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Fachteil

Gravimetrisches Geoid der Schweiz
A. Geiger, H.-G. Kahle

Im vorliegenden Aufsatz wird die Methode der Stokes'schen Integration zur
Geoidbestimmung allgemein dargelegt und am konkreten Beispiel der Schweiz
angewendet. Einige Anwendungsmöglichkeiten der Fouriertransformation in der
Physikalischen Geodäsie werden in geraffter Form angedeutet. In den Berechnungen
wurde anhand der Stokes'schen Formel ein Differenzgeoid zum Referenzgeoid,
dem als Kugelfunktionsreihe dargestellten Goddard Earth Model (GEM 9)
bestimmt. Gesonderte Behandlung erfuhr der das Schwerefeld stark störende Ivrea-
Körper. Eine Transformation des gravimetrischen Geoides auf das astro-geodäti-
sche Geoid zeigt für die signifikanten Punkte eine Übereinstimmung, die im Mittel
besser als 30 cm ist. Anhand der Transformation wird die Beziehung zwischen dem
Schweizer Datum und dem internationalen IAG 75-Referenzsystem abgeleitet.

// est question, dans cet ouvrage, de présenter la détermination du geoide par la
méthode de Stokes en général ainsi que de démontrer l'application de cette
dernière, prenant pour exemple la Suisse. Quelques applications de la transformation
de Fourier dans le domaine de la géodésie seront évoquées. Un geoide différentiel
a été calculé à partir de la formule de Stokes, ceci par rapport au geoide de
référence (le Goddard Earth Model [GEM 9]) décrit en termes de série de fonctions
sphériques. Les masses perturbatrices du champ gravitationel du corps d'Ivrée,
situé au sud de la Suisse, ont subi un traitement spécial. La transformation du geoide

gravimétrique sur le geoide astrométrique révèle une correlation entre les
points non situés à proximité immédiate du bord d'intégration d'environ 30 cm. Les
paramètres de transformation décrivent la liaison entre le système de référence
suisse (ellipsoïde de Bessel) et le système de référence international /AG 75.

1. Einleitung
Als die NASA vor elf Jahren damit begann,
die Meeresoberfläche mit Hilfe des Radar-
Satelliten GEOS-3 (J.G.R., 1979) im dm-
Genauigkeitsbereich zu kartieren, erwarteten

vor allem die Ozeanographen wertvolle

Informationen über den globalen Verlauf

von grossräumigen Meeresströmungen

und Seegangshöhen. Ihr langfristiges

Ziel war es, Vorhersagen über die
zeitlichen Änderungen der Meeresströmungen

(z.B. Golf-Strom) vornehmen zu
können. Eines der sensationellen ersten
Teilergebnisse war dabei die Entdeckung,
dass die zirkumpazifischen und Indonesischen

Tiefseegräben mit einer relativ
grossen Depression der Wasseroberfläche

in der Grössenordnung von 5 - 10 m
verbunden waren (Chapman and Talwani,
1979). Diese (zeitlich) konstante Depression

des Meeresniveaus, die den Grabenzonen

über Tausenden von Kilometern
hinweg folgt, liess sich nicht mit ozea-
nographischen oder meteorologischen
Phänomenen erklären. Stattdessen musste

sie als Störung im Schwerefeld der
Erde interpretiert werden. Dass die mittlere

Meeresoberfläche als Niveaufläche
des Schwerepotentials der Erde angesehen

werden kann und die gravitativen
Effekte der Massenverteilung des Erdinnern
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widerspiegelt, ermöglichte aus den
Messungen des zweiten ozeanographischen
Radar-Satelliten SEASAT (Start 1978,
Bernstein (ed.), 1982; Kirwan et al. (eds.),
1983), die Feinstruktur des Schwerefeldes
zu bestimmen. Aus den Anomalien des
Schwerefeldes lassen sich das Relief des
Meeresbodens sowie die Massenverteilung

