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Fachteil

Gravimetrisches Geoid der Schweiz

A. Geiger, H.-G. Kahle

Im vorliegenden Aufsatz wird die Methode der Stokes’schen Integration zur Geoid-
bestimmung allgemein dargelegt und am konkreten Beispiel der Schweiz ange-
wendet. Einige Anwendungsmaoglichkeiten der Fouriertransformation in der Phy-
sikalischen Geodasie werden in geraffter Form angedeutet. In den Berechnungen
wurde anhand der Stokes’schen Formel ein Differenzgeoid zum Referenzgeoid,
dem als Kugelfunktionsreihe dargestellten Goddard Earth Model (GEM 9) be-
stimmt. Gesonderte Behandlung erfuhr der das Schwerefeld stark stérende Ivrea-
Kérper. Eine Transformation des gravimetrischen Geoides auf das astro-geodati-
sche Geoid zeigt fiir die signifikanten Punkte eine Ubereinstimmung, die im Mittel
besser als 30 cm ist. Anhand der Transformation wird die Beziehung zwischen dem
Schweizer Datum und dem internationalen IAG 75-Referenzsystem abgeleitet.

Il est question, dans cet ouvrage, de présenter la détermination du géoide par la
méthode de Stokes en général ainsi que de démontrer I'application de cette der-
niére, prenant pour exemple la Suisse. Quelques applications de la transformation
de Fourier dans le domaine de la géodésie seront évoquées. Un géoide différentiel
a été calculé a partir de la formule de Stokes, ceci par rapport au géoide de
référence (le Goddard Earth Model [GEM 9]) décrit en termes de série de fonctions
sphériques. Les masses perturbatrices du champ gravitationel du corps d’lvrée,
situé au sud de la Suisse, ont subi un traitement spécial. La transformation du géo-
ide gravimétrique sur le géoide astrométrique révéle une correlation entre les
points non situés a proximité immédiate du bord d’intégration d’environ 30 cm. Les
paramétres de transformation décrivent la liaison entre le systéme de référence su-

isse (ellipsoide de Bessel) et le systéeme de référence international IAG 75.

1. Einleitung

Als die NASA vor elf Jahren damit begann,
die Meeresoberflache mit Hilfe des Radar-
Satelliten GEOS-3 (J.G.R., 1979) im dm-
Genauigkeitsbereich zu kartieren, erwar-
teten vor allem die Ozeanographen wert-
volle Informationen tGber den globalen Ver-
lauf von grossrdumigen Meeresstro-
mungen und Seegangshéhen. lhr langfri-
stiges Ziel war es, Vorhersagen Uber die
zeitlichen Anderungen der Meeresstro-
mungen (z.B. Golf-Strom) vornehmen zu
kénnen. Eines der sensationellen ersten
Teilergebnisse war dabei die Entdeckung,
dass die zirkumpazifischen und Indonesi-
schen Tiefseegraben mit einer relativ
grossen Depression der Wasseroberfla-
che in der Gréssenordnung von 5 — 10 m
verbunden waren (Chapman and Talwani,
1979). Diese (zeitlich) konstante Depres-
sion des Meeresniveaus, die den Graben-
zonen uber Tausenden von Kilometern
hinweg folgt, liess sich nicht mit ozea-
nographischen oder meteorologischen
Phanomenen erklaren. Stattdessen mus-
ste sie als Stérung im Schwerefeld der
Erde interpretiert werden. Dass die mitt-
lere Meeresoberflache als Niveauflache
des Schwerepotentials der Erde angese-
hen werden kann und die gravitativen Ef-
fekte der Massenverteilung des Erdinnern
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widerspiegelt, ermoglichte aus den Mes-
sungen des zweiten ozeanographischen
Radar-Satelliten SEASAT (Start 1978,
Bernstein (ed.), 1982; Kirwan et al. (eds.),
1983), die Feinstruktur des Schwerefeldes
zu bestimmen. Aus den Anomalien des
Schwerefeldes lassen sich das Relief des
Meeresbodens sowie die Massenvertei-
lung im Erdinnern ableiten. Dank dieser so-
genannten Satellitenaltimetrischen Me-
thode konnten in jingster Zeit viele bisher
unbekannte submarine Gebirge, Sea-
mounts, Tiefseegraben und Bruchzonen
entdeckt sowie neue Erkenntnisse Uber
die Struktur und elastischen Eigen-
schaften der Erdkruste gewonnen werden
(z.B. Watts and Ribe, 1984).

Wenn man sich die Ozeane durch die Kon-
tinente hindurch mit Kanalen weltweit ver-
bunden vorstellt, so ergibt sich eine Fla-
che, die physikalisch gesehen, eine Aqui-
potentialflache des Schwerefeldes der
Erde ist. Diese Niveauflache wird als
Geoid bezeichnet, und die Hohenande-
rungen der Niveauflachen nennt man
Geoidundulationen. Besonders grosse
Geoid-Anomalien sind das Minimumim In-
dischen Ozean (-100 m relativ zum glo-
balen Referenz-Ellipsoid [Kahle et al.,
1978]) sowie das Maximum im nérdlichen
Atlantik (+70 m [Chapmann and Talwani,
1979]). In der Schweiz liegt das Geoid im
Mittel 50 m Uber dem Erdellipsoid, wie im
vorliegenden Aufsatz aufgezeigt wird.
Ahnlich wie Uber den Ozeanen werden
auch im kontinentalen Bereich lokale

Krimmungsanomalien des Geoids durch
die gravitativen Wirkungen der topogra-
phischen Massen (Gebirge, Seen, Téler)
und der Stérungsmassen im Erdinnern
verursacht. Einen besonders starken Ein-
fluss Uben dabei Gebirgsmassen, wie z.B.
die Alpen aus. Hier kénnen insbesondere
auch die Uberlagerungen der topographi-
schen Effekte mit den Gravitationseffekten
derjenigen Stérungsmassen studiert wer-
den, die infolge der Kollision zwischen der
afrikanischen und der eurasischen Litho-
spharenplatte in der alpinen Erdkruste an-
getroffen werden (Mueller, St., 1982).

Da das Geoid die natirliche Referenzfla-
che der meisten geodatischen Beobach-
tungsgrossen darstellt, standen friher die
Anwendungen der Geoidbestimmung in
der Landesvermessung im Vordergrund.
In letzter Zeit ist zusatzlich der Fragenkreis
um die anomale Dichtverteilung im Unter-
grund der Alpen mitaufgenommen
worden. Dies steht nicht zuletzt auch im
Zusammenhang mit aktuellen For-
schungsprojekten der Geophysiker und
Geologen, die in diesem Sommer im Rah-
men des Nationalen Forschungspro-
gramms «Geologische Tiefenstruktur der
Schweiz» (NFP 20) begonnen werden.

Im Jahr 1984 hat das Institut fur Geodésie
und Photogrammetrie (IGP) der ETH Zi-
rich zwei Forschungsprojekte in Angriff ge-
nommen, die wichtige Grundlagen fir die
spatere Interpretation der Gravitations-
anomalien liefern durften. Geographi-
sches Zielobjekt sind die sudlichen Regio-
nen der Schweiz, wo die Zone Ivrea-Ver-
bano grosse Storungen des Schwere-
feldes verursacht (Burki, 1985 a,b). Dort
befindet sich der sogenannte Ivrea-Kor-
per, der aus Gesteinsmaterial besteht, das
der unteren Erdkruste und dem oberen
Erdmantel entspricht. Die gravitativen Ein-
flisse dieses bis an die Erdoberflache hin-
aufreichenden Storkorpers gehéren welt-
weit zu den grossten Schwerefeld-Ano-
malien. Fur die Geoidbestimmung dieser
anomalen Zone wurde eine Kombination
mehrerer Verfahren angewandt:

(1) Astro-Geodétische Methode

Mit einem in der Lotlinie ausgerichteten
transportablen Zenitkamera-Messsystem
(Burki et al., 1983) werden Ausschnitte
des Fixsternhimmels im jeweiligen Zenit
der Beobachtungsorte photographiert und
daraus durch Anschluss an das astrono-
mische Fixsternsystem die Richtungen
der ortlichen Schwerevektoren bestimmt.
Die Differenzen gegeniiber den Rich-
tungen der Flachennormalen des Refe-
renzellipsoides ergeben die sogenannten
Lotabweichungen. Diese vom Prinzip her
konventionellen  terrestrischen  Mes-
sungen (astro-geodatische Methode) wer-
den mit modernen Satellitenmethoden,
wie dem Dopplerverfahren und in Zukunft
auch mit GPS-Messungen kombiniert.
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(2) Gravimetrische Methode

Im Gegensatz zur astro-geodéatischen Me-
thode, die auf Lotabweichungen beruht,
werden bei der gravimetrischen Methode
Schwereanomalien verwendet. Der vorlie-
gende Aufsatz befasst sich mit der An-
wendung der letzten Methode. Ein beson-
deres Problem (daftir aber auch ein be-
sonderes Interesse) bieten die Hochge-
birgszonen der Schweizer Alpen, denen
grossere Beachtung bei der Geoidbestim-
mung geschenkt werden missen.

