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Partie rédactionnelle

Uber die mathematischen Methoden
der globalen Geodynamik

|. Bauersima

Vornehmstes Ziel der globalen Geodynamik ist die Losung der Bewegungsglei-
chungen eines nicht mehr als starr angenommenen Erdmodells und die empirische
Bestimmung der dieses Modell charakterisierenden Parameter. Die Zielsetzungen
dieses Artikels sind jedoch bescheidener: Nach einleitenden Bemerkungen werden
in Kapitel 2 die Prinzipien zur L6sung dieser anspruchsvollen Parameterbestim-
mungsaufgabe vorgestellt, in den Kapiteln 3 und 4 wird der Begriff «<Erdmodell»
prézisiert sowie die moglichen Parameter eines Erdmodells diskutiert. Bevor
schliesslich in Kapitel 8 die Bewegungsgleichungen fiir eine linear elastische Erde
aufgestellt werden kénnen, miissen in den Kapiteln 5, 6 und 7 die rheologischen
Gleichungen, die Kontinuitadtsgleichung sowie die Poisson’sche Gleichung ein-
gefiihrt werden. Im Schlusskapitel 9 wird auf einige Teilaspekte der Bewegung der
elastischen Erde hingewiesen und eine zweckmaéssige Definition der «Winkelge-
schwindigkeit der Rotation der nicht starren Erde» aufgestellt und am Beispiel der
elastischen Erde ihr Zusammenhang mit der Losung der Bewegungsgleichungen
gezeigt. Es wurde versucht, die einzelnen Kapitel so aufzubauen, dass zu Beginn
wichtige physikalische Inhalte und mathematische Konzepte vorgestellt werden.
Erst dann folgen Skizzen von mathematischen Ableitungen, die sich eher an einen
engeren Kreis von naher interessierten Lesern wenden.

Le but principal de la géodynamique du globe consiste en la solution des équations
du mouvement d’'un modéle de la Terre qui n’est plus considérée comme rigide, et
en la détermination empirique des paramétres caractérisant ce modéle. Le but de
cet article est toutefois moins ambitieux: Aprés quelques remarques d’introduc-
tion, le chapitre 2 présente le principe de la solution de ce difficile probléme qu’est
la détermination des parametres. Les chapitres 3 et 4 précisent la notion de modéle
de la Terre et en discutent les paramétres inconnus. Aprés I’introduction, dans les
chapitres 5, 6 et 7, des équations rhéologiques, de I’équation de continuité et de
I’équation de Poisson, le chapitre 8 peut enfin formuler les équations du mouve-
ment pour une Terre linéairement élastique. Le dernier chapitre (9) reléve quelques
aspects particuliers du mouvement d’une Terre élastique; il présente aussi une
définition appropriée de la «vitesse angulaire de rotation d’une Terre non-rigide»
ainsi que, illustré par I'exemple d’une Terre élastique, son lien avec la solution des
équations du mouvement. Les différents chapitres contiennent en principe d’abord
une présentation du contenu physique essentiel et des concepts mathématiques.
Viennent ensuite des esquisses de développement mathématique qui intéresseront
un cercle plus restreint de lecteurs.

1. Einleitung

Im Zusammenhang mit dem zwangsl&ufi-
gen Abgang des Starrkérpermodells der
Erde aus der Szene der diesbeziiglich re-
levanten Disziplinen stellt sich die Frage
nach dem Inhalt klassischer Begriffe wie
der Winkelgeschwindigkeit der Rotation
der Erde, der Prézession, der Nutation und
der freien Nutation der Rotationsachse der
Erde.

Diese —urspriinglich im Rahmen der Kine-
matik eines starren Korpers wohldefinier-
ten — Begriffe verlieren fiir deformierbare
Kérper véllig ihren Sinn, ausser man defi-
niere sie neu so, dass sie im Spezialfall ei-
nes starren Korpers wieder ihre klassischen
Bedeutungen annehmen. Der Sinn sol-
cher Definitionen kann aber nur in deren
Zweckmassigkeit liegen, denn eine Defi-
nition macht nicht den physikalischen In-
halt aus. Dieser ist dquivalent einem best-
mdoglichen Erdmodell, dessen Ermittlung
schlussendlich die Hauptaufgabe aller Erd-
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wissenschaften ist. Die Bewaltigung die-
ser Aufgabe erfordert zunachst, dass sie
mathematisch angemessen und korrekt
formuliert wird. Wie dies zu geschehen
hat, soll im folgenden skizziert werden.

2. Methode

2.1 Der Weg zur Ermittlung eines best-
moglichen Erdmodells fiihrt tiber die Kon-
frontation verschiedenster Erdmodelle mit
der Empirie oder mit den Beobachtungen.
Diese stellen die Werte 0’ bestimmter Gros-
sen —der sog. Observalen — zur Verfigung.
Die Modellaquivalente 0 der Observablen
sind bekannte Funktionen der Parameter
des Erdmodells sowie der Anfangs- und
Randbedingungen. Diese Funktionen sind
jedoch nur implizite gegeben und zwar
durch das System der rheologischen Glei-
chungen sowie der Zustands-, Kontinui-
tats- und Bewegungsgleichungen des be-
treffenden Erdmodells. Die Ermittlung ei-
nes bestmoglichen Erdmodells besteht

nun in der Bestimmung der Anfangsbedin-
gungen und der in den gerade erwéhnten
Gleichungen figurierenden Modell-Para-
meter. Dass dazu das vorliegende An-
fangs- und Randwertproblem gelést — und
somit die Bewegung des Erdmodells als
eines physikalischen Kontinuums be-
stimmt werden muss versteht sich von
selbst. Die Randbedingungen konnen meist
als bekannt betrachtet werden. Das ent-
sprechende Parameterbestimmungs-Ver-
fahren besteht nun darin, dass neben dem
Vektor p := [p1,pa,...,pm] der unbekann-
ten Anfangsbedingungen und Modellpara-
meter noch ein zweiter unbekannter Vektor,
namlich der Vektor v := [v4,v5,...,v,] der
Differenzen v; = 0;—0; ’ der beobachteten
Werte 0’ der Observablen und deren Mo-
dellaquivalente 0 eingeflihrt wird. Diese
Verbesserungen v; kdnnen wegen der Beo-
bachtungsfehler und der Unvollkommenheit
des Erdmodells nicht alle gleichzeitig zum
Verschwinden gebracht werden. Die Be-
obachtungen und das Erdmodell bieten
somit n Bedingungsgleichungen — die sog.
Verbesserungsgleichungen v; = 0,—0;’ fiir
n+m Unbekannte p, und v;, k=1.2,...,
m, i=1,2,...,n. Um zu einer eindeutigen
Ldsung eines solchen Gleichungssystems
zu gelangen, muss n > m sein und der
Verbesserungsvektor v muss einer Opti-
mierungsbedingung unterworfen werden.
Dies geschieht, indem man verlangt, dass