im Erdinnern ableiten. Dank dieser
sogenannten Satellitenaltimetrischen
Methode konnten in jüngster Zeit viele bisher
unbekannte submarine Gebirge, Sea-
mounts, Tiefseegräben und Bruchzonen
entdeckt sowie neue Erkenntnisse über
die Struktur und elastischen
Eigenschaften der Erdkruste gewonnen werden
(z.B. Watts and Ribe, 1984).
Wenn man sich die Ozeane durch die
Kontinente hindurch mit Kanälen weltweit
verbunden vorstellt, so ergibt sich eine
Fläche, die physikalisch gesehen, eine
Äquipotentialfläche des Schwerefeldes der
Erde ist. Diese Niveaufläche wird als
Geoid bezeichnet, und die Höhenänderungen

der Niveauflächen nennt man
Geoidundulationen. Besonders grosse
Geoid-Anomalien sind das Minimum im
Indischen Ozean (-100 m relativ zum
globalen Referenz-Ellipsoid [Kahle et al.,
1978]) sowie das Maximum im nördlichen
Atlantik (+70 m [Chapmann and Talwani,
1979]). In der Schweiz liegt das Geoid im
Mittel 50 m über dem Erdellipsoid, wie im

vorliegenden Aufsatz aufgezeigt wird.
Ähnlich wie über den Ozeanen werden
auch im kontinentalen Bereich lokale

Krümmungsanomalien des Geoids durch
die gravitativen Wirkungen der
topographischen Massen (Gebirge, Seen, Täler)
und der Störungsmassen im Erdinnern
verursacht. Einen besonders starken
Einfluss üben dabei Gebirgsmassen, wie z.B.
die Alpen aus. Hier können insbesondere
auch die Überlagerungen der topographischen

Effekte mit den Gravitationseffekten
derjenigen Störungsmassen studiert werden,

die infolge der Kollision zwischen der
afrikanischen und der eurasischen Litho-
sphärenplatte in der alpinen Erdkruste
angetroffen werden (Mueller, St., 1982).
Da das Geoid die natürliche Referenzfläche

der meisten geodätischen Beobach-
tungsgrössen darstellt, standen früher die
Anwendungen der Geoidbestimmung in

der Landesvermessung im Vordergrund.
In letzter Zeit ist zusätzlich der Fragenkreis
um die anomale Dichtverteilung im Untergrund

der Alpen mitaufgenommen
worden. Dies steht nicht zuletzt auch im

Zusammenhang mit aktuellen
Forschungsprojekten der Geophysiker und

Geologen, die in diesem Sommer im Rahmen

des Nationalen Forschungsprogramms

«Geologische Tiefenstruktur der
Schweiz» (NFP 20) begonnen werden.
Im Jahr 1984 hat das Institut für Geodäsie
und Photogrammetrie (IGP) der ETH
Zürich zwei Forschungsprojekte in Angriff
genommen, die wichtige Grundlagen für die
spätere Interpretation der Gravitationsanomalien

liefern dürften. Geographisches

Zielobjekt sind die südlichen Regionen

der Schweiz, wo die Zone Ivrea-Verbano

grosse Störungen des Schwerefeldes

verursacht (Bürki, 1985 a,b). Dort
befindet sich der sogenannte Ivrea-Kör-

per, der aus Gesteinsmaterial besteht, das
der unteren Erdkruste und dem oberen
Erdmantel entspricht. Die gravitativen
Einflüsse dieses bis an die Erdoberfläche
hinaufreichenden Störkörpers gehören weltweit

zu den grössten Schwerefeld-Anomalien.

Für die Geoidbestimmung dieser
anomalen Zone wurde eine Kombination
mehrerer Verfahren angewandt:

(1) Astro-Geodätische Methode
Mit einem in der Lotlinie ausgerichteten
transportablen Zenitkamera-Messsystem
(Bürki et al., 1983) werden Ausschnitte
des Fixsternhimmels im jeweiligen Zenit
der Beobachtungsorte photographiert und
daraus durch Anschluss an das astronomische

Fixsternsystem die Richtungen
der örtlichen Schwerevejdoren bestimmt.
Die Differenzen gegenüber den
Richtungen der Flächennormalen des Refe-
renzellipsoides ergeben die sogenannten
Lotabweichungen. Diese vom Prinzip her
konventionellen terrestrischen
Messungen (astro-geodätische Methode) werden

mit modernen Satellitenmethoden,
wie dem Dopplerverfahren und in Zukunft
auch mit GPS-Messungen kombiniert.
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Partie rédactionnelle
(2) Gravimetrische Methode
Im Gegensatz zur astro-geodätischen
Methode, die auf Lotabweichungen beruht,
werden bei der gravimetrischen Methode
Schwereanomalien verwendet. Der
vorliegende Aufsatz befasst sich mit der
Anwendung der letzten Methode. Ein besonderes

Problem (dafür aber auch ein
besonderes Interesse) bieten die Hochge-
birgszonen der Schweizer Alpen, denen
grössere Beachtung bei der Geoidbestimmung

geschenkt werden müssen.