2. Theoretische Grundlagen
zur gravimetrischen
Geoidbestimmung

Fur die begriffliche Klarstellung der ausge-
fihrten potentialtheoretischen Untersu-
chungen werden zunéachst einige Defini-
tionen zum Schwerefeld der Erde ge-
geben (Kahle, 1986).

2.1. Schwerepotential

Das Schwerepotential besteht aus zwei
Anteilen: dem Gravitations- und dem Zen-
trifugalpotential.

2.1.1 Gravitationspotential

Nach dem Newtonschen Gravitationsge-
setz (1687) ist die auf ein Massenelement
m wirkende ~Gravitationskraft F(P) der
Erde in einem Punkt P — mit den erdbezo-
genen, geozentrischen kartesischen
Koordianten X, Y und Z — gegeben durch
das Integral in Abb. 1.

Das Vektorfeld F wird als Gravitations-
Kraftfeld bezeichnet. Es ist ein wirbelfreies
Feld:

rotF = 0.

Die pro Einheitsmasse m wirkende Gravita-
tionskraft hat die physikalische Bedeutung
einer Beschleunigung. Sie wird als Gravita-
tionsbeschleunigung §v bezeichnet:

3|

§,-

Physikalische Definition des Gravitations-
potentials

In einerﬂ Punkt P (X,Y, Z) des Gravitations-
feldes F ist der Wert des Gravitationspo-
tentials V* (P) gleich der A@eit A, die «ge-
gen» die Gravitationskraft F geleistet wer-
den muss, um eine Punktmasse maus dem
Nullpunkt, der willktrlich gewahlt werden
kann, in den Punkt P Uberzufihren. Der
Potentialunterschied dV* zwischen zwei in-
finitesimal benachbarten Punkten P,und P,
betragt:

B=— - =~ @, dn,

dvi =—"m m

wenn dr der Ortsvektor zwischen P, und P,
ist.

G = Gravitationskonstante =
= Erdmasse, m =
= Geozentrum =

Z-Achse 2

X-Achse 2

Y-Achse =
system bildet.

(X,Y)-Ebene = Aequatorialebene
r= (x2 +v2+2%) V2

richtet, dass X,Y,Z ein rechtshindiges

(6.672 + 0.004) » 10~ [m3kg s™?]
Massenelement im Punkt P(X,Y,2)

Ursprung des (X,Y,Z)-Koordinatensystems
mittlere Rotationsachse der Erde

liegt in der Greenwich-Meridianebene und steht senk-
recht auf der Rotationsachse

steht senkrecht auf der (X-Z)-Ebene und ist so ge-

Koordinaten-

Abb. 1: Zur Berechnung des Gravitationspotentials der Erde in einem Aufpunkt

P (x,y,2)
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Abb. 2: Zur Definition des Gravitations-
potential-Unterschiedes dV*

Wegen dV* = (gradV* - &) giltfur die Gra-
vitationsbeschleunigung

g, = —gradV* = — VV*,

mit V = Nabla-Operator.

Geodétische Definition des Gravitations-
potentials:

In der Geodésie pflegt man als Gravita-
tionspotential-Differenz dV diejenige Ar-
beit zu definieren, die pro Einheitsmasse
von der G@vitationskraﬂ bei der Verschie-
bung um dr geleistet wird:

dvV=—dv* =+, dr
In diesem Fall gilt far g:

g, = +grad V.

Der Wert des Gravitationspotentials V(P)
selbst entspricht derjenigen Arbeit, die von
der Gravitationskraft geleistet wird, wenn
die Einheitsmasse aus dem Unendlichen
(Nullpunkt) zum Punkt P bewegt wird:

P
- fo,d-c /%

2.1.2 Zentrifugalpotential U,

Der zweite Anteil des Schwerepotentials
der Erde ist das Potential der Zentrifugal-
beschleunigung U, (P) = U, (XY, Z). Des-
sen Wert pro Einheitsmasse betragt im
Punkt P:

U, (P) = Jw2r2, = do2 (xz + v2)

mit r, = Breitenkreis-Radius und
® = Winkelgeschwindigkeit der Ei-
genrotation der Erde:

_ 2% _ 27
1Sterntag  86164,09s

= [7,292115 - 10-5rad s—1]

(0]

Mensuration, Photogrammétrie, Génie rural, 8/86
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Abb. 3: Definition des Zentrifugal-
potentials, r, = Breitenkreisradius

Die Energie der Erdrotation betréagt
~ 1036erg = 1014Megatonnen TNT

Das Schwerepotential W ist definitionsge-
méss gleich der Summe aus dem Gravita-
tionspotential V und dem Zentrifugalpoten-
tial U, (pro Einheitsmasse):

W=V+U,=G fff#ng%w’c’er
ME

Neue SI-Mass-Einheit:

[m2s—2] = Arbeit pro Einheitsmasse
Frahere Einheit:

[erg g—1] = [cm2s—2] = 10—4 [m2s—2]
Zahlenwert: W im mittleren Meeresniveau
= 6,263 683 - 10-7 [m2s—2]

Jedem Punkt P (X,Y,Z) des Raumes kann
ein skalarer Wert des Schwerepotentials
gemass obiger Formel zugeordnet werden.
Das entsprechende Feld heisst Schwere-
feld der Erde.

2.2 Niveaufldchen, Lotlinien und Schwere-

beschleunigung

Das Schwerepotential W ist eine eindeuti-

ge, stetige und differenzierbare Funktionim

ganzen Aussenraum.

Die Flachen konstanten Schwerepotentials

W = W(r) = const

bezeichnet man als Aequipotential- oder

Niveauflachen.

Der Potentialunterschied dW zweier be-

nachbarter Niveauflaichen zwischen den

Punkten P, und P, betréagt

dW = W(P) —W(P) =g - ds
(Skalarprodukt),

wobei

ds = Ortsvektor zwischen P,und P,
und

g =grad W

— (W oW oW\ _
= \ox’ oy’ az) (Wx' Wy, Wz)-

Vermessung, Photogrammetrie, Kulturtechnik, 8/86

\

| — Lotlinie

Wo = const.

Abb. 4: Schwerebeschleunigung,
Niveauflache und Lotlinie

Der als Schwerevektor bezeichnete Vektor
g hat

(1) einen Betrag = igl = g und
(2) eine Richtung.

(1) Der Betrag von g heisst Schwerebe-
schleunigung oder kurz: Schwere.
Die neue SI-Einheit von g ist
[ms—2] = [Nkg~T].

Frahere Einheit:

[mgal] = 10-3[gal] = 10-5[ms—2].
Moderne Gravimeter vermdégen
Schwereunterschiede zwischen 107
bis 10-8 [ms—2] zu messen.

(2) Die Richtung von g ist identisch mit der
Richtung der Lotlinie. Sie steht senk-
recht auf der Aequipotentialflache, die
durch den betreffenden Punkt (z.B. P,)
geht.

Die Orthogonaltrajektorien zu den Aequi-

potentialflachen heissen:

Schwerkraft- oder Schwerefeldlinien.

Die Tangenten an diese schwach ge-
krimmten Feldlinien sind jeweils die Lot-
linien.

| e
Schwerefeldiinie =~ i\Lolllme

aPy)

Abb. 5: Schwerefeld- und Lotlinie

2.3 Das geodatische Randwertproblem
2.3.1 Beziehung zwischen Schwereanoma-
lien und Stérpotential

In der Gravimetrie bestimmt man die Diffe-
renz zwischen der gemessenen Schwere-
beschleunigung _g’(Po) im Punkt P, auf dem
Geoid und der berechneten Normalschwe-
reg,(Qg) = 9,orm(Q,) im PunktQ, auf dem
Erdellipsoid. Die Differenz der Betrage die-
ser Schwerebeschleunigungen wird als
Schwereanomalie

Ag = g(Fy) — g,(Q)

bezeichnet.
Taylor-Entwicklung fir g, (Q,):

0
9,(Qp) = 9,(Fy) — -a%" N + Glieder ho-
herer Ordnung
Damit folgt
09, .
Ag =g(Py) —g,(P) + gy N+... ()

Die Differenz g(P,) — g,,(P,) setzen wir in
Beziehung zum Gravitationspotential T der
Stérungsmassen (= Storpotential),

T(Ry) = W(Ry) — U(R,),

welches der Differenz zwischen dem
Schwerepotential W(P,) der (wirklichen)
Erde und dem Schwerepotential U(P,) der
Normalerde (Erdellipsoid) entspricht. Fur
die radiale Ableitung N des Stérpotentials
T langs der Ellipsoidnormalen (N positiv
nach aussen) gilt:

bzw. flr Lotabweichungen
e <1 (cose <<K1):

oT

3N — — 99 + 9,(Py,
wobei g = IEI
und g, = IEnI.

