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Fachteil

Computergestützte Möglichkeiten
für die Ausgleichung
überschüssiger Information,
einschliesslich des Problems der
Lagerung des freien Netzes durch
Anfelderung

H.H. Schmid

Für die statistische Behandlung von überschüssiger Information wird ein universell
anwendbares Konzept vorgeführt, dessen praktische Anwendung allerdings vom
Einsatz der heute vorhandenen elektronischen Rechenkapazität abhängt. Die
Einbeziehung von zusätzlichen Bedingungsgleichungen zwischen den Unbekannten
wird verallgemeinert, indem deren Aussagen wie Zufallsvariable behandelt werden.
Bei genügend universeller Interpretierung des angegebenen Algorithmus wird damit

die Verschmelzung von verschiedenen Messanordnungen und die
Einbeziehung von Pseudobeobachtungen ermöglicht. Besondere Beachtung findet die
überbestimmte Defektbeseitigung. Schliesslich wird die für die Bildmessung
besonders wichtige Methode der Anfelderung des freien Netzes im Zusammenhang
mit den Prinzipien der klassischen Ausgleichung erörtert.

En vue du traitement statistique d'informations surabondantes, l'auteur décrit une
méthode universelle dont l'emploi pratique suppose toutefois la mise en oeuvre de la
capacité de calcul électronique disponible actuellement. L'intégration d'équations
de condition supplémentaires entre les inconnues est généralisée, en ce sens que
leurs données sont traitées comme variables aléatoires. Par une interprétation
suffisamment universelle de l'algorithme spécifié, la fusion de dispositions de mesurage
différentes et la prise en compte de pseudo-observations sont rendues possible. Une
attention particulière est accordée à l'élimination surdéterminée de conditions en
défaut. Finalement l'auteur traite la méthode d'ajustement par zones du canevas libre,

méthode particulièrement importante en photogrammetrie, en liaison avec les
principes de la compensation classique.

In VPK 2/86 wurde aufgrund des
mathematischen Modells einer Messanord-
nung die eindeutige Lösung diskutiert.
Hier soll nun die Verarbeitung von
überschüssiger Information betrachtet werden.

Zunächst sollen einige Bemerkungen

zur Bedeutung zusätzlicher Daten
gemacht werden.
Im mathematischen Modell (siehe vorherigen

Artikel s.v.A.) wurden funktionale
Beziehungen zwischen mathematischen

Parametern aufgestellt. Diese
Parameter bezeichnen dabei idealisierte
Grössen der physikalischen Wirklichkeit,

gekennzeichnet durch die Tatsache,

dass sie die aufgestellten Funktionen

widerspruchslos erfüllen. Die
Anpassung des mathematischen Modells

Das Zeichen — signalisiert eine Zufallsvariable
und wird gebraucht, wenn seine Anwendung der
Erklärung förderlich ist.
Die Bezifferung der Formeln ist fortlaufend vom
Artikel im vorigen Heft.

an die physikalische Wirklichkeit, d.h.
der Übergang vom mathematischen zum
stochastischen Modell wird grundsätzlich

nötig, weil die im mathematischen
Modell auftretenden idealisierten, d.h.
fehlerfreien Grössen L durch
Messungen ersetzt werden, die immer
zumindest mit unregelmässigen Fehlern
behaftet sind. D.h. die Messdaten t sind
Zufallsvariable, gekennzeichnet durch
spezifische Qualitätsangaben, wie sie
durch eine entsprechende Varianz-Ko-
varianz-Matrix o-, bzw. in einfachen
Fällen mit einer nur diagonal besetzten
Gewichtsmatrix P( ausgedrückt werden.

Dabei gilt: <rt'= Pt. Da die zu
bestimmenden Parameter, die U - Grössen im
mathematischen Modell, als Funktionen
der Messgrössen aufgefasst werden
können, werden sie als Zufallsvariable
berechnet. Diese Situation erfährt auch
keine grundsätzliche Änderung, wenn
sich die Beseitigung eines Defektes als
nötig erweist, da die dazu einzuführende

zusätzliche Information, von wenigen
meist theoretischen Fällen abgesehen,
den Charakter von Zufallsvariablen hat.

Aufgrund der heutzutage vorhandenen
Rechenkapazitäten mit der Verwendung
von elektronischen Rechnern kann die

bis jetzt in ihren Grundzügen angegebene

statistische Datenverarbeitung
ökonomisch zum Einsatz kommen.
Insoweit, als die Messungen nur von
zufälligem normalverteiltem Rauschen
behaftet sind und mit dem entsprechenden
stochastischen Modell keine zusätzlichen

Widersprüche eingeführt werden,
erhält man mit der klassischen Ausgleichung

nach der Methode der kleinsten
Quadrate ein Werkzeug, dessen Anwendung

im Einklang mit gewissen statistischen

Annahmen ist. Gerade das
nunmehr zur Verfügung stehende
Rechenpotential hat jedoch zu einer Erweiterung

der Problemstellung der statistischen

Auswertung Anlass gegeben.
Das dabei eingeführte Konzept geht von
der Annahme aus, dass die im stochastischen