2. Theoretische Grundlagen
zur gravimetrischen
Geoidbestimmung
Für die begriffliche Klarstellung der
ausgeführten potentialtheoretischen Untersuchungen

werden zunächst einige
Definitionen zum Schwerefeld der Erde
gegeben (Kahle, 1986).
2.1. Schwerepotential
Das Schwerepotential besteht aus zwei
Anteilen: dem Gravitations- und dem
Zentrifugalpotential.
2.7.7 Gravitationspotential
Nach dem Newtonschen Gravitationsgesetz

(1687) ist die auf ein Massenelement
m wirkende Gravitationskraft F(P) der
Erde in einem Punkt P - mit den erdbezogenen,

geozentrischen kartesischen
Koordianten X, Y und Z - gegeben durch
das Integral in Abb. 1.

Das Vektorfeld F wird als Gravitations-
Kraftfeld bezeichnet. Es ist ein wirbelfreies
Feld:

rot F =0.

Die pro Einheitsmasse m wirkende
Gravitationskraft hat die physikalische Bedeutung
einer Beschleunigung. Sie wird alsGravita-
tionsbeschleunigung gv bezeichnet:

m

Physikalische Definition des Gravitationspotentials

In einem Punkt P (X,Y,Z) des Gravitationsfeldes

F ist der Wert des Gravitationspotentials

V* (P) gleich der Arbeit A, die
«gegen» die Gravitationskraft F geleistet werden

muss, um eine Punktmasse m aus dem
Nullpunkt, der willkürlich gewählt werden
kann, in den Punkt P überzuführen. Der
Potentialunterschied dV* zwischen zwei
infinitesimal benachbarten Punkten P1 und P2

beträgt:

dV* -ä£m (™ ¦ dr)lm ' (g„ • dr),

Abb. 2: Zur Definition des
Gravitationspotential-Unterschiedes dV*

Wegen dV* (gradV* • dr) gilt für die
Gravitationsbeschleunigung

gv -gradV*=-VV*,
mit V Nabla-Operator.

Geodätische Definition des Gravitationspotentials:

In der Geodäsie pflegt man als
Gravitationspotential-Differenz dV diejenige
Arbeit zu definieren, die pro Einheitsmasse
von der Gravitationskraft bei der Verschiebung

um dr geleistet wird:

wenn dr der Ortsvektor zwischen P1 und P2
ist. dV ¦ dV - + g ¦ dr.

ME

F(P) F(X,Y,Z) Gm ff/%
M

>
G Gravitationskonstante (6.672 ± 0.004) • 10-11 [m3kg_1s~2

Erdmasse, m Massenelement im Punkt P(X,Y,Z)
Geozentrum Ursprung des (X,Y,Z)-Koordinatensystems

Z-Achse mittlere Rotationsachse der Erde
X-Achse liegt in der Greenwich-Meridianebene und steht senk¬

recht auf der Rotationsachse
Y-Achse steht senkrecht auf der (X-Z)-Ebene und ist so ge¬

richtet, dass X,Y,Z ein rechtshändiges Koordinatensystem

bildet.
(X,Y)-Ebene Aequatorialebene
r (X2 + Y2 + z2) V2

Abb. 1 : Zur Berechnung des Gravitationspotentials der Erde in einem Aufpunkt
P(x,y,z)

In diesem Fall gilt für g*v:

gv + grad V.