Il v Il = Minimum (1)

wobei Il Il eine geeignete Norm ist. Diese
Bedingung ist dann aquivalent den m Glei-
chungen

g% Nyll=0, k=12...m @)
womit die Zahl der Gleichungen auf die

Zahl der (m+ n) Unbekannten p4, pa,...,pm
und v;, vz,...,vpo erhoht wird. Ist die er-
wahnte Norm euklidisch, d.h. gilt llvll=
>v;, so wird das Parameterbestimmungs-
Verfahren die Methode der kleinsten Qua-
drate genannt.

2.2 Das von der Theorie und auch der Pra-
xis her weitaus anspruchvollste Segment
des in 2.1 erwahnten Parameterbestim-
mungsverfahren ist — in Féllen nichtstarrer
Erdmodelle — die Ermittlung der Modell-
aquivalente 0 der Observablen in Form
von expliziten analytischen oder numeri-
schen Funktionen der zu bestimmenden
Modellparameter und Anfangsbedingun-
gen p = [pip2,...pm]. Der Bestimmung
dieser Funktionen geht jedoch die analyti-
sche oder numerische Ldsung des er-
wahnten Anfangs- und Randwertproblems
voraus. Dies geschieht mit bekannten Na-
herungswerten fiir die Unbekannten
p =[pip2...,pm] bei der ersten Iteration.
Fur den Fall gewdhnlicher Differential-
gleichungssysteme ist das Parameterbe-
stimmungsverfahren in (Beutler, 1982) be-
schrieben worden. Fir Systeme partieller
Differentialgleichungen beruht das Para-
meterbestimmungsverfahren auf den glei-
chen Prinzipien.
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Fachteil

3. Aligemeines
uber das Erdmodell

3.1 Da die Deformationen der Erde lber
lange Zeitintervalle sehr klein sind, ist es
oft von Vorteil, die Bewegung der Erde als
eines materiellen Kontinuums in die Summe

x=y+u (3)

bestehend aus einer deformationsfreien
Bewegung

y=Q(H) Y (4)

eines «erstarrten» Modells der Erde und
einer Verschiebung

7] (5)
zu zerlegen.

Dabei ist (4) die Losung des Anfangs- und
Randwertproblems fiir das rotationssym-
metrische Starrkérpermodell der Erde.
Y und y sind die geozentrischen Radius-
vektoren einer und derselben Partikel g
(s. 3.3) dieses Modells zu den Augenblik-
ken t, und r. Daher gilt

Q(to,[{) =E ’ (6)

wobei E der |dentitatstensor ist. Q ist dann
ein Drehtensor. Der dem Eigenwert 0 ent-
sprechende Eigenvektor @ des Antisymmet-
rischen Tensors (dQ/dt) - Q7, d.h. der sog.
duale Vektor dieses Tensors, ist dann iden-
tisch mit der Winkelgeschwindigkeit der Ro-
tation des Starrkdrpermodells der Erde.
Ausser von der unabhéngig veranderlichen
Zeit t hangt Q noch von der sog. dynami-
schen Abplattung H = (C—A)/ C des Starr-
kérpermodells der Erde ab, wobei A und C
deren zentrale Hauptragheitsmomente sind
und A < Cgilt.

Wichtig ist, dass die dynamische Abplat-
tung H — als der einzig relevante Parameter
eines rotationssymmetrischen Starrkdrper-
modells der Erde — und die 6 Anfangsbe-
dingungen durch das im Abschnitt 2 ge-
schilderte Parameterbestimmungsverfah-
ren ermittelt werden. Die erwahnten 6 An-
fangsbedingungen geben die Lage und
die Winkelgeschwindigkeit ¢ des durch
die zentralen Haupttragheitsachsen des
Starrkdrpermodells der Erde definierten
erdfesten Koordinatensystems gegeniber
einem Inertialsystem im Augenblick z, an.
Die erwahnte Anfangswinkelgeschwindig-
keit & wird dabei im Augenblick 7, ko-
linear mit der Achse des maximalen zen-
tralen Tréagheitsmomentes gewahlt. Man
kann dann zeigen, dass sie es auch — bis
auf Abweichungen von hochstens 0.01”
(diese entsprechen der Abplattung H der
Erde und den stérenden Gezeitenkraften
der Sonne und des Mondes und heis-
sen Oppolzer’sche Nutationen) — fir alle
Zeiten bleibt. Dartiber hinaus bleibtim Feld
der dusseren Gravitations-Gezeitenkrafte
(Sonne, Mond) die in der Achse des maxi-
malen zentralen Tragheitsmomentes ei-
nes rotationssymmetrischen Starrkérper-
modells liegende Komponente der Winkel-
geschwindigkeit seiner Rotation exakt er-
halten. Dies stimmt auch im allgemeinen
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Fall, wenn ®(z,) nicht kolinear mit der
Achse des maximalen zentralen Tragheits-
momentes gewahlt wird. Im Falle unseres
erstarrten Erdmodells ist dann der Betrag
dieser Komponente gleich w=1 & |, da
dies im Augenblick z, definitionsgemass
der Fall ist.

3.2 Unter dem eigentlichen Erdmodell ver-
stehen wir einen fiktiven Korper, dessen
Masse bzw. Abplattung H (s. 3.1) gleich
jener der Erde bzw. des zuvor definierten
Starrkérpermodells der Erde ist und des-
sen (im Korper «eingefrorene») zentrale
Haupttragheitsachsen in jedem Augenblick
t mit jenen des Starrkérpermodells der
Erde (s. 3.1) zusammenfallen. Darlber-
hinaus soll die Dichte im Erdmodell gleich
verteilt sein wie in einer, mit der Winkelge-
schwindigkeit w (s. 3.1) um die Achse des
maximalen zentralen Tragheitsmomentes
rotierenden, Gleichgewichtsfigur eines
Gemisches idealer Flissigkeiten.

Der Spannungstensor T, (siehe 5.2) im
Erdmodell ist also definitionsgemass iso-
trop, d.h.