Modell auftretenden Widersprüche

neben den aus dem Linearisie-
rungsprozess hervorgehenden Anteilen
nicht nur das normalverteilte Rauschen
der Messungen enthalten, sondern auch
von vorhandenen Unstimmigkeiten im

mathematischen Modell einer spezifischen

Messanordnung herrühren. Es

handelt sich dabei um den Einfluss sog.
systematischer Fehler, die z.B. auch unter

der Gültigkeit der Annahme von
fehlerfreien Messgrössen L im mathematischen

Modell zu Widerspruchsanteilen
führen. Diese Systematikeiner inkorrekten

Simulierung der Messanordnung
kann durch einen jeden der im y -Vektor

vorkommenden - oder eben auch
nicht vorkommenden - Parameter
entstehen. Die Situation ist nicht mit dem
Einfluss grober Messfehler zu erklären,
obwohl vor allem beim Vorhandensein
von relativ vielen kleinen, aber dennoch
groben Messfehlern deren Auswirkung
im Vektor der Widersprüche durchaus
ähnlich sein kann. Auch dieses für die
Praxis wichtige Problem wurde dank des
heute zur Verfügung stehenden
Rechenpotentials von verschiedenen
Autoren z.T. erfolgreich aufgegriffen. Das
erste Problem, systematischer Fehler
betreffend, läuft auf die notwendige
Verbesserung des mathematischen
Modells hinaus. Aufgrund der Komplexität
einer physikalisch signifikanten Lösung
versucht man zuweilen das Ziel mit
«Zusatzparametern» zu erreichen. Dabei
wird angestrebt, die v.V^v, zu verringern.

Oft wird der Tatsache wenig
Beachtung geschenkt, dass das Ziel einer
korrekten Datenauswertung nicht in der
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Domaine
Produktion von möglichst kleinen
Verbesserungen vt zu sehen ist, sondern
in der Bestimmung der wahrscheinlichsten

Werte der freien Variablen U mit
realistischen mittleren Fehlern. Diese
werden bei einer bestimmten Anzahl
überschüssiger Informationsbits
bekanntlich durch das Produkt aus dem
mittleren Fehler der Gewichtseinheit m0
-einerFunktionder vt -Werte-undder
Inversen des entsprechenden
Normalgleichungssystems, also der QUiL- Matrix

berechnet. Stellt m„ auf der
Eingangsseite des Messystems eine von
physikalischen Gegebenheiten abhän-
gigeGrössedar,soistdieQult-Matrix ein
Ausdruck, der die Propagation des mit
m0charakterisierten Rauschens in der
Messanordnung angibt. Gelegentlich
wird die Verkleinerung des m0 -Wertes
als Folge von Zusatzparametern im
mathematischen Modell zu einer
Verschlechterung der Fehlerfortpflanzung
führen, die in der entsprechenden Quli -
Matrix zum Ausdruck kommt. Somit
muss das Produkt der beiden unter
Betracht stehenden Grössen und damit die
mittleren Fehler der zu bestimmenden

Unbekannten nicht nötigerweise günstig

beeinflusst werden. Die Bildtriangulation

liefert dazu ein Beispiel. Durch
Untersuchungen am eindeutigen Modell
(s.v.A.) kann man nachweisen, dass die
geometrische Strenge der räumlichen
Bildtriangulation aufgrund der
Schnittbedingung homologerstrahlen im
allgemeinen eher schwach ist. Durch
ungeeignete, mehr oder weniger willkürlich
gewählte Zusatzparameter, die sehr
wohl den vrto-;lvt -Betrag verringern
können, kann sich vor allem die sich auf
die Objektkoordinaten beziehende Qxx
verschlechtern, wodurch sich eine
grossräumige Modelldeformation ergeben

kann. Die Aussage, dass die eben
erwähnte Auswertetechnik um so bessere

Resultate liefert, je geringer die
Anzahl der unabhängig eingeführten
Passpunkte ist, deutet m.M.n. auf eine derartige

unerwünschte Reaktion gewisser
Auswertealgorithmen hin. Es ist also
Vorsicht geboten bei der Anwendung
unorthodoxer statistischer Methoden.
Sie können unter Umständen lediglich
eine sensationell erscheinende
Optimierung der erzielten Genauigkeit
vortäuschen. Verallgemeinert und etwas
plump ausgedrückt, muss man sich als
Messingenieur immer darüber im klaren
sein, dass man aufgrund von
statistischmathematischen Manipulationen aus
«Dreck kein Gold» machen kann.
Für die klassische Ausgleichung bietet
sich zunächst ein einfach abzuleitender
Algorithmus an.

Ausgehend von der linearisierten Form
des mathematischen Modells:

F(L',U') +
SF(y)"

SL
AL+
L°

~8F(y)"

.su AU =0
U"

(s.v.A. Formel 2)

erhält man mit der Substitution:L=C+v(
das linearisierte stochastische Modell:

Fil U'j +
SRy)
SL

Jc

SRy
SU

AU=0 (5)

U°

Mit offensichtlichen Bezeichnungen
ergeben sich die sog. Beobachtungsgleichungen:

Atvt + B AU =we (6)

Den Gleichungen (6) ist eineo-f1 -Matrix
zugeordnet.