Einsetzen dieser Beziehung in (*) ergibt
(unter Vernachlassigung Glieder hdherer
Ordnung):

__2or %
Ag = aN+aN N.

Setzt man ausserdem:

T(Py)
N = , BRUNSsches Theorem
dn(Qo)

so ergibt sich die Grundgleichung des so-
genannten geodatischen Randwertpro-
blems:

Ag=—3NT 3. N

__or_2
Ag o R T
wobei R = mittlerer Erdradius: 6371 km
und r = Abstand vom Erdmittelpunkt.
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STORPOTENTIAL T®: w®-y®

SCHWEREANOMALIE ag = ¢%-g9-

> e oo,
& 77 Se 5% o t.%.\‘
7% N
Vi SCHWEREVEKTOR O ,
£ ';\. ERDOBERFLACHE
"l “.’...\
£ %%,
Po 'i’q,-'..,.‘ .
= NS e
GEOIDUNDULATION N LOTABWEICHUNG €
3(’9 GEQID
o OTENTIALW .
o
NORMALSCHWERE '.
; REFERENZELLIPSOID
=- 9T  1dany POTENTIAL U=W,
3N " 9n ON °

Abb. 6. Geoid, Ellipsoid und Geoidundulation

2.3.2 Potentialtheoretisches und geodéti-
sches Randwertproblem

Die obige Grundgleichung des geodéti-
schen Randwertproblems stellt die Bezie-
hung zwischen der gemessenen Schwe-
reanomalie Agund dem Stérpotential T her.
Sie hat scheinbar die Form einer Differen-
tialgleichung, weil T und dessen Ableitung
vorkommen; scheinbar deswegen, weil Ag
zunéchst nicht im ganzen Raum bekannt
ist, sondern nur auf der Flache des Geoids
bestimmt wird. In dieser Form stellt die
Gleichung also lediglich eine Randbedin-
gung dar, welche allein nicht zur Bestim-
mung von T ausreicht. Es handelt sich hier
um ein spezielles Randwertproblem der
Potentialtheorie, das sich grundsétzlich
vom 1., 2. und 3. Randwertproblem folgen-
dermassen unterscheidet:

Erstes Randwertproblem = Dirichlet’-
sches Problem (Potential gege-
ben: Hauptaufgabe in der Theorie
ruhender elektrischer Ladungen)

Zweites Randwertproblem = Neumann’-
sches Problem (Ableitung gege-
ben: Hauptaufgabe in der Theorie
bewegter Flissigkeiten)

Drittes Randwertproblem = Cauchy’-
sches Problem (Kombination von
Potential und dessen Ableitung
gegeben: Hauptaufgabe in der
Waérmeleitung)

Wahrend beim 1., 2. und 3. Randwertpro-

blem das Potential, dessen Ableitungen

oder eine lineare Kombination dieser Gros-
sen auf einer bekannten Flache vorgege-
ben sind, die nicht unbedingt mit einer

314

Aequipotentialfliche zusammenfallt, ist
beim geodétischen Randwertproblem die
Flache, auf der diese Grossen gegeben
sind, unbekannt. Man weiss jedoch, dass
es eine Aequipotentialflache ist, auf der die
gemessenen Schwerevektoren senkrecht
stehen. Es besteht die Aufgabe, die gege-
benen Flachenelemente zu einer einheitli-

chen, geschlossenen Flache zusammen-
zusetzen (Jung, 1956). (Abb. 7)
Loésungsweg:

Uber die POISSONsche Lésung des ersten
(Dirichletschen) Randwertproblems erhalt
man zunidchst eine Gleichung, die die
Schwereanomalien Ag im Aussenraum zu
berechnen gestattet. Damit kann die Rand-

«GEODATISCHES»
RANDWERTPROBLEM

Schwerevektoren auf
™ unbekannter Flache

«POTENTIALTHEORETISCHES»
RANDWERTPROBLEM

Schwerevektor-Komponenten
auf gegebener Flache (i.a.
keine Aequipotentialflache)

.. Schwerevektoren senkrecht
zur Aequipotentialflache

—>

Abb. 7: Geodétisches und potentialtheoretisches Randwertproblem

Mensuration, Photogrammeétrie, Génie rural, 8/86
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wertbedingung in eine Differentialglei-
chung umgewandelt werden. Die Integra-
tion dieser Gleichung fuhrt auf das soge-
nannte STOKESsche Integral. Grundlage
dieses Lésungsweges ist die Entwicklung
des Stodrpotentials nach Kugelfunktionen.

2.4 Poisson’sche Losung (nach Heiskanen
und Moritz, 1967)

Fur das Storpotential T (r,6,A) kdnnen wir
die Kugelfunktionsentwicklung

T(,6,A) = Z (R)"“T (8,2)

n=20
n
mit T, (6,A) = Z T™(8,A)
m=20
6 = Polabstand

A = geographische Lange
r = Abstand des Aufpunkts
vom Geozentrum
in die Grundgleichung des geodatischen
Randwertproblems einsetzen:

2
Ag=—%I—'FT
_1N Ry + 1
- rZ(nJm) (r) T, (6,0
=

-2 i (R)"‘”T (6,7)

Entvwcklung der Schwereanomalien
Ag (r,8,A) im Aussenraum

=lri n—1) (%)"“Tn(e,)\)

Auf dem Geoid, d.h. furr = R, erhalten wir:

; o
28] —p=g D, =T, (BN
n=20

Zur Bestimmung der Terme T (6,A) be-
trachten wir eine allgemeine harmonische
Funktion H, die auf der Flache F gegeben
sei (Abb. 8):

Der Wert von H im Aussenpunkt A betragt
(R)n +1 H ©.0),

n=20

2n T
mitH, @0 =231 [ [ HReN)
N=06=0
P (cosy) sin®'d6’dN’
und cosy = cosb cosO’ + sind sind’
cos(A" — A).

H(A) = H(r,6,A) =

Abb. 9: Zur Berechnung des sphéri-
schen Abstandes zwischen Auf-
punkt und Flachenelement

Die Formel fur H_ (8,A) folgt aus dem Addi-
tionstheorem der Kugelfunktionen:

P (cosy) = P (cos8)P (cos8’)

+2 Z f—)—(g = “m“): [RT (6.1 RT (8,1)
m=1

+ 8™ (B,A) S™ (6, N
Also: n 0.4 Sy ( )]

HA) =4l j 7H(R,6’,A’)

Z(2n+1 (R) P, (cosy)]

n=20

sin6’de’dA’

F Einheitskugel
Geoid

A(r0.\)

¢ =(r>+R? —2rF(cos¢J)l/2

P1o"\")
R2dg' = Flachenelement
auf dem Geoid

Abb. 8: Zur Berechnung der Kugelfunktionsterme des Stérpotentials
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Fur die Summe in der eckigen Klammer
konnen wirfolgende Vereinfachung einfih-

Z @n+1) (f) P (cosy)

Damit erhalten wir die POISSONsche
Lésung (= POISSONsches Integral) des
DIRICHLETschen Randwertproblems der
Potentialtheorie:

H(A) = H(r,6,A)
R 2 n 2 R2
g s r ' /
-=[ H (R,6',A) do
AN=06=0

mit do’ = sin®'de’d\".

Wenn wir im Hinblick auf die Anomalien
des Schwerepotentials (= Differenzen der
beobachteten Werte gegeniiber denjeni-
gen des Referenzellipsoids) die Terme null-
ter und erster Ordnung abspalten, gelan-
gen wir zum reduzierten POISSONschen
Integral:

e osw) H (R, 8’ \) do’

Anwendung auf das Produkt rAg ergibt:

T

27
i~ ax | J

AN=0606=0
2 — R2
(%_‘F—?—Rcosw) (r29) |, - o
(A) RZ 27 x
I'ed (re}\) 4ar f f
AN=06=0

2 —R2 R ,
(r = _%—%cosw) Ag |r_Rdo

In dieser Gleichungistdas Flachenelement
do’ dimensionslos, do’ ist als Element ei-
nes Raumwinkels zu interpretieren.