Der Wert des Gravitationspotentials V(P)
selbst entspricht derjenigen Arbeit, die von
der Gravitationskraft geleistet wird, wenn
die Einheitsmasse aus dem Unendlichen
(Nullpunkt) zum Punkt P bewegt wird:

V(P) fo • dr G fff^
2.1.2 Zentrifugalpotential Uz

Der zweite Anteil des Schwerepotentials
der Erde ist das Potential der
Zentrifugalbeschleunigung Uz (P) Uz (X,YZ). Dessen

Wert pro Einheitsmasse beträgt im

Punkt P:

Uz (P) ^co2r2b ^0)2 (X2 + Y2)

mit rb Breitenkreis-Radius und
co Winkelgeschwindigkeit der Ei¬

genrotation der Erde:

co —
2tc 2jt

1 Sterntag 86164,09 s

[7,292115 ¦ 10-5 rad s-1]
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U)

kjiiZ

Abb. 3: Definition des Zentrifugalpotentials,

rb Breitenkreisradius

Die Energie der Erdrotation beträgt
«1036ergA 1014Megatonnen TNT

Das SchwerepotentialW ist definitionsge-
mäss gleich der Summe aus dem
Gravitationspotential V und dem Zentrifugalpotential

Uz (pro Einheitsmasse):

rrrdME 1

W V + UZ G///—+ la,2r2b
ME

Neue Sl-Mass-Einheit:

[m2s-2] Arbeit pro Einheitsmasse
Frühere Einheit:
[erg g-i] [cm2s-2] 10—» [m2s-2]
Zahlenwert: W im mittleren Meeresniveau

6,263 683 • 10-7 [mZs-z]
Jedem Punkt P (X,X Z) des Raumes kann
ein skalarer Wert des Schwerepotentials
gemäss obiger Formel zugeordnet werden.
Das entsprechende Feld heisst Schwerefeld

der Erde.

2.2 Niveauflächen, Lotlinien und
Schwerebeschleunigung

Das Schwerepotential W ist eine eindeutige,

stetige und differenzierbare Funktion im

ganzen Aussenraum.
Die Flächen konstanten Schwerepotentials
W W(r) const
bezeichnet man als Aequipotential- oder
Niveauflächen.
Der Potentialunterschied dW zweier
benachbarter Niveauflächen zwischen den
Punkten P2 und R, beträgt

dW W(P2) - W(P,) g ¦ ds
(Skalarprodukt),

wobei

Ortsvektor zwischen P, und P2ds
und

g grad W

I

i
1

g( W

Lotlinie
W2 const.

^\^s
Wj const.

i i 9(>1)

i

Abb. 4: Schwerebeschleunigung,
Niveaufläche und Lotlinie

Der als Schwerevektor bezeichnete Vektor

g hat

(1) einen Betrag Igl g und
(2) eine Richtung.

(1) Der Betrag von g* heisst
Schwerebeschleunigung oder kurz: Schwere.
Die neue Sl-Einheit von g ist
[ms-2] - [Nkg-1].
Frühere Einheit:
[mgal] 10-3[gal] =10-5[ms-z].
Moderne Gravimeter vermögen
Schwereunterschiede zwischen 10-7
bis 10~8 [ms-2] zu messen.

(2) Die Richtung von g ist identisch mit der
Richtung der Lotlinie. Sie steht senkrecht

auf der Aequipotentialfläche, die
durch den betreffenden Punkt (z.B. P2)

geht.
Die Orthogonaltrajektorien zu den Aequi-
potentialflächen heissen:

Schwerkraft- oder Schwerefeldlinien.

Die Tangenten an diese schwach
gekrümmten Feldlinien sind jeweils die
Lotlinien.

Schwerefeldlinie /W«*»*

P2

^ \ds
9(P2_) \

rg(Pi)) P1^^\

/BW BW 8W\ _ /w w w \
\dX' ev ez/ vvx Y' z/

Abb. 5: Schwerefeld- und Lotlinie

2.3 Das geodätische Randwertproblem
2.3.1 Beziehung zwischen Schwereanomalien

und Störpotential
In der Gravimetrie bestimmt man die Differenz

zwischen der gemessenen
Schwerebeschleunigung g(P(,) im Punkt P0 auf dem
Geoid und der berechneten Normalschwe-
regn(Q0) gnorm(Q0) im PunktQ0auf dem