To:= -p(q)E , @)
wobei p(q) der aus der Theorie der Gleich-
gewichtsfiguren rotierender Flissigkeiten
(s. 8.3) bekannte hydrostatische Druck
als Funktion der Partikel ¢ (s. 3.3) ist. Da
das soeben definierte «erstarrte» Erdmo-
dell die gleiche dynamische Abplattung H
wie das in 3.1 definierte Starrkdrpermodell
hat, ist die Bewegung dieser beiden Mo-
delle nicht nur vom kinematischen son-
dern auch vom dynamischen Standpunkt
identisch.

3.3 Mit dem Erdmodell und mit der Erde
(s. 3.4) kann ein im allgemeinen krumm-
liniges Koordinatensystem ¢ = (¢, ¢°, ¢°)
so verknlipft werden, dass die Koordinaten
4 jeder Partikel mit der Zeit konstant blei-
ben. Das Koordinatensystem g=(q', ¢°, ¢°)
«macht somit die Deformationen der Erde
mit». Demnach kann g =(q", ¢%, ¢°) als der
Name einer Partikel aufgefasst werden.
Unter Yund yin (4) sind also die geozentri-
schen Radiusvektoren

Y = y(q,t0) und y = y(q.1) (8)

einer und derselben Partikel g unseres
Erdmodells zu den Augenblicken 7, und ¢
zu verstehen.

3.4 Es ist wichtig zu beachten, dass das
«Erdmodell» zu jedem Augenblick ¢ als
eine gleichmassig rotierende Gleichge-
wichtsfigur definiert wurde (s. 3.2). Der
Begriff «die Erde» wird hingegen firr das
entsprechende — den stérenden (realen
und inertialen) Volumenkréaften ausgesetz-
te — deformierbare materielle Kontinuum
reserviert.

Der geozentrische Radiusvektor der Par-
tikel ¢ in der Erde zum Augenblick ¢ ist dann

x =x(q,1) = y(g.t)+u(qgm). 9)

4. Naheres uber die
Unbekannten eines
Erdmodells

4.1 Im Rahmen dieser kurzen Ubersicht
ist es nicht méglich, die mathematischen
Probleme der globalen Geodynamik in
voller Allgemeinheit darzulegen. Wir be-
schranken uns daher auf das reprasentative
Beispiel eines isotropen linear elastischen
Erdmodells. Unter den rheologischen Pa-
rametern (s. Abschnitt 5) eines solchen
Erdmodells (s. 3.2) sind dann die Dichte
00, das Kompressionsmodul K und das
Schubmodul u zu verstehen. Das erwahn-
te Erdmodell nimmt dann die folgende Ge-
stalt an:

(10)

Q(q:1) = 0o(q) = 0ot 01 P1(q)+ ... +0.Pulq)
K(q,0) = K(q) = Ko+ K1®4(q)+ ...+ Ky Ps(q)
w(q,1) = 1(q) = ot p®i(g)+ ...+ 1 PAq)
wobei ®; (q) bekannte unabhéngige Ba-
sisfunktionen (z.B. die orthogonalen La-
placeschen Kugelfunktionen) der Partikel
q (s. 8.3) sind.

Die Funktion o, (s. (10)4) unterliegt be-
stimmten — erst in 8.3 naher spezifizierten
Bedingungen. Diese driicken in mathema-
tischer Gestalt die bereits in 3.2 aufgestell-
ten Annahmen aus, dass das Erdmodell
eine gleichmaéssig rotierende Gleichge-
wichtsfigur mit der Masse der Erde und mit
der dynamischen Abplattung H des in 3.1
definierten Starrkdrpermodells der Erde
ist.

4.2 Hier (s. (10);) und im folgenden unter-
scheiden wir zwischen der Dichte der Par-
tikel g (s. 3.3) des Erdmodells und der
Dichte der gleichen Partikel der Erde (be-
achte 3.4) zum gleichen Augenblick ¢ durch
die Bezeichnungen

00(g.1) = 00(g) und o(q,1) (11)
Demgegenlber betrachten wir die Kom-
pressions- und Schubmodule K und u als
nur partikelabhéangig, d.h. zeit- und defor-
mationsunabhéngig. Daher nimmt K bzw.
w in einer bestimmten Partikel ¢ der Erde
fur alle Zeiten den gleichen (konstanten)
Wert wie im Erdmodell (s. 3.4) an.

4.3 Mit Ruicksicht auf 3.3 ist nun nach (9)
x=y+u
der geozentrische Radiusvektor der Parti-
kel g der Erde (s. 3.4). Die Anfangsbedin-
gungen lauten dann
(12)

u(g,t0) = uolq) = V(uor®+(q)+...+ttosPolg))+

+VX(001P1(q) + -+ 00e(q))

wobei ®(q) := Zuo®;(g) und Y(q): = Zwog;
®(q) die sog. Skalar- und Vektorpotentiale
des Verschiebungsfeldes u im Augenblick
to sind (®; sind dabei — wie in (10) — gege-
ben) und

V:=G'Y, (13)
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Partie rédactionnelle

Hierbei sind G' die Basisvektoren der lo-
kalen kontravarianten Basis des im Erd-
modell eingefrorenen Koordinatensystems
q=(q'. 4. ¢°), d.h.

(14)

G = —065Ge (ij,k)=cykl (1,2,3),

G- (GxGy)
mit
G=2r . (Gnach®) (15

als Basisvektoren der zu (G', G2, G®) rezi-
proken, d.h. kovarianten, Basis.

Weiter ist V; die kovariante Ableitung nach
q'. Fir diese gilt:

V,»G’: = V,-G,-: =0 5

)

und V0 =00 . a7
Vivj—0y;— Ty Ve o, (18)

bzw. V= Q@i+ vk (19)
wobei  9;:= /0y . (20)

und @ ein Skalarfeld, v; = v-G, bzw. v/ =
v-G’ die kovarianten bzw. kontravarianten
Komponenten eines Vektorfeldes v und
I} = G"-(8;G) =-(8,G") - G;die Christo-
fel-Symbole sind.

Istg=(q", 4%, ¢°) ein kartesisches Koordi-
natensystem, dann geht die kovariante
Ableitung in die partielle tber, d.h.:

Vi=0i
Fur kartesische Koordinaten: (21)
6 = Gi ai =:3

Dabei ist (ab (13) jeder Term mit zwei
gleichnamigen Indizes als eine Summe
Uber alle Werte (hier 1,2,3) dieser Indizes
zu verstehen. Diese sog. Einsteinsche-
Summierungsregel wird auch weiterhin
verwendet.