2.5. Das Stokes’sche Integral
Ausgehend von

Ag(rony =—L -2

o r
erhdlt man nach Multiplikation mi} (—r?

T

und anschliessender Integration f dr der

neuen Gleichung tber r mit Berticksichti-
gung der obigen Formel fiir Ag
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Abb. 10: Verlauf der Stokes’schen Funktion

I
U™

Ag |

+ 1+ &8 cosw)dr

r=—- R
Das Integral in der eckigen Klammer ergibt:
r
_ 2_3l, 1 Rcosy
[D-[()dr]_[r2 | r2+r r2

. [-Rcosy + |
(5+3 - In -ROOY )) ]

Nach Division durch r2 erhalten wir

T6o =& [[1(.. ) a0do.
Mit der Abklrzung

sw —RIE-Z+ )
ergibt sich:

T06.8 = 5 [['S ) Ag|, - qdo
3

Dies ist die Formel flr das Stérpotential T
im Aussenraum, ausgedrickt durch die
Schwereanomalien Ag auf der Erdober-
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flache (Geoid). S(r,lp)iwird als STOKES-
sche Funktion bezeichnet.
Fur r = R erhalten wir:

R
TROAN — 2= [[S (R Agl,_gdo
z

Wegen | =2R sin%
far r = R (gleichschenkliges
Dreieck)

ergibt sich die STOKESsche Funktion
(Abb. 10) zu

Sr=R,y) = S(w)———

smHJ-
6sin 5 + 1 — 5cosy
— 3cosy ( In (sin EQH+ sin2 Eg-))

Fir die gesuchte Geoidundulation N erhal-
ten wir aufgrund des BRUNSschen

Theorems N = T das
9dn

STOKESsche Integral:

~ L. [ w 0] 00

Erste Anwendungen des Stokes’schen
Integrals konnten zun&chst nur in ozeani-
schen Bereichen vorgenommen werden,
da dort keine grosseren Umrechnungen
von beobachteten Schwereanomalien auf
Freiluftanomalien vorgenommen werden
miissen. Beispiele sind die gravimetri-
schen Geoide des Nordatlantiks (Talwani
etal., 1972), des Indischen Ozeans (Kahle
and Talwani, 1973) und des Pazifiks (Watts
and Leeds, 1977). In Europa wurden gra-
vimetrische Geoide z.B. von Groten und
Rummel (1974), Arabelos (1980) und kiirz-
lich von Brennecke et al. (1983) sowie von
der 6ster. Komm. f. Int. Erdmessung (1983)
publiziert.

2.6 Berechnungsablauf
und Ausgangsdaten

2.6.1 Berechnungsablauf

Im folgenden wird die effektive Berechnung
des Stokes’schen Integrals der Poisson’
schen Losung in Form eines Flussdia-
gramms konkreter dargestellt.

In diskretisierter Form erscheint das Sto-
kes’sche Integral als Summe Uber kleine
Kugelflachenelemente, multipliziert mit
mittleren Funktionswerten innerhalb die-
ser Elemente. Die Elemente haben die
Seitenlangen von 6’ in der Breite und 10’
in der Lange. Samtliche Daten miissen da-
her auf dieses Raster bezogen und ggf.
innerhalb der einzelnen Elemente gemit-
telt werden (h, Ag). Zusatzlich sind alle
verwendeten Grossen auf eine gemeinsa-
me Referenz zu beziehen. Hier wurde das
IAG 75 Ellipsoid gewahlt. Um die Schwe-
redaten zu glatten, kann man Effekte
Adsterm bekannter Massenkdrper von
den Schweredaten subtrahieren. Allerdings
fehlt dann der Beitrag zum Geoid im Sto-
kes’schen Integral. Der direkt aus dem
Massenmodell berechnete Effekt des
Massenkorpers auf die Geoidundulation
Ngtgrm Muss also nach der Stokes’schen
Integration wieder hinzugefiigt werden.
Bekanntlich ist das Stokes’sche Integral
Uiber die gesamte Erdoberflache zu neh-
men. Diese umfangreiche Integration ist
jedoch mit der Berticksichtigung eines re-
gionalen oder eines globalen Geoides ver-
meidbar. Lokal wird lediglich die Differenz
zu diesem Referenz-Geoid berechnet. Als
Schweredaten missen dann nur Werte
im interessierenden Gebiet betrachtet wer-
den. Zum Referenz-Geoid N,gf gehort na-
tirlich auch das entsprechende Schwere-
feld gref, das von den mittleren Schwere-
anomalien subtrahiert wird. Die Undula-
tionen des Referenz-Geoides miissen
nach der Berechnung des Stokes-Integral
wieder hinzugeflgt werden. Zur Abschét-
zung der Fehler und Bestimmung von
Transformationsparametern 6Ng, 8&q, dy(;
dx, dy, 6z wurde zuséatzlich eine Transfor-
mation des gravimetrischen Geoids ins
Schweizer Datum berechnet und mit dem
astro-geodatisch bestimmten Geoid (Gurt-
ner, 1978) verglichen.

Mensuration, Photogrammétrie, Génie rural, 8/86
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Abb. 13: Einzugsgebiet der verwendeten mittleren Héhen der Schweiz

Abb. 14: Freiluftanomalien. Die Freiluftanomalien sind sehr eng mit der Topogra-
phie korreliert. Isolinienabstand 25 mgal. Diese und andere Isolinienkarten wurden
mit Programmen von Klingelé (1980) erstellt.

2.6.2 Digitales Hohenmodell

Zur Bildung von mittleren Héhen in den
6’ x 10’ Elementen wurde das von Elmiger
(1969) compilierte digitale Héhenmodell
MH500 (mittlere Hohen 500 m x 500 m)
verwendet.

2.6.3 Schweredaten

Die etwa 2’500 Gravimetrie-Daten stam-
men aus Arbeiten zur neuen Schwere-
karte der Schweiz von Klingelé und Olivier
(1980) und aus Messungen von Kissling
(1980). Die Daten sind im Referenzsystem

318

1930 gegeben. Sie mussten daher auf das
Ellipsoid |AG 75 umgerechnet werden.
Punkte an denen nur Bougueranomalien
vorhanden waren, wurden gleichwohl zur
Stiitzung der Mitteilung der Freiluftanoma-
lien mitberticksichtigt.

2.6.4 Digitale Stérmassenmodelle

In den vorliegenden Berechnungen wurde
ein Massenmodell des Ivrea-Korpers, der
das Schwerefeld in der Siidschweiz be-
sonders stark beeinflusst, berlicksichtigt.
Zur Berechnung des Schwereeffektes wur-

de ein Ivrea-Modell (Buirki, 1985) und
(Wirth, 1985) verwendet.

2.6.5 Referenzfeld

Als Referenzfeld wurde das GEM9 (God-
dard Earth Modell, Lerch et al., 1979) ver-
wendet. Das Modell wird durch eine Ku-
gelfunktionsentwicklung bis zum 30. Grad
dargestellt. Dadurch kann zwar eine im
globalen Massstab recht gute Beschrei-
bung gewonnen werden. Im lokalen Be-
reich jedoch hat das Modell eher den Zweck
einer Trendfunktion.

3. Methode der Fourier-
Transformation in der
Anwendung auf die
Schwerefeldbestimmung

3.1 Konzept der Fouriertransformation

Nach einem Satz von Fourier lasst sich je-
de periodische Funktion durch eine Sum-
me von Sinus und Cosinus-Funktionen
mit Frequenzen von ganzen Vielfachen
einer Grundfrequenz w darstellen:

(an ~cos(n-w-t)
n=1
+ bpy sin(n - w-t))

Umgekehrt kann jede beliebige periodi-
sche Funktion durch Uberlagerung, Sum-
menbildung, der einzelnen Basisfunktio-
nen dargestellt werden. Am «ohrenféllig-
sten» wird dieses Phanomen in der Aku-
stik demonstriert. Durch das Zusammen-
fligen verschiedener Téne und Oberténe
mit gleicher Grundfrequenz kénnen Téne
mit beliebiger Klangfarbe generiert wer-
den. Um eine Funktion zu beschreiben,
muss man also angeben, mit was fir einer
Starke (Amplitude: an, bzw. by) eine be-
stimmte Basisfunktion mit der Frequenz
(n - w) zur ganzen Summe beitragen soll.
Tragt man die Amplituden gegen die Fre-
quenzen auf, so enthalt man das soge-
nannte Amplituden-Spektrum.