Da die Anzahl der zu bestimmenden
Grössen immer grösser als die Anzahl
der Beobachtungsgleichungen ist,
muss, um zu einer Lösung zu gelangen,
eine Nebenbedingung eingeführt werden.

Bei normalverteiltem Rauschen
verwendet man bei der Anwendung der
Methode der kleinsten Quadrate:
v'ofv, =Min. (7)

Im Einklang damit ist die Laplace Funktion:

<î> v^o-^Vj - 2k
(Av(+B AU-wt) (3)

Die Differenzierung von (8) nach vt u.

AU ergibt, wenn jede Gleichung
aufgrund der Minimumbedingung gleich
Null gesetzt wird:

o-, ve + Aeke =0

BT k, =0

(9)

(10)

Aus (6), (9) und (10) ergibt sich das
System:

aus (9)

aus (6)

aus (10)

-1 A\ vt

A, B kt

BT AU

0

w,
(11)

Die Koeffizienten-Matrix in (11) hat das
Format (n + r + u) x (n + r + u), wobei n

Anzahl der Beobachtungen E und somit
der Vc r Anzahl der
Beobachtungsgleichungen und damit der Korrelaten

kj und AU Anzahl der
Unbekannten U bzw. deren Verbesserungen
AU ist.

Rein formell wird mit der Invertierung der
quadratischen Koeffizienten-Matrix die
Lösung für die v(, k(und AU -Grössen
erhalten. Die invertierte Matrix hat dabei
die Bedeutung einer Q-Matrix für alle
berechneten Grössen.
Ferner ergibt sich der Gewichtseinheitfehler

nach der Ausgleichung zu:

Vp er, v.
n-u

Vz

(12)

Rechentechnische Vereinfachungen in

bezug auf das Format des zu invertierenden

Systems ergeben sich mit der
Eliminierung des ve-Vektors zu:

aus (11)

A,o;A, B

BT AU 0
(13)

und nach weiterer Eliminierung von ke

erhält man:

Br(AcrÄjBAU
BtAjO-jA,) W( wt"

(14)

Mit üblichen Bezeichnungen erhält man
mit (14) das sog. Normalgleichungssystem

der vermittelnden Ausgleichung.

N( AU w*

oder AU n;«; Qua W,

(15)

(16)

Der grundsätzliche Algorithmus des
klassischen Ausgleichsproblems ist damit

vorgeführt.
Nun ergab sich (im v.A) bei der Betrachtung

der eindeutigen Lösung aufgrund
des mathematischen Modells eine für
die Praxis wichtige Folgerung. Beim
Vorhandensein eines Defektes im System
(6) sind die abgeleiteten Systeme (11),

(13) oder (15) singular, unabhängig von
der Anzahl r der vorhandenen
Beobachtungsgleichungen. Man kann in einem
solchen Fall für dieses singulare
Gleichungssystem die Bezeichnung «Freies
Netz» einführen. Die Lösung, die man
dann als die Lagerung des freien Netzes
ansehen kann und die bei eindeutiger
Lagerung gleichbedeutend ist mit der
eindeutigen Defektbeseitigung, wird
durch die Einführung von zusätzlicher
Information von aussen her erreicht.
Liegen im ursprünglichen Modell der
Messanordnung ausschliesslich un-
orientierte räumliche Richtungen vor -
wie bei der Bildmessung -, ist der Rang
des Defektes bekanntlich gleich sieben.
Natürlich können auch mehr Informa-
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Fachteil
tionsbids, als zur eindeutigen Defektbeseitigung

nötig sind, zur Verfügung
stehen. Damit wird das Problem der
Defektbeseitigung, also die Lagerung des
freien Netzes, zu einer zusätzlichen
Ausgleichsaufgabe, die im Zusammenhang
mit dem bereits vorgeführten Algorithmus

gelöst werden muss.
Dieses Problem kann unter der Annahme

behandelt werden, dass zusätzlich
zu den Beobachtungsgleichungen (6)

gewisse als Bedingungsgleichungen
bezeichnete Ausdrücke in bezug auf die
zu bestimmenden Unbekannten vorhanden

sind. Entsprechend wird als
allgemeines Problem der Ausgleichsrechnung

oft die «vermittelnde Ausgleichung
mit Bedingungsgleichungen zwischen
den Unbekannten» genannt. Hier soll die
damit angesprochene Problematik
verallgemeinert werden mit der Annahme,
dass die Aussage erwähnter
Bedingungsgleichungen im Einklang mit einer
entsprechenden <r -Matrix als
verbesserungswürdig betrachtet werden soll.
Solche Bedingungsgleichungen können

mit G (U) h (17)

eingeführt werden, wobei sich die
Bezeichnung U zumindest auf einen Teil
der Unbekannten des freien Netzes
bezieht.