4.4 In 2.1 haben wir das Prinzip des Pa-
rameterbestimmungsverfahrens skizziert,
durch das der Vektor p der Unbekannten
D1, - .., Pm €rmittelt wird. Diese sind identisch
mit den Koeffizienten der Reihenentwick-
lungen (10) und (12), d.h.:

P=I[pi.p2....pm] = (22)
= [ Oos + v 05 K + 055K 55 s wcs iUt s 5
Uody W1y -+, Woe].

Somit ist

m = a+b+c+d+3e+3 (23)

Die Frage, ob nun alle Unbekannten (22),
die ja grosstenteils die physikalischen Ei-
genschaften des Erdinnern beschreiben,
durch Beobachtungen an der Erdober-
flache eindeutig bestimmt werden kon-
nen, lassen wir dabei ausser Betracht. Die
Antwort auf diese Frage hangt von der Art
der Beobachtungen (z.B. astrometrische,
Satelliten-, VLBI-, gravimetrische, seismi-
sche usw. Beobachtungen) und von der
Volistandigkeit des Erdmodells ab

4.5 Betrachten wir als Beispiel fiir die Ob-
servable 0 die gegeniber einem Inertial-
system «beobachtete» Lotrichtung g in ei-
ner bestimmten Partikel g (s. 3.3) der Erd-
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oberflache 9E. Die empirischen Werte g’
dieser Observablen werden durch astro-
nometrische Beobachtungen gewonnen.
Das Modelldquivalent g der Lotrichtung ist
dann mit dem Erdmodell wie folgt verknupft

g8:=g/g _ ; (24)
wobei g=-VW (25)
mit W=W+U , (26)

wobei W das Schwerepotential der Erde
(siehe 3.4) —und U das Gezeitenpotential
der Gravitationskraft der Sonne und des
Mondes in einer festen Partikel g (siehe
3.3) der Erdoberflache o E sind. Fur V gilt
dabei

= S(g'.tp) o '
e (q.t:p)—x(q’.t:p) D-dV’ = Vigtp),
" (27)

wobei

E, dasdurch die Oberflache ¢ E, des Erd-
modells (siehe 3.4) im Augenblick ¢
eingeschlossene Gebiet ist.

dV” ist ein Volumenelement des Gebietes
E,,

q € dV'cE,,
q €0E, |,
t istdie Zeit,

p derin (22) definierte Vektor der unbe-
kannten Parameter p;,

o die Dichte der Erde (s. 3.4 und (11))
und

x der geozentrisghe Radiusvektor der
Partikel g € 0E, bzw. ¢’ € E, und

D = det (Vx). (28)

Dabeiist Vxdas Tensorprodukt der Vekto-
ren ¥ (siehe (13) bzw. (21)) und x, det (Vx)
ist die Determinante, d.h. die dritte Skala-
rinvariante des Tensors Vx.

Betrachtet man g vortibergehend als kar-
tesische Koordinaten der Partikel g = (¢,
4% ¢°) im Erdmodell (s. 3.3 und 3.4), so
nimmt dann (8) die Form y = G,¢’ an. Die
kovarianten Basisvektoren G; sind dabei
partikelunabhéngig. Hiermit und mit (9)
und (23) folgt dann aus (28), dass

D = det (E + Vu) (29)

Die in (27) figurierende Dichte o und die
Trajektorie x der Partikel g bzw. ¢’ der Erde
(s. 4.2) sind im allgemeinen Funktionen
der Zeit und aller—d.h. nicht nur der ersten
(a+1) (vgl. (10); und (22)) — unbekannten
Parameter p;, ... ,p». Denn die Dichte p=0
(g.t) (s. (11)2) sowie auch die Trajektorie
x=x(g,t) der Partikel ¢ machen die Lésung
desin2.1 und 2.2 erwahnten Anfangs-und
Randwertproblems aus, und in diesem
treten alle Parameter py, ..., p,, auf. Daher
muss sich im allgemeinen ergeben (siehe
(9)), dass

x=x(qt;p) = Q(t,H) - Y+u(q:tp) (30)

und 0 = o(q.t;p) (31)

mit ¥ nach (8); und p nach (22).

5. Rheologische Gleichungen
5.1 Um den Rahmen dieses Ubersichts-
artikel nicht zu sprengen, haben wirim Ab-
schnitt 4 entschieden, die mathematischen
Probleme der globalen Geodynamik nur
am Beispiel des isotropen linear elasti-
schen Erdmodells zu demonstrieren. Die
Materialeigenschaften dieses, wie auch
jedes anderen (z.B. flussigen) Modells,
werden durch die sog. rheologischen Glei-
chungen charakterisiert. Diese geben die
Abhéngigkeit des Spannungstensors T
vom Deformationstensor D oder von der
Deformationsgeschwindigkeit dD/dtin der
Partikel g der Erde an (s. 3.3 und 3.4).

5.2 Die physikalische Bedeutung des Span-
nungstensors wird implizit durch

t=T-n (32)
erklart. Diese Relation stellt den folgenden
Sachverhalt dar: Die auf eine Einheits-
flache mit der Normalen n (Einheitsvektor)
an der Stelle der Partikel g durch die «auf
der Seite der Normale» angrenzenden
Umgebung ausgelibte Kraft ¢ ist gleich
dem verjiingenden Produkt T - n des Span-
nungstensors T und der Richtung der Nor-
malen n.

Da die Deformationen der Erde sehr klein
sind, ist es sinnvoll, den Spannungstensor
T der linearen elastischen Erde (siehe 3.4)
in die Summe

T=1T,+dT (33)

des isotropen Spannungstensors T, unse-
res Erdmodells (s. 3.4 und (7)) und des im
allgemeinen anisotropen «erzwungenen»
Spannungstensors OT zu zerlegen.