Es zeigt, welche Frequenzen wie stark in
der Funktion f(t) vertreten sind. Die Am-
plitudenfunktion a = a(w) beschreibt die
Funktion f(t) im sogenannten Spektral-
oder Frequenzbereich voll und ganz. Das
Bildungsgesetz nach obiger Formel er-
laubt es, aus der Beschreibung im Fre-
quenzbereich die Funktion im sogenann-
ten Zeitbereich direkt zu rekonstruieren.
Die Beschreibung im Zeitbereich und jene
im Frequenzbereich sind einander &quiva-
lent.

Die harmonische Zerlegung einer Funk-
tion kann in funktionentheoretischer Wei-
se verallgemeinert werden. Dabei fuhrt
man den Begriff der Transformation, im
speziellen der Fouriertransformation, ein.
Da nicht mehr nur diskrete Frequenzwerte
n - w, sondern auch beliebige (kontinuier-
liche) Zwischenwerte im Intervall (— o, + )
beriicksichtigt werden, sind die Summatio-
nen durch Integrationen zu ersetzen. Zu-

Mensuration, Photogrammeétrie, Génie rural, 8/86
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Abb. 15: Modell des Ivrea-Kérpers (Wirth, 1985)

satzlich werden die Cosinusse und Sinusse
als komplexe Funktionen geschrieben
(EULERscher Satz):

cos ¢ + ising =ei®

i = dieimaginare Zahl V-1
e = Exponentialfunktion
@ = ein Winkel.

Die Fourier-Transformation gibt die Vor-
schrift, wie man vorzugehen hat, um von
der Beschreibung einer Funktion im Zeit-
bereich zur Beschreibung im Frequenzbe-
reich zu gelangen. Der umgekehrte Schritt
wird durch die inverse Fouriertransforma-
tion vorgeschrieben. Es ist zu beachten,
dass sowohl F(w) als auch f(t) komplex-
wertige Funktionen sind. Der Ubergang
vom Zeit- in den Frequenzbereich erfolgt
mit

Abb. 16a: GEM9. Geoid berechnet aus
GEM9-Kugelfunktionskoeffizienten.
Uberhéhung der Undulation 1:15 000.

Vermessung, Photogrammetrie, Kulturtechnik, 8/86

+

Fw = |

— O0

fi(t) - e(-2miwt) gt

und die Umkehrung mit
+ oo
fit) = f
Man mag sich wohl fragen, was diese
komplizierte Umrechnerei fiir Vorteile bie-
ten mag. Zum einen sind die quantitati-
ven Aussagen Uber den Spektralbereich
oftmals direkte Zielgrossen der Unter-
suchungen insbesondere in Bereichen,
wo schwingungsformige Phédnomene zu
behandeln sind, etwa in der Akustik, Op-
tik, Bildverarbeitung, Elektrotechnik, aber

F(w) - e(r27 W) gw

auch in der Geophysik und Geodasie. Die-
se Methode, Vorgange im Frequenzbe-
reich zu untersuchen, wird als Spektral-
analyse bezeichnet. Zum andern lohnt
sich oftmals der Transformationsaufwand,
daviele im Zeitbereich aufwendige mathe-
matische Manipulationen im Frequenzbe-
reich als einfache Operationen ausgefiihrt
werden kénnen.

Wenn die Rede von Zeitbereich ist, so soll
dies nicht heissen, dass die Fourier-Trans-
formation nur auf Zeitfunktionen anwend-
bar sei. Der Parameter t kann durch irgend-
eine Grosse ersetzt werden. Fir die hier
gezeigten Anwendungen steht vor allem
die Behandlung von Ortsfunktionen im
Ortsbereich im Vordergrund des Interes-
ses. Man spricht auch oft vom physikali-
schen Bereich. Die Fourier-Transformation
kann auch fiir mehrere Variablen verall-
gemeinert werden. Die Ortsfunktion mit
mehreren Veranderlichen f(x,y,z,...) wiirde
im Abbild im ebenfalls mehrdimensiona-
len Frequenzbereich durch die Transfor-
mation erhalten:

Fluvw,...) = txy,z...)*

e 2Mi(xu +yV +2W + ...) dxdydz ...

mit der Umkehrung

) =IFuvw..)e

Sf2Mi(XU + YV + ZW + ...) dudvdw ...

Die meisten, den Geodéten interessieren-
den Berechnungen, beschranken sich auf
zwei, allenfalls drei unabhéngige Veran-
derliche. Die oben erwahnten Eigenschaf-
ten der transformierten Funktionen lassen
sich sinngemass auch auf mehrere Veran-
derliche Ubertragen. Fir die hier beschrie-
benen Anwendungen kommen vorrangig
zwei Eigenschaften zum Zuge:

Ist f(x) eine Funktion im physikalischen

f(x,y,z ..

\
/

50km 100
—_—

Abb. 16b: GEM9-Geoid im lokalen Bereich der Schweiz. Isolinienabstand: 20 cm.
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Bereich und F(w) ihre Transformierte im
Frequenzbereich, so verwandeln sich Dif-
ferentiationen in Multiplikationen im Fre-
quenzbereich. Es gilt:

d/ax = 2xiw Fw)

Eine weitere sehr hilfreiche Beziehung
betrifft die Integration von Produkten von
Funktionen mit speziellen Argumenten.
Die unter dem Namen Faltung bekannte
Integralformel wird ebenfalls zu einem Pro-
dukt transformiert:

o(x) = [ fy)eg(x-y)dy
o(w) F(w) + G(w)

Integrale dieser Art treten im Zusammen-
hang mit Filterproblemen, Korrelations-
und Kovarianzberechnungen und in ver-
schiedenen Formeln der Physikalischen
Geodasie auf. Um die Integraltransforma-
tionen numerisch anwenden zu kénnen,
mussen etliche Vorkehrungen getroffen
werden, zumal Intervalle von [—o, + ]
und infinitesimal kleine Grossen dt oder
dw im Computer nicht streng dargestellt
werden kénnen. Das Problem muss also
diskretisiert werden, indem man von der
Integration zur Summation, von infinitesi-
malen auf kleine Gréssen, von unendlichen
Intervallen auf endliche und von kontinu-
ierlichen Funktionen auf diskretisierte
Funktionen ubergeht. Damit werden je-
doch Genauigkeitsverluste induziert.

Um eine Funktion f(x) rekonstruieren zu
kénnen, muss dem «Abtasttheorem» zu-
folge die Funktion in Schritten von Ax =
1/ (2 - v) digitalisiert, abgetastet werden.
Hier bedeutet v die hochste im Signal f(x)
vorkommende Frequenz. Wird die Schritt-
weite zu gross gewahlt, so geht die Infor-
mation der héheren Frequenzen verloren.
Durch die Einschrankung der Integration
auf ein endliches Intervall wird der Funk-
tion eine kiinstliche Periodizitat von der
Lange des Intervalls aufgepragt. An den
Intervallgrenzen kénnen Randeffekte auf-
treten, die das Transformationsresultat ver-
falschen. Diesen, der diskreten Fourier-
Transformation eigenen Fehlerquellen gilt
es, bei der numerischen Anwendung Rech-
nung zu tragen (z.B. Kunt, 1980). Fir die
Berechnung der Transformation wurden ef-
fiziente Algorithmen entwickelt. Die schnelle
Fourier-Transformation (Fast Fourier Trans-
form, FFT) spielt in diesem Zusammen-
hang eine hervorragende Rolle.

3.2 Anwendungen
in der Physikalischen Geodasie

Eine direkte Anwendung der Fourier-Trans-
formation ergibt sich bei der Korrelations-
rechnung. Sind zwei reelle Funktionen
f(x) und g(x) im physikalischen Bereich ge-
geben, so wird die Korrelation zwischen
f und g mit dem Erwartungswert des Pro-
duktes definiert (Kreuzkorrelation von f
und g). x soll bedeuten, dass es sich hier
um mehrere Variablen, die in einem Vek-
tor zusammengefasst sind, handelt.
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Abb. 17: Gravimetrisches Geoid (oben) und Topographie der Schweiz. Ansicht von
Westen. Fiir die Darstellung der Topographie wurden die Hohendaten MH500 ver-
wendet. B: Bern, C: Chur, G: Genf, Z: Zirich.

rfg (¥) bei allen Integralen von Produkten, in de-
" ren Argumenten Differenzen der Varia-
blen auftreten. Als klassisches Beispiel
diene die Newton’sche Gravitationswirkung
von Massenkorpern. Das Gravitationspo-
tential ist (vgl. Kapitel 2)

U = G J pw « lx)! v

E{f(x) * g(x +y)}
I #(x) * g(x + y) dx
I #(x) « gly-x)dx'