Erdellipsoid. Die Differenz der Beträge dieser

Schwerebeschleunigungen wird als
Schwereanomalie

Ag g(Po)-gn(Q0)

bezeichnet.
Taylor-Entwicklung für gn(Q0):

89n
9n(Qo> 9n(P0)--9^ N +Glieder

höherer Ordnung

Damit folgt
ÖQn

Ag-g(P0)-gn(Po) + -ëNN + --- n

Die Differenz g(P0) - g^) setzen wir in

Beziehung zum Gravitationspotential T der
Störungsmassen (— Störpotential),

T(P0) W(P0) - U(P0),

welches der Differenz zwischen dem
Schwerepotential W(P0) der (wirklichen)
Erde und dem Schwerepotential U(P0) der
Normalerde (Erdellipsoid) entspricht. Für

die radiale Ableitung ~jq des Störpotentials
T längs der Ellipsoidnormalen (N positiv
nach aussen) gilt:

ei aw_ eu
9N 8N 8N

bzw. für Lotabweichungen
e<1'(cose«1):

fS - - g(Po> + g»
wobei

und
g -igi

—*.

Q Iq I.

Einsetzen dieser Beziehung in (*) ergibt
(unter Vernachlässigung Glieder höherer
Ordnung):

An 9T 8gn..

Setzt man ausserdem:

T(Prj)
N

n ,„ \ • BRUNSsches Theorem
gn(Qo)

so ergibt sich die Grundgleichung des
sogenannten geodätischen Randwertproblems:

Ag öI-j-JL^Dt
BN^gn BN '¦

In sphärischer Approximation:

Ag 8J_2 T
Br R '¦

wobei R mittlerer Erdradius: 6371 km
und r Abstand vom Erdmittelpunkt.
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MEERESOBERFLÄCHE POTENTIAL W Wo

-GEOIDUNDULATION H/
V,

NORMALSCHWERE<£(

STORPOTENTIAL T^W^-U10

SCHWEREANOMALIE Ag g^-g^- JJ +^|jT

ERDOBERFLÄCHE
SCHWEREVEKTOR

LOTABWEICHUNG £

GEOID

UTENTIAL
W*W„

REFERENZELLIPSOID

POTENTIAL U Wo

Abb. 6. Geoid, Ellipsoid und Geoidundulation

2.3.2 Potentialtheoretisches und geodätisches

Randwertproblem
Die obige Grundgleichung des geodätischen

Randwertproblems stellt die Beziehung

zwischen der gemessenen
Schwereanomal ieAg u nd dem Störpotential T her.

Sie hat scheinbar die Form einer
Differentialgleichung, weil T und dessen Ableitung
vorkommen; scheinbar deswegen, weil Ag
zunächst nicht im ganzen Raum bekannt
ist, sondern nur auf der Fläche des Geoids
bestimmt wird. In dieser Form stellt die
Gleichung also lediglich eine Randbedingung

dar, welche allein nicht zur Bestimmung

von T ausreicht. Es handelt sich hier
um ein spezielles Randwertproblem der
Potentialtheorie, das sich grundsätzlich
vom 1., 2. und 3. Randwertproblem folgen-
dermassen unterscheidet:

Erstes Randwertproblem Dirichlet'-
sches Problem (Potential gegeben:

Hauptaufgabe in der Theorie
ruhender elektrischer Ladungen)

Zweites Randwertproblem Neumann'-
sches Problem (Ableitung gegeben:

Hauptaufgabe in der Theorie
bewegter Flüssigkeiten)

Drittes Randwertproblem Cauchy'-
sches Problem (Kombination von
Potential und dessen Ableitung
gegeben: Hauptaufgabe in der
Wärmeleitung)

Während beim 1., 2. und 3. Randwertproblem

das Potential, dessen Ableitungen
oder eine lineare Kombination dieser Grössen

auf einer bekannten Fläche vorgegeben

sind, die nicht unbedingt mit einer

Aequipotentialfläche zusammenfällt, ist
beim geodätischen Randwertproblem die
Fläche, auf der diese Grössen gegeben
sind, unbekannt. Man weiss jedoch, dass
es eine Aequipotentialfläche ist, auf der die
gemessenen Schwerevektoren senkrecht
stehen. Es besteht die Aufgabe, die
gegebenen Flächenelemente zu einer einheitli¬

chen, geschlossenen Fläche zusammenzusetzen

(Jung, 1956). (Abb. 7)

Lösungsweg:
Über die POISSONsche Lösung des ersten
(Dirichletschen) Randwertproblems erhält
man zunächst eine Gleichung, die die
Schwereanomalien Ag im Aussenraum zu
berechnen gestattet. Damit kann die Rand-

v\//yyvvyyyy1 1 / / \ f \ \ \ \
1 1 1 / \ 1 1 i

vv. vo^- -" ^ y
\

Äquipotentialflächen

/
/ // / /.