5.3 In der Elastizitatstheorie tritt an Stelle
des Deformationstensors D der sog. Ver-
zerrungstensor U auf. Dieser wird wie folgt
definiert:

U:=1/2(g;-G))G'G , (34)
wobei g;;und G;; die Komponenten der Me-
triktensoren g; g'g’ und G;G'G’ in einer und
derselben Partikel g (siehe 3.3) im defor-
mierten (unsere Erde) und nichtdeformier-
ten (unser Erdmodell; s. 3.4) Zustand des
elastischen Korpers sind. Das heisst, dass

G; = G;- G;, mit G;nach (15), (35)
8i=8 '8 > wobei (36)
g = 0x/0gq; , mit x nach (9). (37)

Bleiben die auf den nicht deformierten Zu-
stand bezogenen Anderungen der Entfer-
nung zweier beliebiger Partikel des ela-
stischen Korpers im Vergleich zu dieser
Entfernung klein, dann ergibt sich aus (34)
mit (9), (37), (36), (15) und (35) bis auf Ter-
me zweiter Ordnung in Uj;, dass

U=1/2(Vu + uV) (38)

wobei u nach Abschnitt 3.3 und ¥ nach
(13), (16) — (20) bzw. (21) definiert sind.

5.4 Aufgrund thermodynamischer Uber-
legungen kann gezeigt werden, dass die
eingangs des Abschnittes 5.1 erwéhnten
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rheologischen Gleichungen der linear ela-
stischen Erde die folgende Form anneh-
men:

0T = KE trU + 2u (U-1/3E rU) , (39)

wobei trU die Spur, d.h. die erste Skalarin-
variante des Verzerrungstensors U ist und
K und p die bereits im Abschnitt 4.1 er-
wahnten Kompressions- und Schubmo-
dule sind.

Setzt man nun (38) in (39) und dies dannin
(33) ein, ergibt sich mit 1 (Vu) = tr(uV) =
V - u die in u explizite rheologische Glei-
chung der linear elastischen Erde:

T=[-p+ (K-2/3u)(V-u)]E+
w(Vu + uV), (40)

wobei aus physikalischen Griinden p>0,
K>0und u>0.

6. Kontinuitatsgleichung

6.1 Die Kontinuitéatsgleichung ist ein «dif-
ferentielles» Aquivalent des «integralen»
Massenerhaltungsgesetzes. Als solche
hat sie einen universalen Charakter und
muss somit fiir die Losung aller kontinu-
umsmechanischen Anfangs- und Rand-
wertprobleme mitberiicksichtigt werden.
Das Massenerhaltungsgesetz behauptet,
dass die zeitliche Anderung der Masse in
einem beliebigen —im allgemeinen zeitlich
veranderlichen —raumlichen Gebiet gleich
dem Massenfluss durch die Grenzflache
dieses Gebietes ist. Die Kontinuitatsglei-
chung driickt den aquivalenten Sachver-
halt aus, dass die zeitliche Anderung der
Dichte einer Partikel ¢ proportional der re-
lativen zeitlichen Anderung des Volumens
dieser Partikel ist.

Sei nun @ ein beliebiges Skalarfeld im
physikalischen Raume E° und

D = d(q,)

sein Wert an der Stelle der Partikel g (s. 3.3)
im Augenblick ¢. Die durch

Vo 1= 0(g,0) (41)
definierte zeitliche Ableitung V,, gibt dann
die zeitliche Anderung des Skalarfeldes ®
in der Partikel g an. Sie wird sinngeméass
die materielle — oder substantielle Ablei-
tung genannt.

Die Kontinuitatsgleichung kann nun wie
folgt geschrieben werden:

Voo + V- (Vo¥) =0, (42)
wobei x = x(g,t) die Partikeltrajektorien, o

die Dichte (s. (11),) und ¥ derin (13) bzw.
(28) definierte Operator sind.

Betrachtet man x in einem Bezugssystem,
indemy = y(q,z) flr jede Partikel g und alle
Zeiten ¢ konstant bleibt (nach (4) existiert
ein solches Bezugssystem), ergibt sich
mit (9), dass V,x=V,u. Damit geht die
Kontinuitatsgleichung (42) in

Vo0 + 0V - (Vou) = 0 43)

Uber. Als eine Tensorgleichung muss (43)
in allen Bezugssystemen gelten.
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6.2 Da die Deformationen der Erde sehr
klein sind, ist es sinnvoll, die Dichte o einer
beliebigen Partikel g der Erde (siehe 3.4)
in die Summe

0 =00+ d0 (44)
der Dichte g, dieser Partikel im Erdmodell
(s. 3.4) und der «erzwungenen» Dichte-
anderung dp zu zerlegen. Setzt man dies
in (43) ein, berlcksichtigt, dass nach (11),
und (41) Vo0, = 0 ist, und vernachléssigt
den kleinen Term 80V - (V,u), ergibt sich
V00 + 0,V (Vou) = 0 oder V,[d0 + 0o
(V-u) ] =0. Durch Integration tiber die Zeit
ergibt sich schliesslich, dass

80 = —0o(V'u) (45)

wobei die Integrationskonstante gleich 0
gesetzt wurde, da V-u die relative Volu-
menanderung ist und somit V-u:=0 und
0 0:=0 aquivalente Bedingungen sind.

7.Die Poisson’sche Gleichung
7.1 Betrachten wir nun ein Kontinuum, des-
sen Gestalt (Masse, Volumen, rheologi-
sche Eigenschaften) derart ist, dass die
in einer seiner Partikel g beobachteten An-
derungen der Selbstgravitationskréfte ver-
gleichbar mit den (diese Anderungen —via
Deformation — erzeugenden) &usseren
Gravitations-Gezeitenkraften sind. Da die
Anderungen der Selbstgravitationskréfte
in der Partikel g wiederum abhangig von
den Anderungen des Dichtefeldes des er-
wéhnten Kontinuums sind, muss diese
Abhéngigkeit fir die Losung des Anfangs
und Randwertproblems der Bewegung
dieses Kontinuums mitber(cksichtigt wer-
den. Diese Abhangigkeit wird auf eine ele-
gante Weise durch die sog. Poisson’sche
Differentialgleichung ausgedruickt:

AV = —4nko , (46)
wobei V' das Potential der Gravitations-
kraft in der Partikel ¢, k die Gravitations-

konstante o die Dichte in der gleichen Par-
tikel g und

A=YV
der Laplace-Operator sind.