Mit dem Faltungssatz erhalt man die Fou-
rier-Transfomierte

Rigw) = Fw) * Gw). Vksrper
Um z.B. die Korrelation von Freiluftano- G = Gravitationskonstante
malien mit den Hohen zu berechnen, ge- y = Volumen des Massenkorpers
nugt es, die Fourier-Transformierte der 3y = dyqdyodys

I

Anomalien mit dem transformierten Ho-
henmodell zu multiplizieren. Die Riicktrans-
formation liefert dann die Korrelation im c(y) =
physikalischen Bereich. Anwendungen fiir
Kovarianzfunktionen zeigt z.B. Forsberg
(1984). Dazu ist zu bemerken, dass dieser
scheinbar komplizierte Weg um Faktoren
schneller ist als die direkte Ausfiihrung der

Abstand zwischen Aufpunkt x und
Integrationsstelle y
Dichte-Funktion

Darin erkennt man sofort das Faltungsin-
tegral, da

fle-0 = Ge((x-x) 1

urspringlichen Integration. Weitere An-
wendung des Faltungssatzes finden sich

nur von der Koordinaten-Differenz zwi-
schen Aufpunkt x und dem Integrations-

Mensuration, Photogrammétrie, Génie rural, 8/86
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punkt y abhangt. Die dreidimensionale
Fourier-Transformation ergibt dann unmit-
telbar:

0 =G ()" > Fw
p(x) -  P(w
U(x) - V(w) = F(w) * P(w)

Die Schwerewirkung erhalt man direkt
durch Gradientenbildung und Anwendung
der oben erwahnten Transformationsei-
genschaften der Ableitungsoperatoren.

9(x) = -grad (U(x)) > Gw) = -2miw V(w)

Der Ubergang vom Potential zum Schwe-
revektor und umgekehrt ist im Spektral-
bereich sehr bequem. Er reduziert sich auf
eine einfache Multiplikation.

Das Problem besteht nun darin, dass die
Punkt-Verteilung in z-Richtung im allge-
meinen sehr schlecht ist, da die Messun-
gen sich auf die Erdoberflache beziehen.
Dies flihrt zu einer flachenartigen, manch-
mal sogar zu einer profilméassigen Punkt-
verteilung. Die Fourier-Transformation der
Héhenvariablen z wird daher numerisch
kaum sinnvoll sein. Die explizite Ausfiih-
rung der Transformation der z-Variablen
ergibt den ganzen Schwerevektor im Spek-
tralbereich fiir ein allgemeines, geschich-
tetes Massenmodell. Die dreidimensio-
nale Transformation ist auf zwei Dimen-
sionen (x und y) reduziert worden:

Giwz) = 20 (wilw) B - €21 102

N o enw)™
Y F {pxy)0xy) a"xy)}
n=1 n!
mit i =V
G = Gravitationskonstante

G(w,z) = Schwerevektor im zweidi-
mensionalen Frequenzbe-

reich

Fxy = Fourier-Transformation der
zwei Variablen x und y

N = Ordnung der Reihenent-
wicklung

S(x,y) = Dichte der Schicht (mit late-
ralen Anderungen)

a(x,y) = Hoéhe der oberen Begren-
zung der Schicht

b(x,y) = Hoéhe der unteren Begren-
zung der Schicht

Die dritte Komponente dieser Gleichung,
die Fourier-Transformation der z-Kompo-
nente des Schwerevektors, entspricht der
von Parker (1972) auf anderem Weg er-
haltenen Formel.

Eine weitere Méglichkeit der Berechnung
von Schwereeffekten von Massen, vor
allem in Anwendung auf die topographi-
sche Korrektur von Schwerewerten, fihrt
Sideris (1984) vor. Den Ausgangspunkt
bildet das Integral fir die topographische
Korrektur fiir Punkte auf einer spharischen
Referenzflache (Moritz, 1980).

Vermessung, Photogrammetrie, Kulturtechnik, 8/86

Isolinienabstand: 50 cm)

Abb. 18: Gravimetrisches Geoid im IAG 75 Bezugssystem (ohne Ivrea-Cogeoid;

Abb. 19: Gravimetrisches Geoid im Schweizer-Datum (Bessel); Isolinienabstand:
50 cm. Die Verkippung und der Offset (ca. 50 m) gegeniiber dem IAG 75-System ist
im Mittelland deutlich zu sehen (vergl. Abb. 18 und 19).

C(P)= 1/2 GpR2 f [h(Q)-h(P)]2 -

(1(Q,P)) 2 do
C Topokorrektur in P
G Gravitationskonstante
P Aufpunkt
Q Integrationsstelle
R Kugelradius der Referenzflachen
S Dichte
| Distanz zwischen den Punkten Q und P
h Hohe des Punktes Q bzw. P
o Kugeloberflache

Betrachtet man ein nicht allzu ausgedehn-
tes Gebiet, so ist es statthaft die Kugel-

flache auf eine (x,y)-Ebene zu projizieren.
Das Integral geht dann tber in

Cw = 1/2Gp | [hiy - h? -
yEbene
(x - 3 d2y
12Gp [ (2w - (x-y3 -
YEbene
2h(x) - h(y) * (c3)3 + h2(x)e(x-y)3)dy

Die drei Terme sind sofort als Faltungsin-
tegrale zu erkennen.

Clx) =
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Partie rédactionnelle

In ahnlicher Weise kénnen auch die Sto-
kes’sche Formel oder die Vening-Meinesz-
Formeln behandelt werden.

Nach Stokes gilt:

NP) ~ JSP.Q) + Ag@) d?o
o Kugel

Der Integralkern (Stokes’sche Funktion)
hangt im wesentlichen nur von der Distanz
zwischen den Punkten P und Q ab, was
die Form der Faltung nach sich zieht. Eben-
so verhélt es sich mit den Vening-Meinesz-
Formeln, die man durch Differentiation der
Stokes’schen Formel erhilt:

gP) ~ ON/odg
~ ,f dS(P,Q)/d¢ * Ag(Q) d2c
Okugel

n(P) ~ cos @(P)s ON/OA

~ .[ dS(P,Q)/0\ * Ag(Q) d2c

Okugel
®,E = geogr. Breite bezw. Lotabweichung
A\, = geogr. Lange bezw. Lotabweichung

Der Charakter der Faltung ist auch in die-
sen Formeln erkennbar.

Statt die Differentiation im physikalischen
Bereich auszufiihren, transformiert man
zuerst das Stokes’sche Integral unter Ver-
wendung des Faltungssatzes und diffe-
renziert anschliessend im Frequenzbe-
reich. Das heisst: man muss dann ledig-
lich mit dem Faktor 27t i w multiplizieren,
um die transformierten Lotabweichungs-
komponenten zu erhalten.

4. Vorlaufige Ergebnisse

4.1 Gravimetrisches Geoid

Die Ergebnisse sind in dem Sinne vorlau-
fig, als dass man noch nicht alle heutzuta-
ge zur Verfligung stehenden Daten in die-
se Berechnungen eingefiihrt hat. Fir eine
nochmalige Berechnung kénnen die Da-
tensatze, wie sie unter Kapitel 2.6 darge-
stellt wurden, wesentlich erweitert werden.
Insbesondere sind in der Ivreazone etli-
che Schweremessungen im Zusammen-
hang mit der Modellierung des Ivreakdr-
pers (Burki, 1985; Wirth, 1985) ausgefihrt
worden. Die Bertlicksichtigung der ober-
sten Erdkruste als Massenmodell (Topo-
graphie bis Mohorovicic-Diskontinuitat)
in der gleichen Weise, wie es fiir das Ivrea-
Modell gemacht wurde, reduziert den kurz-
welligen Anteil im Schwerefeld drastisch,
d.h., das Feld der Schwereanomalien wird
stark geglattet. Mittelbildung und Interpo-
lation der Anomalien werden so wesent-
lich genauer. Dieses Verfahren wurde von
Elmiger (1969) und Gurtner (1978) fiir die
Pradikation von Lotabweichungen ange-
wandt. Die Ergebnisse zeigen, dass be-

322

reits mit relativ einfachen und traditionel-
len Methoden das gravimetrische Geoid
auch in einer Hochgebirgsregion mit hin-
reichender Genauigkeit bestimmt werden
kann.

Das Geoid widerspiegelt in groben Ziigen
die Topographie (Abb. 17). neben den
Grossstrukturen Jura, Mittelland und Al-
pen sind auch die Téler der Voralpenseen
(besonders des Thuner- und Brienzersees)
sowie das Rhonetal gut zu erkennen. Die
glatten Formen kommen durch die Inte-
gration der Freiluftanomalien zustande.
Der ganze Vorgang der Mittelbildung und
der Stokes’schen Integration entspricht
also in gewissem Sinne einer Filterung der
Freiluftanomalien (man vergleiche hierzu
die relativ stark variierenden Anomalien
in Abb. 14). In diesem Zusammenhang
wird man sich auch an den Begriff Fourier-
Transformation erinnern (s. Kapitel 3).
Die Randzonen des Geoides sind deutlich
abgeflacht. Dies deutet auf mangelnde
Datendichten in den ausserhalb der
Schweiz liegenden Gebieten hin.