Wiederum mit Taylorreihenlinearisierung
erhält man aus (17)

G(U°)

und mit

8G(U)
SU AU (18)

3GIU)!
u

su Ju

erhält man die linearisierte
Form: C AU wc

Csowieh-G(U"J= wc (19)

(20)

Gibt die Aussage w, zu Verbesserungen
Anlass, z.B. wenn h ein Vektor gemessener

Grössen ist, denen eine entsprechende

<n zukommt, so erhält man
einen Ausdruck, der formal den
Beobachtungsgleichungen (6) entspricht:

C AU wc + vc mit er. er (21)

er muss natürlich eine normalisierte
Varianz-Kovarianz-Matrix sein.
Die zu erfüllende Nebenbedingung

(vtV('ve + v»cl =Min. (22)

ist mit der erweiterten Laplace Funktion
<$ verträglich.
* v(T o;"'ve + v[a-pvc — 2 kj (A(V, tBAU -w()

- 2 k^(Acvt+ C AU -wc) (23)

Mit der Differentation von (23) nach ve,
vc und AU sowie der Gleichsetzung
dieser Ausdrücke zu Null, erhält man:

8$
SV,

_8J>
Svc

8 $
SAU

-*cl\ + Af kc "O (25)

B k + C k 0 (26)

Zusammen mit den ursprünglichen
Beobachtungsgleichungen (6) und den
in allgemeiner Form als
Af vc+ C AU wc (27)

angeschriebenen Bedingungsgleichungen
(21) ergibt sich das System:

aus (24) A', Ve

aus (6) At B

AUaus (26) B cT

aus (27) c Ac K

aus (25) Ac -"c' *c

(28)

oder nach Eliminierung von v{ k»

und vc erhält man unter Berücksichti
gung von (14):

-BT[Ae«r,AJB cT AU

C VX k
<

(29)

und mit der in (15) eingeführten Bezeichnung:

NFN
T

c

C AcacAc

AU w,

w

(30)

FN bedeutet: Freies Netz

Aus der Gleichung (21) folgt, dass in dem
unter Betracht stehenden Fall A£= -I
st. Damit wird (30) zu:

NFN
T

c AU

kc

-
w(*

C ac

(31)

+ Af kf =0 (24)

Die Zusatzinformation im Sinne von (17)

bzw. (21) wird also eingeführt, indem man
das Normalgleichungssystem des freien
Netzes (15) mit den Bedingungsgleichungen

(20) rändert und den noch
freibleibenden Diagonalraum mit der<rc -
Matrix gemäss Form (31) besetzt.
Nach Elimination des kc -Vektors
ergibt sich:

(N^+C^'C) AU
T (32)

(Wt +C crc Wc)

Der Ausdruck (32) kann auch mit
offensichtlicher Bezeichnung geschrieben
werden als N AU w (33)

wobei N 1=Qail ist.

Interpretiert man die Gleichungen (21)

als Beobachtungsgleichungen und fügt
sie von vornherein den Beobachtungsgleichungen

(6) hinzu, kann man N

und w d.h. das Gleichungssystem (33)

auch mit dem konventionellen
Ausgleichsalgorithmus direkt erhalten.

Sind im h -Vektor [vgl. (17)] keine direkt
gemessene Grössen vorhanden,
sondern bezieht sich dje Zusatzinformation
auf vorgegebene U -Werte, so wird h

nach (17) bzw. wc nach (19) berechnet.
Zweckmässig verwendet man dabei als
Annäherungswerte U° U

Mit G(U°; =G (U) - h (34)
wird nach (19) wc 0 (35)
Mit (35) wird auf der rechten Seite in (32)
(zumindest in der ersten Iterationsschleife)

der Vektor der Absolutglieder
zu wt*
Bei solchen Bedingungsgleichungen ist
die Matrix o-c im Einklang mit dem

allgemeinen Fehlerfortpflanzungsgesetz
zu berechnen mit

<rc - C <rtt
CT (36)

Beziehen sich die zusätzlichen
Bedingungsgleichungen (21) ausschliesslich
auf vorgegebene U -Werte, so ist C I

Aus (36) folgt dann
^c °"ü (37)

Man erhält dann für (32) die einfache und
für die Praxis besonders geeignete
Form:

(N,,, +<ra,)AU W*e (38)

Für die mit Ü gestützten U -Parameter

nimmt bei der Auflösung des
Systems (38) der entsprechende AU-
Vektoranteil die Bedeutung eines vu -
Vektors an. Der soweit vorgeführte
Algorithmus entspricht einer Ein-Schritt-Lö-
sung nach den Gesichtspunkten der

strengen Ausgleichung aufgrund der
Nebenbedingung (22).
Der Formelaufbau ist in Übereinstimmung

mit der z.B. in Mitteilungen IGP

(Institut für Geodäsie und Photogrammetrie)

Nr. 22 (1978) aufgeführten Lösung
für die Verschmelzung der
Normalgleichungssysteme mehrerer Messanordnungen

bzw. dem Inhalt des in Bildmessung

und Luftbildwesen Nrn. 3 und 4

1965 veröffentlichten Beitrags für die
Auswertung von hybriden Messanordnungen

durch strenge Ausgleichung.
Die Lösung gehört zu dem Problemkreis,

der heute als kombinierte Ausgleichung

- auch in der Bildmessung -
Beachtung findet.
Die Anordnung (31) bietet sich als Basis
für eine allgemeine Lösung an, vorausgesetzt,

ihre Anwendungsmöglichkeit
wird vielseitig genug interpretiert.
Wie bereits erklärt, führen die sich auf