(47)

7.2 Wie die Schwerebeobachtungen zei-
gen, weist die reelle Erde die Eigenschaf-
ten des oben erwéhnten Kontinuums auf.
Daher muss die Poisson’sche Gleichung
(46) fir die Losung des Anfangs und Rand-
wertproblems der Bewegung unserer ela-
stischen Erde mitberiicksichtigt werden.
Nach (44) und (45) ist noch

0 = Qo(1-V-u) (48)
und somit geht die Poisson’sche Gleichung
Uber in

AV = —4n0o(1-V-u) . (49)
8. Bewegungsgleichungen

8.1 Sei x = x (g,) der baryzentrische Ra-
diusvektor der Partikel g eines beliebigen
Kontinuums im Augenblick ¢, o die Dichte, 1/
resp. Udie Potentiale der Gravitationskraft

des Kontinuums resp. der dusseren Gra-
vitations-Gezeitenkréfte und T der Span-
nungstensor in der erwahnten Partikel g.
Die Trajektorien x = x (g,t) der Partikel g
des erwahnten Kontinuums gehorchen
dann den folgenden Bewegungsgleichun-
gen:

oV =oV(V+U)+V T , (50)
Volp:=0 , k=123 (51)

wobei I, kovariante Basisvektoren einer
inertialen Basis sind, V2 := V,V, (s. (41))
und ¥ nach (13) bzw. (21) definiert ist.
Die Gleichung (51) muss der Gleichung
(50) zugefiigt werden. Die letztere ist nam-
lich genau dann eine Bewegungsgleichung
im Sinne der Newton’schen Mechanik,
wenn V,x eindeutig im folgenden Sinne
definiert ist

Vox = vo(XiIi) = (voxi)Ii (52)

mit x' = x-I', wobei I' die zu I, reziproke
inertiale Basis ist.

8.2 Um die weiteren Ausfiihrungen kiirzer
zu halten, nehmen wir voriibergehend an,
dass q=(q'.¢%¢°) kartesische Koordina-
ten sind. Die unter (15) und (14) definier-
ten Vektoren G;und G',i=1,2,3 sind dann
identisch mit den Basisvektoren der ent-
sprechenden reziproken Basen. Diese
sind partikelabhéngig und im Sinne des
Abschnittes 3.3 mit dem Erdmodell fest
verkniipft. Nach Abschnitt 3.3 muss dann
gelten

yg.0) = 4G () , (53)
wobei gemaéss (4) und (6)

Gi(1) = Q(,H) Gi(to) (54)
und somit Q (1, H) = G;(t)G' (t,) (55)

wobei — wie schon frilher (s. (28)) — Gi(1)G’
(t,) das Tensorprodukt der Vektoren Gi(z)
und G'(t,) ist. Dabei ist Q ein Drehtensor,
d.h.

1 Q(t,H)- Y1 =1YIfiralle Yund alle .

(56)
Definiert man die inertiale Basis I' als
I':=Gt) , (57)
so lautet dann (55)
0=GlI' =G, - (58)
(56) gilt nun genau dann, wenn
VoGi=o X G; , (59)

wobei —mit Riicksicht auf (51) — @ die Win-
kelgeschwindigkeit der Rotation der mo-
dellfesten Basis G; gegentiber der inertia-
len Basis I} ist. Hieraus folgt weiter

Vo2G; = (Void) X G; + & X (& X G)) .

(60)
Mit (59) bzw. (60) ergibt sich dann aus (58):
Vi@ =oXQ , (61)
bzw. V.20 = (Vo) X Q + & X (@ x Q).
(62)
Aus u:=uG; (63)
349



Partie rédactionnelle

erhalten wir unter Beriicksichtigung von
(59), dass

Vot = (Voi')G; + u' @ X G; (64)
Man definiere nun «die erdmodellfeste»
zeitliche materielle Ableitung 0, gemass

aon = 0 k=1 ;2:3 ’ (65)

wobei G, die durch (53) definierte «erd-
modellfeste» Basis ist.

Dann ist

(Vou!)G; 0.(UG) = dou

und damit geht dann (64) tiber in

Vo = dou+oXu. (66)

Hieraus folgt dann via V2u = (8,+ w X)
(0o + X u)

Voiu=0,2u+ 20X (0ou) + (3o0) Xu +
O X (0 X u). (67)
Bendtzen wir in (50) fir o (48), fir x (30), fur
T (40) und fir

V=V,+dV, (68)
wobei V, das Gravitationspotential des
Erdmodells (s. 3.4) in der Partikel g (s. 3.3)
ist, erhalten wir
0(1-Vu)[(VsQ) Y+V,%u] =
[VVo+V(U+0V) -

- Up+(K+1/3u)V(V-u)+ulu

wobel wir noch die Relatlonen V E= v,
v (Vu) V- V)u=Auund V- (uV) (V- u)
V=V(V-u) gebraucht haben

Setzen wir in (69) fiir V,2Q aus (62) und fir
Vo u aus (67) ein und beriicksichtigen,
dass nach (4) Q-Y=y, wobei y der geo-
zentrische Radiusvektor der Partikel g des
Erdmodells im Augenblick ¢ ist (s. 3.3 und
3.4). Mit

Vol = 8,0 ,

0o(1 —ﬁ-u)
(69)

(70)
was Ubrigens aus (66) folgt, erhalten wir
dann:
00(1=V-u)[(8 o) Xy +TX (@ X y)+ 2u+
20X (8ou)+(0,00) X u+ (71)
+u)><(cu><u)] Q( —V u)[VV0+V(U+dV)]
—Vp+(K+1/3,u) V(v ‘u)+ulu

8.3 Die Bewegungsgleichungen einer mit
konstanter Winkelgeschwindigkeit & um
die Achse des maximalen zentralen Trag-
heitsmomentes rotierenden Gleichge-
wichtsfigur eines Gemisches idealer Flis-
sigkeiten lauten aber:

oV Vot 1/2[0?y~(@y)l}-Vp = 0 (72)
oder o[V Vo0 X (Gxy)]-Vp = 0. (73)
Die Gleichungen (73) missen zusammen
mit der Poisson’schen Gleichung (s. (46))
VV, = —4mko, (74)

geldst werden. Hinzu kommt noch — als
«Randbedingung» — die aus seismischen
Beobachtungen gewonnene Dichtevertei-
lung fo(y®d) entlang der Rotationsachse
des Erdmodells

fo(yd)) = Ao+ a1y (y(_ﬁ)+ .- -+asws(ya)) (75)
mit ®: = /w, O < y< b:= Betrag des geo-
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zentrischen Radiusvektors des Rotations-
pols an der Oberflache des Erdmodells.
Dabei sind v;, ...,\; gegebene unabhan-
gige Basisfunktionen (vgl. (10);) und
ay,...,a; bekannte Konstanten.