Da alle Daten auf das Internationale Ellip-
soid IAG 75 bezogen sind, muss das Er-
gebnis der Berechnungen (Abb. 18) in das
gebrauchliche Schweizerdatum (Bessel-
Ellipsoid mit Fundamentalpunkt in Bern)
zuriicktransformiert werden. Die Hinzu-
nahme des Ivrea-Cogeoids bewirkt einen
beachtlichen Effekt, der nicht ganz im Ein-
klang mit den aktuellen Lotabweichungen
in diesem Gebiet steht. Die Klarung dieser
Diskrepanz muss einer weiteren Bearbei-
tung vorbehalten bleiben.

4.2 Genauigkeitsabschéatzung und
Koordinatentransformation

Da wir primar an Geoidunterschieden im
relativ kleinen Gebiet Schweiz interessiert
sind, treten Fehler der absoluten Lagerung
in den Hintergrund. Ebenso kénnen kleine
Effekte vernachlassigt werden. Die sphéri-
sche Approximation der Stokes-Formel
bewirkt z.B. einen Fehler in der Grossen-
ordnung von (Heiskanen und Moritz, 1967)

ON = Nf,

wobei f = Abplattung des Bezugsellipsoids
=1/298.3

N = Geoidundulation.

Fur unser Differenzgeoid ergibt sich dN
<1 cm. Die Beriicksichtigung atmospha-
rischer Massen bewirken im betrachteten
Gebiet eine hohenabhangige Korrektur
der Freiluftanomalien von weniger als 1
mgal. Dieser Wert liegt weit unter der Un-
sicherheit der mittleren Freiluftanomalien.
Ebenso werden die numerischen Unge-
nauigkeiten der Diskretisierung und Mit-
telbildung der Stokes-Funktion von den
Fehlern in den mittleren Freiluftanomalien
und der Vernachlassigung gemessener
Schwerewerte in der Umgebung des Un-
tersuchungsgebietes liberdeckt. Fir den
mittleren Fehler an den gemittelten Schwe-
rewerten innerhalb eines 6’ x 10’ Kompar-

timentes ist mit 5-10 mgal zu rechnen
(Kuhn, 1981). Mitder Annahme von fehler-
losen Referenz-Anomalien (GEM9) und
unkorrelierten beobachteten Freiluftano-
malien kann man eine grobe Abschatzung
des Integrationsfehlers vornehmen. Da-
bei zeigt sich, dass der mittlere Fehler 15
cm nicht Ubersteigt. Eine zweite, gravie-
rendere Fehlerquelle ergibt sich dadurch,
dass man die ausserhalb des Integra-
tionsgebietes liegenden Schwerewerte
durch GEM9-Werte ersetzt. Der Effekt
wird am Rand des Datengebiets beson-
ders augenfillig. Die Gréssenordnung
des Fehlers ergibt sich aus einer groben
Abschéatzung und aus Fehlerangaben fir
das GEM9-Modell [Rapp, 1973; Tscher-
ning and Rapp, 1974; Arabelos, 1980]
zuca. 1 mfir Randpunkte. Der Fehler nimmt
zur Mitte des Integrationsgebietes hin stark
ab. Zur Uberpriifung dieser Fehler wurde
das gravimetrische Geoid vom IAG 75-
Bezugssystem auf das Schweizerdatum
(Bessel) transformiert und mit dem astro-
geodatischen Geoid (Elmiger, 1975; Gurt-
ner, 1978) verglichen. Aus den Restklaf-
fungen ergab sich fiir die kritische Rand-
zone (5—20 km) ein mittlerer Fehler von
1.1 m und fir die Ubrigen Punkte etwa 30
cm. Die Transformationsfehler liegen al-
so durchaus im Bereich der groben Feh-
lerabschatzungen.

5. Schlussfolgeru'ng und
Ausblick

Aus der Transformation des gravimetri-
schen Geoids auf das astro-geodétische
Geoid gewinnt man zusétzlich interessante
Angaben Uber den Bezug des Schweizeri-
schen Bessel-Ellipsoids zum IAG 75- EI-
lipsoid. Das astronomische Geoid wurde
mit der willkiirlichen Geoidundulation [N =
0 m in Schwerzenbach, Kanton Ziirich, in
der Hohenlage fixiert. Die Lotabweichun-
gen hangen von der Definition eines Null-
punktes des Koordinatensystems ab. Als
Bezug wird der Fundamentalpunkt in Bern
festgehalten. Dagegen ist das gravimetri-
sche Geoid in seiner Lage, in unserem Fall
beziiglich dem IAG 75-Ellipsoid, absolut
bestimmt. Die Transformation gibt also
direkt die Parameter an, um die die Schwei-
zer-Koordinaten beaufschlagt werden mis-
sen, um auf IAG 75 bezogene Werte zu er-
halten. Fir den Fundamentalpunkt Bern
erhélt man eine Hohenanderung von oNg
=49.60 m und Lotabweichungen von d& =
3.03” bzw. dxt = 2.69”.

Der Verschiebungsvektor der Ellipsoid-
zentren betragt in geozentrischen karte-
sischen Koordinaten dx = -484.4 m, dy =
-61.6 m, 6z = -126.8 m mit Fehlern kleiner
als = 1.5 m. Dies ist eine bemerkenswerte
Méglichkeit, aus Daten der Physikalischen
Geodasie verschiedene Koordinatensy-
steme miteinander in Verbindung zu brin-

Mensuration, Photogrammétrie, Génie rural, 8/86



Fachteil

gen: Eine Aufgabe, die im allgemeinen
mit Methoden der Satellitengeodasie ge-
16st wird.

In einem ersten Schritt zur satellitenge-
stltzten Geoidbestimmung in der Schweiz
wurde 1984 das U.S. Transit-Satelliten-
Navigationssystem zur Messung der ellip-
soidischen Koordinaten in der Schweiz
und im Gebiet der Ivrea-Zone benutzt
(SWISSDOC [Wiget et al., 1985] und
ALGEDOP [Wiget et al., 1986; Geiger et
al., 1986]). In einem n&chsten Schritt wird
das neue satellitengestiitzte U.S. NAV-
STAR-Global-Positioning System (GPS)
zur Anwendung kommen, das auch fiir die
Geoidbestimmung eine wesentliche Ge-
nauigkeitssteigerung ermoglicht. Insbe-
sondere ist dank der erhéhten Messge-
schwindigkeit eine grossere Punktdichte
realisierbar. Trotzdem werden die terrestri-
schen Verfahren in naher Zukunft fir die
Untersuchung des lokalen Schwerefeldes
nicht an Bedeutung verlieren. Dabei ist vor
allem von der inertialen Messtechnik, die
heute in der Flugnavigation nicht mehr
wegzudenken ist, auch in der Geodasie
eine stérkere Verbreitung zu erwarten.
Neben den Geschwindigkeits- und Koor-
dinatenbestimmungen des Messfahrzeu-
ges ermdglicht das inertiale Messsystem
eine praktisch kontinuierliche Erfassung
der Schwerebeschleunigungen langs der
Messstrecke. In Kombination mit einem
modernen GPS-Satellitenempfanger er-
halt man damit ein universelles geodati-
sches Messsystem, das zugleich Stations-
Koordinaten und Schwerefeldparameter
bestimmen lasst. Durch Vergleich der vom
GPS-Empfanger gelieferten ellipsoidischen
Stations-Koordinaten mit den lokalen Ko-
ordinatendifferenzen, wie sie vom Inertial-
system durch Integration der Bewegungs-
und Schwerebeschleunigungen berech-
net werden, lassen sich Lotabweichun-
gen, Schwereanomalien und Geoidundu-
lationen, die klassischen Zielgrossen der
Geodasie, operationell bestimmen und
kénnen damit in heutige Fragestellungen
der aktuellen Geodynamik einbezogen
werden.