Vermessung, Photogrammetrie, Kulturtechnik, 3/86 81
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die Messungen t beziehenden
Beobachtungsgleichungen zu dem
Normalgleichungssystem Nt [vgl. (15)]. Im
Falle, dass andere Typen von Messgrössen

m zur Verfügung stehen, die über
eine entsprechendes mathematisches
Modell zu der Bestimmung von zumindest

einem oder einigen der U -Parameter

der ersten Messanordnung beitragen,

ist dann das entsprechende
Normalgleichungssystem N Das endgültige

Normalgleichungssystem N mergibt
sich mit:

N N( + Nr (39)

wobei der entsprechende Absolutglied-
Vektor berechnet wird mit:

w W[ + wm

Allgemein kann man schreiben:

I N;AU I w;

(40)

(41)

AlleAU-Werte, die in einer spezifischen
Messanordnung nicht vorhanden sind,
müssen natürlich mit Null-Werten an den
entsprechenden Stellen des Teilsystems

besetzt werden. Ferner müssen
die einzelnen o-t -Matrizen, die den
Gruppen der spezifischen
Beobachtungsgleichungen zugehören, als
normalisierte Varianz-Kovarianz-Matrizen
eingeführt werden, d.h. sie müssen sich
auf eine a priori als Gewichtseinheit
angenommene m0-Grösse beziehen. An
dieser Stelle der Betrachtungen soll
betont werden, dass in dem Vorgang der
Normalisierung der einzelnen a
Varianz-Kovarianz-Matrizen die eigentliche

Schwierigkeit in der gemeinsamen
Behandlung von verschiedenartigen
Messgrössen bzw. die Einbeziehung von
«Pseudobeobachtungen» in einen
gemeinsamen Auswertealgorithmus zu
sehen ist.
Bei den hier besonders interessierenden

Messverfahren ist auch bei der
Berücksichtigung verschiedener Typen
von Messgrössen das resultierende
Gesamtsystem der Normalgleichungen
Singular. Es ist von einem Defekt behaftet,

dessen Rang von den geometrischen

Eigenschaften der vorkommenden

Messgrössen abhängig ist. Die im

endgültigen Normalgleichungssystem
zum Ausdruck kommende Geometrie
bezieht sich weiterhin auf die innere
Geometrie des zu vermessenden Objektes,

d.h. auf eine Figuration im Nullraum,
die nicht zu einem spezifischen Bezugssystem

in Verbindung steht und hier die
Bezeichnung «Freies Netz» trägt. Für die
somit nötig werdende Defektbeseitigung

ist die Verwendung des Systems
(31) aufgrund seiner vorerwähnten An¬

passungsfähigkeit gut geeignet. So werden

von diesem Algorithmus Probleme
statistisch korrekt bedient, wie sie mit
der Bereitstellung von Passpunktinformation

praktisch immer auftreten. Es
können auch Funktionen von U£ -Werten

als Stützinformation vorgegeben
sein. Logischerweise können auch
Bedingungen zwischen den zu bestimmenden

Unbekannten in dieser Art und Weise

berücksichtigt werden, wie z.B.
solche, welche die gewichtete Gleichsetzung

von Höhen gewisser Punkte zum
Ziel haben, oder es kann sich auch um
die funktionelle Zuordnung von gewissen

zu bestimmenden Punkten zu Geraden

oder anderen geometrischen Strukturen

handeln. Wichtig dabei ist, dass
die Aussagen dieser zusätzlichen
Bedingungsgleichungen als Zufallsvariable

behandelt werden können, deren
Qualitätdurch entsprechende, natürlich
auch wieder zu normalisierende
Varianz-Kovarianz-Matrizen zum
Ausdruck gebracht wird.
Auch hier, wie im Fall der eindeutigen
Lösung (s.v.A.), kann die Eliminierung von
gewissen Gruppen der Unbekannten
z.B. aus rechen-ökonomischen Gründen

praktisch sein, um das Format der
zu invertierenden Matrix möglichst klein
zu halten. Ein solcher Schritt darf aber
nur nach der Einführung der
Bedingungsgleichungen vorgenommen werden,

um den Prozess der Einführung der
Stützinformation nicht durch zu frühe
Eliminierung von Unbekannten in seiner
Universalität zu beschränken.
Die vorgeführte Lösung hat den Zweck,
geometrisch ausgedrückt, das freie
Netz in bezug auf seine Form und
Orientierung zu einem vorgegebenen
Koordinatensystem zu lagern und eventuell
eine Massstabsanpassung vorzunehmen.

Die Lösung wird in Übereinstimmung

mit dem Prinzip der Methode der
kleinsten Quadrate, d.h. unter
Berücksichtigung der Nebenbedingung (22)
erhalten. Die vor allem zur überbestimmten
Defektbeseitigung von aussen eingeführte

Stützinformation, die sich
meistens auf Us -Werte bezieht, wird als

Pseudobeobachtungen den eigentlichen

Messgrössen zur Seite gestellt. Eine

solche Lösung erscheint gerechtfertigt,

solange das Rauschen der
Beobachtungen als auch das Rauschen der

Pseudomessungen normal verteilt ist.