Der Ausdruck (10), ist dann als eine ap-
proximierende Funktion der aus der L6-
sung des Gleichungssystems (73)—(75)
folgenden Dichteverteilung 0,(y) = 00(¢) zu
verstehen.

Um die Sache nicht noch weiter zu kompli-
zieren, nehmen wir dabei an, dass die
dynamische Abplattung H des als Losung
von (73)—(75) gewonnenen Erdmodells
mit jener empirischen Abplattung tberein-
stimmt, die in 3.1 definiert und in 3.2 als
Abplattung des Erdmodells angenommen
wurde.

8.4 In (71) figuriert die gleiche Summe von
Termen wie auf der linken Seite von (73).
Diese verschwindet aber gemass (73) und
somit geht dann (71) Uber in:

00(1=V-u)[(860) X y+82u+2% X (Bo) +
(0o0) Xu+wXx(dXu)]—

—0o( V)& X (BXy)=0o(1-V-u) V (U+5 V)~
@o(v ")v Vot (76)

H(K+1/3)V(V-u)+plu.

Das Produkt ¥V -u[.. ] auf der linken Seite,
sowie das Produkt (V-u)V (U+6V) auf der
rechten Seite von (76) kénnen nun gegen-
ber den Termen (V-u)® x (@ xy) und
(V-u)VV, vernachlassigt werden. Denn,
mit den aus der Starrkorperldsung (s. 3.1)
gewonnenen Werten o =1 o I=2x rad/Tag
~ 7,3-107° rad/sec, | 9,@ | = 2.5:107" rad/
sec® und mit y=Iyl<6.4-10° m und g=
IV V, I= 10 m/sec? ergibt sich

| & X (@xy)1/g<3.210° und | (8,0) Xy |
/9<1.6107 | (77)
wobei | (3,0 Xy | der grosste Term in der
eckigen Klammer auf der linken Seite von
(76) ist. Dividiert man (76) durch o, ergibt
sich also nach den erwahnten Vernach-
lassigungen:

8o U+2BX (Bott) +(060) X u+B X (BXu)+
(VWo)Vu (78)
-1 /oo[(K+1/3p,) (V-u)+plul-voy =
wobei

Wo := Vo + 1/2 [0?)? — (5-y)?] (79)

das Schwerepotential des Erdmodells (s.
3.4) inder Partikel g ist (s. 3.3). In (78) sind
o, ¥, 00, K, , Wound U als bekannt zu be-
trachten und zwar & aus der Losung des
Starrkdrperproblems nach 3.1 (s. dazu
auch (61)), o, und W, aus der Lésung des
Gleichungssystems (73)—(75) mit der An-
nahme des Betrages der zuvor erwahnten
Winkelgeschwindigkeit o und K und w
aus der letzten iterativen Naherung, wo-
bei die erste Iteration durch die Wahl der
Naherungswerte der in (10),5 figurieren-
den numerischen Koeffizienten K, ...,
Kb, p1, ... o erfolgt. y und U sind bekannt.

Der Bewegungsgleichung (78) muss noch
die Poisson’sche Gleichung fiir das sog.
sekundére Gezeitenpotential 8V zugefugt
werden. Diese lautet

AV = 4Amkoo(V-u) (80)

und folgt aus den Poisson’schen Gleichun-
gen (49) und (73) unter Berlcksichtigung
der Definition (68) des sekundaren Gezei-
tenpotentials & V. Dieses ist identisch mit
dem Gravitationspotential der durch den
priméren Gezeitenpotential U relativ zum
Erdmodell (s. 3.4) hervorgerufenen Mas-
senumverteilung.

9. Schlussbemerkungen

Das Gleichungssystem (78) und (80) ist

Ausgangspunkt zahlreicher, mathematisch

meist sehr anspruchsvoller Untersuchun-

gen verschiedenster Aspekte der Bewe-
gung der elastischen Erde (s. 3.4). Dabei
werden je nach Aspekt bestimmte Terme
der linken Seite von (78) gegenuber der

Storungskraft VU vernachlassigt. So ist

|§U|/g<21o-7 I2(u><(aou)|/g<10_9

I (@o0xul /g<10 “und | Gx(Bxu)l / g<

107'°, wobei g=I VV, I. Ausserdem kon-

nen alle Untersuchungen fiir eine kompres-
sible oder nichtkompressible Erde durch-
gefihrt werden. Im letzteren Falle ist V-u=

0. K(V-u) nimmt dann jedoch einen end-

lichen konstanten Wert an. Nennen wir

hier nur einige wenige der zuvor erwéhn-
ten Aspekte der Bewegung der elasti-
schen Erde:

— Setzt man in (78) U:=0, erhalt man die
Gleichungen fir freie Schwingungen
u=u,(q,t) (s. 3.3 und 3.4) der Erde.

— Setzt man in (78) d,u=0 und g,0=0,
erhalt man die Ausgangsgleichungen
fur die Love’sche statische Theorie der
gezeitlichen Deformationen der Erde.

— Sei y=0,(t,H)-Y(q) die Losung der ho-
mogenen (d.h. VU:=0) Bewegungs-
gleichungen des in 3.1 und 3.2 definier-
ten «erstarrten» Erdmodells. Diese L6-
sung stellt die sog. freie Nutation unse-
res Erdmodells bzw. die zugehérige
Bewegung der Partikel ¢ (s. 3.3) dar.
Uberlagert man dieser Lésung — ge-
mass (9) — die freie Schwingungen
u=u(q,1) (als Lésung von (78), (80) mit
U:=0 und & aus der zuvor erwahnten
Lésung der homogenen Bewegungs-
gleichungen) ergibt sich die sog. «freie
Nutation» der elastischen Erde:

xo(q,t) = Qolt,H)-Y(q)+uo(q,1) (81)
— Sei analog y=0(t,H)-Y(q) eine parti-
kulére Lésung der inhomogenen (d.h.
¥ U % 0) Bewegungsgleichungen des in
3.1 und 3.2 definierten «erstarrten» Erd-
modells. Uberlagert man dieser Lésung
—gemass (9) — die durch die Losung des
Gleichungssystems (78) und (80) ge-
wonnene Verschiebungen u=u(q,1),
ergibt sich die sog. «Prézession und
Nutation» der elastischen Erde:

x1(q,0) = Q:(t H) Y(q)+m(q,0) - (82)
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Uberlagert man die <homogene» und die
partikulare «inhomogene» Ldsungen
(81) und (82) (dieses Verfahren wird hier
nicht erlautert), ergibt sich die Bewe-
gung der elastischen Erde zu

x=0Y+u
Wobei Q ein Drehtensor ist.