Referenzen

Abkirzungen:

AlG = Association Internationale
de Géodésie

ALGEDOP = Alpine Geoid Doppler Pro-
ject

AVN = Allgemeine Vermessungs-
nachrichten

CSTG = International Coordination
of Space Techniques for
Geodesy and Geodyna-
mics, IAG, Commission
VIl

DGK = Deutsche Geodatische
Kommission

GEOS3 = Geodynamics Experimen-
tal Ocean Satellite

GPS = Global Positioning System

HSBw = Hochschule der Bundes-

wehr, Minchen

Vermessung, Photogrammetrie, Kulturtechnik, 8/86

IAG = Internationale Assoziation
fur Geodasie

IGP = Institut fir Geodéasie und
Photogrammetrie

JGR = Journal of Geophysical
Research

RETrig = Reéseau Européende
Triangulation

SEASAT = Sea Satellite

SGK = Schweizerische Geodati-
sche Kommission

SWISSDOC = Swiss Doppler Campaign

VPK = Vermessung, Photogram-

metrie, Kulturtechnik

Arabelos, D. (1980): Untersuchungen zur gravi-
metrischen Geoidbestimmung, dargestellt
am Testgebiet Griechenland. Wissenschaftli-
che Arbeiten der Fachrichtung Vermessungs-
wesen der Universitat Hannover, Nr. 98.

Bernstein, R.L. (ed.) (1982): SEASAT Special
Issue . In: J.G.R., Vol. 87, No. C5, April 1982:
3173-3438.

Brennecke, J., D. Lelgemann, E. Reinhart, W.
Torge, W. Weber and H.-G. Wenzel (1983):
A European Astro-Gravimetric Geoid. DGK,
Reihe B, Heft Nr. 269.

Burki, B., H.-G. Kahle und H.H. Schmid (1983):
Das neue Zenitkamera-Messsystem am In-
stitut fir Geodasie und Photogrammetrie der
ETH Zirich: Ein Beitrag zur astronomisch/
geodatischen Messtechnik fur Lotabwei-
chungsmessungen im Gebiet der Ivrea-Zone.
VPK10/83, S. 349-354.

Burki, B. (1985): (a) Die operationelle Bestim-
mung von Lotabweichungen. IGP-Bericht Nr.
91, 33 pp.

(b) Die Ivrea-Messkampagne 1983. IGP-
Bericht Nr. 92, ETH Zrich, 84 pp.

Chapman, M.E. and M. Talwani (1979):
Comparison of Gravimetric Geoids with
GEOS-3 Altimetric Geoids. J.G.R., 84:
3803-3816.

Elmiger, A. (1969) Studien Uber Berechnung
von Lotabweichungen aus Massen, Interpola-
tion von Lotabweichungen und Geoidbestim-
mung in der Schweiz. Ph. D. Thesis, Institut
fir Geodasie und Photgrammetrie, ETH Zu-
rich.

Elmiger, A. (1975): Das Geoid in der Schweiz.
VPK 3/4-75,pp.171-176.

Forsberg, R. (1984): A Study of Terrain Reduc-
tions, Density Anomalies and Geophysical In-
version Methods in Gravity Field Modelling.
The Ohio State University, Department of
Geodetic Science, Report No. 355, Colum-
bus, Ohio, U.S.A.

Geiger, A.und A. Wiget (1986): Anwendung des
U.S. Satelliten-Navigationssystems TRAN-
SIT in der Schweiz, Teil |: Messungen und
Stationsprotokolle, IGP Bericht Nr. 101, ETH
Zurich, 44 pp.

Groten, E. and R. Rummel (1974): Improved
Gravimetric Geoid for 7° < A < 12°E and 47°
= @ =54°N.AVN 7:263-268.

Gurtner, W. (1978): Das Geoid in der Schweiz.
Institut fir Geodasie und Photogrammetrie,
ETH Zurich, Mitteilung Nr. 20.

Heiskanen, W.A. and H. Moritz (1967): Physical
Geodesy. Freeman and Company. San Fran-
cisco and London, 364 pp.

J.G.R. (1979): Scientific Results of the GEOS
3 Project. Sonderheft: Journal of Geophysi-
cal Research, Vol. 84, No. B8, July 1979:
3779-4079.

Jung, K. (1956): Figur der Erde. In: Fligge (Ed.).
Handbuch der Physik, 47:534—639. Springer
Verlag, Berlin, Gottingen, Heidelberg.

Kahle, H.-G. and M. Talwani (1973): Gravime-
tric Indian Ocean Geoid. J.G.R., 39: 167-187
and 491-499.

Kahle, H.-G., M. Chapman and M. Talwani
(1978): Detailed 1° x 1° Gravimetric Indian
Ocean Geoid and Comparison with GEOS 3
Radar Altimeter Geoid Profiles. Geophysic.
Journal, Royal Astron. Society, 55: 703—720.

Kahle, H.-G. (1986): Physikalische Geodasie.
Vorlesungs-Skriptum: 170 pp. IGP ETH Zu-
rich.

Kirwan, A.D., Th.J. Ahrens and G.H. Born (eds.)
(1983): SEASAT Special Issue Il. In: J.G.R.,
Vol. 88, No. C3, Feb. 83: 1529-1952.

Kissling, E. (1980): Krustenaufbau und Iso-
stasie in der Schweiz. Ph.D. Thesis, ETH
Zurich. Diss. Nr. 6655: 165 pp.

Klingelé, E. and R. Olivier (1980): Die neue
Schwerekarte der Schweiz (Bouguer-Ano-
malien). Matériaux pour la Géologie de la
Suisse. Série Géophysique, No. 20:93 pp.
Kiummerly + Frey, Geographischer Verlag,
Bern.

Kuhn, W. (1981): Zur gravimetrischen Geoidbe-
stimmung in der Schweiz. Diplomarbeit IGP
ETH Zurich.

Kunt, M. (1980): Traitement Numérique des Sig-
naux. In: Traité d’Electricité de I'Ecole Poly-
technique Fédérale de Lausanne, Vol. XX.

Lerch, F.J., S.M. Klosko, R.E. Laubscher and
C.A. Wagner (1979): Gravity Model Improve-
ment Using GEOS 3 (GEM 9 and 10). J.G.R.
84:3897-3916.

Mueller, St. (1982). Deep Structure and Recent
Dynamics in the Alps. In: K.J. Hsu (ed.),
Mountain Building Processes. Academic
Press, London: 181-199.

Moritz, H. (1980): Advanced Physical Geodesy.
Herbert Wichmann Verlag, Karlsruhe.

Oesterreichische Kommission fiur die Interna-
tionale Erdmessung (ed.) (1983): Das Geoid
in Oesterreich, Graz 1983.

Parker; R.L. (1972): The Rapid Calculation of
Potential Anomalies. Geophysical Journal,
Royal Astronomical Society, 31, pp: 447—-455.

Rapp, R.H. (1973): Accuracy of Geoid Undula-
tion Computations. JGR, Vol. 78, pp: 7589—
7595.

Sideris, M.G. (1984): Computation of Gravime-
tric Terrain Corrections Using Fast Fourier
Transform Techniques. UCSE Report No.
20007, Calgary, Alberta, Canada.

Talwani, M., H.R. Poppe and P.D. Rabinowitz
(1972): Gravimetrically determined Geoid
in the Western North Atlantic. In: Sea Surface
Topography from Space, NOAA Techn. Re-
port, ERL-228-AOML 7-2: 1-34. Boulder,
Colorado.

Tscherning, C.C. and R.H. Rapp (1974): Closed
Covariance Expressions for Gravity Anoma-
lies, Geoid Undulations and Deflections of the
Vertical implied by Anomaly Degree Variance
Models. The Ohio State University, Depart-
ment of Geodetic Science, Report No. 208,
Columbus, Ohio, U.S.A.

Watts, A.B. and A.R. Leeds (1977): Gravimetric
Geoid in the Northwest Pacific Ocean. Geo-
physical Journal of the Royal Astronomical
Society, 50: 249-277.

Watts, A.B. and N.W. Ribe (1984): On Geoid
Heights and Flexure of the Lithosphere at
Seamounts J.G.R., 89:11152-11170.

Wiget, A., A. Geiger und H.-G. Kahle (1985): Die
Doppler-Messkampagne SWISSDOC. Ein
Beitrag zur Landesvermessung in der
Schweiz. VPK 2/85: 49-52.

Wiget, A., H.-G. Kahle und A. Geiger (1986):
ALGEDOP: Ein Beitrag zur satellitengestitz-
ten Geoidbestimmung in der Schweiz. VPK
5/86:177-181.

Wirth, B. (1985): Storkorperbestimmung im Ge-
biet der Ivrea-Zone aus gravimetrischen und
astrogeodéatischen Messungen. IGP-Bericht
93, ETH Zurich.

Adresse der Verfasser:

Dipl. Phys. A. Geiger

Prof. Dr. H.-G. Kahle

Institut fir Geodasie und Photogrammetrie
ETH an%gerberg

CH-8093 Zurich

323



	Gravimetrisches Geoid der Schweiz