Unter dieser Voraussetzung erhält man

als Resultat die wahrscheinlichsten
Werte der berechneten Parameter und

deren mittlere Fehler.

In der Praxis ist die Berechtigung der
Anwendung dieser Methode - vor allem
in der Bildmessung - unglücklicherwei¬

se oft fraglich. Der Grund liegt in der
Tatsache, dass die einzelnen Informationspakete,

die zu der kombinierten Lösung
führen, unter sich nicht genügend
übereinstimmen. Vor allem sind in solchen
Fällen systematische Fehler in den
spezifischen mathematischen Modellen zu

vermuten, die in einer gemeinsamen
Lösung zu Spannungen führen und als Folge

zu unannehmbar grossen Verbesserungen

Anlass geben.

Um unter diesen Umständen zu einem
Lösungskonzept zu gelangen, soll hier
zunächst eine Mehr-Schritt-Ausgleichslösung

zum vorher behandelten
Problem einer strengen Ausgleichung
angeführt werden. Als erster Auswerteschritt

wird eine eindeutige Lagerung
des freien Netzes vorgenommen. Die

grundsätzlich willkürliche Lösung U*
ist vom Ausgleichsprinzip her
übereinstimmend mit einer bedingten Ausgleichung.

Dieser Auswerteschritt führt also
«nur» zur Ausgleichung des Rauschens
der normal verteilten Fehler der
ursprünglichen Beobachtungen und
beeinflusst somit nur die innere Geometrie
des zu vermessenden Objekts. Das
erhaltene Resultat muss daraufhin zu der
zusätzlich vorhandenen Stützinformation

in Beziehung gesetzt werden. Ausser

der Berechnung eines vom Prinzip
her einer klassischen Ausgleichung
entsprechenden Resultats soll dabei eine
Nebenlösung erhalten werden, welche
die innere Geometrie der im ersten
Lösungsschritt erhaltenen Figuration nicht
verändert. Das Resultat einer solchen
Nebenlösung wird allgemein als
Anfelderung bezeichnet.
Grundsätzlich geht es darum, das
willkürliche Bezugssystem, das im ersten
Lösungsschritt bei der eindeutigen
Lagerung eingeführt wurde, auf den
Bezugsrahmen der Stützinformation zu
transformieren. Insoweit die bestehende
Anordnung der U"-Parameter unter
sich nicht verändert werden soll, darf es
sich nur um eine Transformation
handeln, die sich ausschliesslich auf drei
Rotationen, drei Translationen und einen
Massstabsfaktor beschränkt. Das
mathematische Modell dieser Transformation

ist für eine Parametereinheit Ul :

DIsU; +At - USu= 0 (42)

Dabei bezeichnet D eine sich auf drei
Rotationen beziehende Drehmatrix, A t
einen räumlichen Translationsvektor
und s einen Massstabsfaktor. Das

entsprechende stochastische Modell ist
wiederum für eine UL -Einheit:

Dls(Ur + vu:)+At
O («J
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Fachteil
Die Bezeichnung Us wird für die Stützwerte

gebraucht. Im allgemeinen Fall

geht es also darum, sich für sieben
Transformationsparameter zu entscheiden.

Offensichtlich gibt es dafür eine
praktisch unbegrenzte Vielheit möglicher

Transformationsgrössen. Deshalb
ist es unumgänglich, eine Nebenbedingung

einzuführen, um eine eindeutige
quantitative Festlegung der sieben
Transformationsparameter p zu erreichen.

Die Wahl der Form dieser Bedingung

ist grundsätzlich willkürlich. Diese
Feststellung ist für die statistische
Interpretation des Resultates von Bedeutung.

Ist die Annahme gerechtfertigt, dass in
der zur Auswertung anstehenden
Messanordnung nur normalverteiltes
Rauschen vorkommt, ausgedrückt mit den
Varianz-Kovarianz-Matrizen c~. und

gung:

u" a* u
V- (T. V~

US ns Us

Min. (44)

Gelingt es aufgrund der gewählten
Nebenbedingung einen bestimmten Satz
von Transformationsparametern zu
bestimmen, so wird die statistische Qualität

des Endresultates abhängig sein von
der Q

au.
bzw. der o~. aus dem ersten

Lösungsschritt und der Auswirkung der
Qn die sich bei der Berechnung der

Transformationsparameter in bezug auf
die gewählte Nebenbedingung (44)
ergeben hat.
Der Algorithmus für die Bestimmung der
Transformationsparameter folgt der in
der IGP-Mitteilung Nr. 23 (1978)
beschriebenen Berechnungsmethode der
räumlichen Koordinatentransformation
zweier unabhängiger Punkthaufen bei
strenger Ausgleichung.
Die folgende Skizze 1 zeigt den bisher
beschriebenen Lösungsweg für eine
Parametereinheit Ut schematisch. Er
besteht als erster Schritt aus der
eindeutigen Lagerung des freien Netzes
durch die Einführung von fehlerfreier,
grundsätzlich willkürlicher, minimaler
Stützinformation (Resultat: U*-Werte).
Als zweiter Auswerteschritt folgt die
Berechnung der Transformationsparameter

im Einklang mit der Nebenbedingung
(44). Der dritte Rechenschritt befasst
sich mit der Transformation der U"
-Resultate in die Endergebnisse.
Ist auch eine detaillierte Darstellung des
Anfelderungs-Algorithmus in dieser
Abhandlung nicht vorgesehen, so sollen
vollständigkeitshalber einige
diesbezügliche Bemerkungen gemacht werden.

