aß a ßy aß aßy

a a
z z + r „ sinß „ +

y a aß raß

+ * „ rD C0S(a „ + a „ + Aa)cos(ß „ + ß „ + Aß)
aß ßy aß aßy aß aßy

- A cos* r„ sin(a + a + Aa)cos(ß + ß
aß a ßy aß aßy aß aßy

(A20)

+ Aß)

(A21)

+ Af

(A22)

+ Af

+ r„ sin(ß „ + ß „ + Af
ßy "aß Maßy

Example A3 A „ 1" - 4.85 * IO"6 RAD
aß

aß
-0.5" ~ 2.42 * 10 " RAD

* 48.783° (Stuttgart)
a a a
x„ 50 m y„ -50 m z„ + 15 m

ßy -"ßy ßy

ß

XßY

ß

yßy

ß

ZßY

-A „sin*aß a

"aß

+A „Sin*aß a

+A „cos*aß a

+*
aß

-A „cos*aß a

a
XßY

a
Yßy

a
ZßY

— -J

-3.65 * 10

+2.42 * 10
-6

+3.65 * 10

1

+3.19 * 10

-6 -2.42 * 10

-3.19 * 10

1

-6
50 m

-6 -50 m

+15 m

x„ 50 m - 0.22 mm
ßY

y. -50 m - 0.23 mm
ßY

zD 15 m - 0.04 mm
ßY
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Example A4

A „ 25" ~ 12.12 * 10 J RAD
aß

"aß
•15" ~ 7.27 * 10 RAD

* - 48.783 (Stuttgart)

a a
x„ 800 m y„ßy Jßy

-800 m
ßy

150 m
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+<t> „vaß XßY

a
„cos*aß a YßY

a
1

ZßY
L_ _J

-9.12 * 10

+7.27 * 10"

+9.12 * 10

1

+7.99 * 10"

-7.27 10

-7.99 * 10

1

800 m
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