In der Einleitung haben wir betont, dass
ein Begriff wie die «Winkelgeschwindigkeit
der Rotation der Erde» fiir ein nichtstarres
Erdmodell neu definiert werden muss. Die
Gestalt einer solchen Definition ist dann
nur eine Frage der Zweckmassigkeit. An-
gesichts der Tatsache, dass die Bewe-
gung der Erde durch astrometrische Be-
obachtungen an der Erdoberflache erfasst
wird, erscheint z.B. die folgende Definition
der Winkelgeschwindigkeit der Rotation
der Erde zweckmassig:

(83)

Die «Winkelgeschwindigkeit der Ro-
tation der Erde» sei identisch mit der
Winkelgeschwindigkeit der Rotation
jenes Bezugssystems, in dem die
Summe der zu geozentrischen Ra-
diusvektoren y(q) transversalen
Komponenten relativer Geschwin-
digkeiten aller Partikel ¢ der Erd-
oberflaiche in jedem Augenblick ¢
verschwindet. Dieses System wird
dann «das erdfeste Bezugssystem»
genannt, obwohl wir diese Bezeich-
nung—vom Wortlaut her betrachtet—
eher der Klasse aller in 3.3 definier-

(84)

ten Koordinatensysteme g=(¢",4%¢°)
hétten zusprechen miissen.

Definieren wir noch die zeitliche materielle
Ableitung 6, gegeniiber dem zuvor defi-
nierten erdfesten Koordinatensystem ge-
mass

OE, :=0 , k=123 , (85)
wobei E, die Basisvektoren des erdfesten

Koordinatensystems sind. Gemass der
Vorschrift (66) gilt dann

Qo = Oou + Q Xu (86)

wobei () die Winkelgeschwindigkeit der

Rotation des erdfesten Systems (s. (85)

gegenuber dem durch (53)—(56) definier-

ten erdmodellfesten System (Basisvekto-

ren G)) ist.

Die das erdfeste Bezugssystem definie-

rende Bedingung (s. (84)) lautet dann

af X (dou)dS =0, mity:=yly , (87)
Eo

wobei ¢ E, die Oberflache unseres Erdmo-

dellsistundu : =

Hiermit folgt dann aus (86):

[ 3 = 3

any X (0ou)dS any X (Q X u)dS, (88)

wobei y, 8,4 und du bekannt sind. Folg-

lich kann Q) aus (88) bestimmt werden und

O =0+0 (89)
ist dann die «Winkelgeschwindigkeit der
Rotation der elastischen Erde».

Damit schliessen wir unsere Skizze der
mathematischen Methoden der globalen

Geodynamik ab. Betreffend expliziter Un-
tersuchungen der oben erwahnten Aspek-
te der Bewegung der Erde verweisen wir
auf die umfangreichen Literaturverzeich-
nisse der Monographien Jeffreys 1976,
Munk 1975 und Lambeck 1980.
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Das Engagement von Wild Heerbrugg

in der Geodasie

F.K. Brunner, H.R. Schwendener

Ausgehend vom derzeitigen technischen Stand der Vermessungsinstrumente bei
Wild Heerbrugg wird eine Vision «Geodésie der Zukunft» prasentiert. Der Leser wird
dazu in die neunziger Jahre versetzt. Die Veranderungen der «geodatischen Um-
welt» werden an den Beispielen der globalen Geodéasie, Geodynamik und Landes-
vermessung sowie der Ingenieur- und Detailvermessung dargestellt. Wild Heer-
brugg forscht und entwickelt heute mit Blick auf diese Zukunftsvision. Dies wird an
drei konkreten Forschungsprojekten gezeigt.

Partant du niveau technique actuel des équipements topographiques chez Wild
Heerbrugg, on présente une projection «Géodésie du futur». Le lecteur est situé dans
les années 90. Les changements de I’environnement topographique sont décrits au
moyen d’exemples de la géodésie spatiale, de la géodynamique et des travaux des In-
stituts Géographiques et Cartographiques ainsi que des levés techniques et de
détails. Les travaux de recherche et de développement de Wild Heerbrugg d’aujourd-
’hui sont axés sur cette vision d’avenir. Ceci est montré a l'aide de trois projets de

recherche actuels.

1. Einleitung
1.1 Praambel

Die Firma Wild Heerbrugg (Griindungsjahr
1921) besteht ungeféahr halb so lange wie
die Schweizerische Geodéatische Kommis-
sion (SGK), deren 125jahriges Jubilaum im
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Jahr 1986 gefeiert wird. Dennoch haben
die «Wild Gerate» das Arbeitsbild der SGK
stark mitgepragt, denken wir nur an die
klassischen Gerate T4, T3, T2, Disto-
maten, N3, um einige der Hauptvertreter
hier aufzuzahlen.

Wir wollen von der naheliegenden Verlei-

tung Abstand nehmen, an dieser Stelle ei-
nen Ruckblick auf die Instrumentenent-
wicklung der letzten Jahrzehnte zu bringen.
Dagegen wollen wir zum Anlass des SGK-
Jubildums den Versuch unternehmen, eine
Vision der mdglichen instrumentellen Ent-
wicklungen in der Geodésie zu entwerfen.
Dazu stellen wir kurz die modernsten Ge-
rate der geodatischen Produktepalette von
Wild Heerbrugg vor. Nach einer einfiih-
renden Diskussion der herrschenden
Trends bei den Methoden der Geodasie
werden wir unseren Versuch einer Vision
«Geodasie der Zukunft» prasentieren.
Dabei wollen wir unter Geodéasie den gan-
zen Bereich von der globalen Geodasie bis
zur Ingenieurvermessung verstehen, aller-
dings ohne Photogrammetrie und Karto-
graphie. Im Anschluss daran werden Pro-
jekte vorgestellt, die vor allem Forschungs-
charakter haben, und bei denen Wild Heer-
brugg in der interdisziplindren Teamarbeit
stark engagiert ist.

Diese Studie ist gerade wegen der stiurmi-
schen Entwicklung in der Geodésie vor
allem durch die Verwendung kunstlicher
Satelliten von besonderer Aktualitdt. Denn
sicherlich hat GPS (die gebrauchlichen Ab-
klrzungen sind im Anhang zusammenge-
stellt) das Potential, die Geodéasie grundle-
gend zu verandern, nicht nur im Hinblick
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