Wie bereits erwähnt, ist die Anwendung
einer Anfelderungslösung besonders

für den Fall geeignet, wenn entweder das
zum freien Netz führende mathematische

Modell bzw. die ursprünglichen
Messdaten und/oder die als Stützinformation

bereitgestellten Parameter nicht
nur von normalverteiltem Rauschen
behaftet sind, sondern zusätzliche
systematische Fehleranteile vorliegen, die
das Resultat einer strengen Ausgleichung

ungünstig beeinflussen. In der
Praxis wird für die Lösung oft die
Helmert Anfelderung angewendet. Es handelt

sich dabei um ei ne Einschrittlösung,
die sich auf die Form (31) stützt.
Bei dieser Lösung werden die
Transformationsparameter nicht explizit
bestimmt, sondern ihre Auswirkung wird
mit Bedingungsgleichungen in bezug
auf alle bei der Anfelderung beteiligten
Punkte bzw. auf die im
Normalgleichungssystem des freien Netzes (15)

auftretenden entsprechenden AU -
Werte ausgedrückt. Die Helmertbedin-
gungen haben die Form von lineansierten

Bedingungsgleichungen (20). Im

Einklang mit den anfänglich gemachten
Bemerkungen handelt es sich dabei um
die Auswirkung von höchstens sieben
Transformationsparametern.

Deshalb treten bei der Helmertanfelde-
rung für die Defektbeseitigung maximal
sieben Bedingungsgleichungen auf.
Folglich sind die in (21) auftretenden
vc -Werte alle gleich Null. Die in (31)

vorkommende "t muss bei der klassischen

Helmertanfelderung mit <rc 0
eingeführt werden. Diese willkürliche
Massnahme ist, obgleich die Koeffizientenmatrix

der Bedingungsgleichungen
C /0 ist, gleichbedeutend mit der
willkürlichen Annahme von <rSs= 0
D.h. die Stützinformation [}s wird bei
der Helmertanfelderung als fehlerfrei
angenommen. Damit wird die zu
erfüllende Nebenbedingung zu: atA
Minimum (46) oder in etwas ausführlicher
Schreibweise ist die Zielfunktion (47)

dp =2^A-At Minimum (47)

Daraus folgt:

S dp
0 (48)

5 (drei Rotationen, drei
Translationen, ein Massstabsfaktor)

als eindeutige (willkürliche)
Lagerung mito-j'= l~

aus (N,„+o-i',iAU -wt(37)

u; UL° + A U

Die Lösung ergibt auch Qtfu.
bzw. <r-. wobei er-. - m' Q „.„. ist

Anfelderungspunkt

Die Lösung ergibt auch

Es gilt:
Spur derQ„.... >SpurderQ

UTUT

Q Resultat der Ausgleichung
nach der Transformation.

Die Lösung ergibt auch
Qua bzw. <Tr,

-Ò

^
\V<3/

(Öleu,

Nebenbedingung:

v,To-t'v( Min.

v( Verbesserungen im Sinne
der bedingten Ausgleichung)

Nebenbedingung für die
Bestimmung der Transformationsparameter

aus (42)
v'ir-.* v .+ vT <r~-' V )=Min. (44)

vorgegeben mit
Qu,us bzw. o-5s

Us bezeichnet Stützwerte)
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Domaine
Durchgezogene Linien zeigen den

Lösungsweg einer Ausgleichung an,
gestrichelte Linien den einer Anfelderung.

Man erhält somit:

S <$

5 War.)

S AL
S(var.)

¦A, +

S Ac
1 8 (vox)

oder aus (49):

I 8 A,
8 (vox)

A, 0

(49)

(50)

Die entsprechenden Gleichungen führen

auf die sieben Helmertbedingungs-
gleichungen, welchen die Auswirkung
von drei Translationen, drei Rotationen
und einem Massstabsfaktor entsprechen.

Mit diesen ist gemäss (31) das
Normalgleichungssystem des freien Netzes

zu rändern und mit der oben erwähnten
<rc -Matrix zu ergänzen. Aufgrund von

(50) ist wc 0
Die bei der Berechnung des Resultates
auftretende Inverse hat aufgrund der
«rc 0 eine Minimalspur, ist aber in

ihrer statistischen Bedeutung schwer zu
erklären. Vgl. dazu Gotthardt, der
schreibt, dass «Genauigkeitsangaben
der mit der Helmertanfelderung gefundenen

Werte sich nicht auf ein bequem
angebbares System beziehen, sondern
auf eine abstrakte Nebenbedingung».
Die hier im Grundsätzlichen vorgestellten

Lösungswege für das Problem der
Anfelderung haben für geodätische
Triangulationsaufgaben oft Bedeutung.
Ganz besonders gilt dies aber für die
räumliche Bildtriangulation.
So ist das klassische Verfahren der Ana-
log-Zweibildauswertung ein typisches
Mehr-Schritt-Verfahren und bezieht
sich im ersten Auswerteschritt, der sog.
Relativorientierung, auf die eindeutige
Lagerung der aus dem geometrischen
Inhalt der beiden unter Betracht stehenden

Messbilder abgeleiteten Triangula-
tionsfiguration, die man sich als freies
Netz vorstellen kann. Die zur Defektbeseitigung

von aussen einzuführendeZu-
satzinformation muss sich, wie schon
mehrmals erwähnt, auf sieben geeignete
Parameter beziehen. Diese müssen, da
bei der Aufstellung des entsprechenden
mathematischen Modells
(Koplanaritätsbedingung) die Objektkoordinaten
algebraisch eliminiert wurden, Elemente
der äusseren Orientierung sein. Wie
wohl bekannt, werden diese in bezug auf
ein Maschinen-Koordinatensystem des
Analogauswertegerätes eingeführt. Im

weiteren Verlauf der Auswertung werden
diese Parameter als fehlerfreie Grössen

behandelt. Beim ersten Auswerteschritt
handelt es sich also um die vorher
beschriebene grundsätzlich willkürliche
Lösung der eindeutigen Lagerung des
freien Netzes. Die Tatsache, dass im
System des freien Netzes kaum
überbestimmende Information zur Anwendung
kommt, deutet auf die statistische
Schwäche der Analogmethode hin,
ändert aber in keiner Weise die grundsätzliche

Situation. Die im folgenden
Auswerteschritt - absolute Modellorientierung

- eingeführte zusätzliche Information

genügt in der klassischen
Analogmethode nur für eine eindeutige
Koordinatentransformation. Das im

Maschinen-Koordinatensystem erhaltene
photogrammetrische Modell wird bei der
absoluten Orientierung in seiner inneren
Geometrie unverändert übernommen.
Somit bleibt die im ersten Auswerteschritt

erhaltene innere Geometrie des
stereoskopischen Modells erhalten. Der
zweite Auswerteschritt, die sog. absolute

Orientierung, entspricht also einer
eindeutigen Anfelderung.
Zwingt sich diese Sachlage auch
aufgrund der den Konstruktionen der
photogrammetrischen Analogauswertege-
räte zugrunde liegenden Lösungsidee
auf, so wird damit einer aus praktischer
Sicht resultierenden Forderung Rechnung

getragen.

Solange menschliche Operateure die
Auswertung photogrammetrischer
Modelle, unterstützt durch ihr stereoskopisches

Sehvermögen, ausführen, wird
sich schon wegen dem ökonomischen
Ablauf des Arbeitsvorganges die Forderung

nach möglichst kleinen Restparallaxen

ergeben. In anderen Worten: Der

Vorgang der absoluten Orientierung soll
die Geometrie des mit der relativen
Orientierung erhaltenen Modells nicht
ungünstig beeinflussen. Es sollen
möglichst keine zusätzlichen Parallaxen
erzeugt werden, deren Auftreten den
Auswertevorgang erschweren. Erst mit der
Annahme einer leistungsfähigen und
ökonomisch vertretbaren numerischen
Bildkorrelation dürfte sich in dieser
Hinsicht für die aufgeworfene Problematik
eine Lösung abzeichnen, die es ermöglichen

sollte, das photogrammetrische
freie Netz in eine überschüssige Menge
von unabhängig gegebener Stützinformation

in statistisch korrekter Weise
zu lagern. Darüber hinaus wird aber die
Verschmelzung von photogrammetrischer

Information mit geodätischen
Stützwerten auch bei der numerischen
Auswertung grösserer Bildverbände oft
im Sinne einer strengen Ausgleichung
zu unbefriedigenden Resultaten führen.
Deshalb ist eine der vorher angeführten

Anfelderungsmöglichkeiten von
grundsätzlicher Bedeutung.
Alle hier angesprochenen Möglichkeiten,

angefangen mit der Ausgleichsmethode

der kleinsten Quadrate vor allem
für grosse Systeme, die Berechnung aller

dabei interessierenden statistischen
Angaben, über die Zusammenfassung
von verschiedenartigen Messverfahren
in eine einheitliche Ausgleichung und
schliesslich eine statistisch korrekte
Verschmelzung von verschiedenen
Informationspaketen mit zusätzlicher als
sog. Pseudomessungen von aussen zur
Verfügung gestellter Stützinformation
wird sich nur praktisch verwirklichen
lassen, wenn ein genügend grosses
Rechenpotential zur Verfügung steht.
Umgekehrt verlangt die ökonomisch
vertretbare Präsenz elektronischer
Rechen- und Steuermöglichkeiten bei der
Auswertung von Messungen - und damit
auch in der Bildmessung - die optimale
Verwendung dieses Potentials. In anderen

Worten: Das Problem der optimalen
Anwendung der elektronischen
Rechentechnik einschliesslich deren
Real-time-Kapazität sowie deren
Verwendung im Instrumentenbau durch die
sog. «high-technology» fordert die
Aufstellung optimal anwendbarer Software.
In dieser Aufgabe liegt m.M.n. auch für
die Bildmessung ein guter Teil ihrer
Zukunft.
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