I I I
I I I

\ \ I I

/ /

«GEODÄTISCHES»
RANDWERTPROBLEM

Schwerevektoren auf
""""*¦ unbekannter Fläche

«POTENTIALTHEORETISCHES»
RANDWERTPROBLEM

m Schwerevektor-Komponenten
auf gegebener Fläche (i.a.
keine Aequipotentialfläche)

_ Schwerevektoren senkrecht
zur Aequipotentialfläche

Abb. 7: Geodätisches und potentialtheoretisches Randwertproblem
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wertbedingung in eine Differentialgleichung

umgewandelt werden. Die Integration

dieser Gleichung führt auf das
sogenannte STOKESsche Integral. Grundlage
dieses Lösungsweges ist die Entwicklung
des Störpotentials nach Kugelfunktionen.

2.4 Poisson'sche Lösung (nach Heiskanen
und Moritz, 1967)
Für das Störpotential T (r,6,A) können wir
die Kugelfunktionsentwicklung

(r-e-A)=2(?)n+lT"(e-A)

T"(6,A)mitTn(9,A)

n- 0
i

m - 0

9 Polabstand
A geographische Länge
r Abstand des Aufpunkts

vom Geozentrum
in die Grundgleichung des geodätischen
Randwertproblems einsetzen:

AB~f-?T

-7ï>+i>(?r,T",6'i)

-?2(f)" + ,Ve.»>
n- 0

Entwicklung der Schwereanomalien
Ag (r,6,A) im Aussenraum

Ag l|>-1)(B)n+\(e,A)
n- o

Auf dem Geoid, d.h. für r R, erhalten wir:

1

\

n- 0

Ag|r R l£(n-1)Tn(6,A)

Zur Bestimmung der Terme Tn (9,A)
betrachten wir eine allgemeine harmonische
Funktion H, die auf der Fläche F gegeben
sei (Abb. 8):

Der Wert von H im Aussenpunkt A beträgt

H(A) H(r,9,A) 2(ßy+1Hn(9,A),
n- 0

2jt Jt

mit^O.A)-2"^/ / H(R,6',A')
A' - 0 6' - 0

Pn(cos4J) sin9'd9'dA'
und cosip cos9 cos9' + sin9 sin9'

cos(A' — A).

i .i
(e,x

*
p(e A

Abb. 9: Zur Berechnung des sphärischen

Abstandes zwischen
Aufpunkt und Flächenelement

Die Formel für Hn (9, A) folgt aus dem
Additionstheorem der Kugelfunktionen:

Pn(cos4J) Pn(cos9)Pn(cos6')

+ 22(iïT5i[Rn(e'A)R:(e''A')
m - 1

Also:
+S:(9,A)S:<9',A')]

"W if /H(R,e',A<)
A' - 0 8' - 0

[2(2n + 1)(B)n
+

1Pn(oosuJ)]

n- 0

sin9'd6'dA'

Geoid
gel

A(r,0,A)

l =(r2+R2-2rRcosi//)/î

P(0',V)
R2dc' Flachenelement

auf dem Geoid

Abb. 8: Zur Berechnung der Kugelfunktionsterme des Störpotentials
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Für die Summe in der eckigen Klammer
können wirfolgende Vereinfachung einführen:

2(2n + 1> (7p1 Pn (cosy)
n - 0 ' '
-p(r2-R2).

Damit erhalten wir die POISSONsche
Lösung POISSONsches Integral) des
DIRICHLETschen Randwertproblems der
Potentialtheorie:

H(A) H(r,6,A)

2jt it/ ;4jt
A

mit do

B_ f fr2~
A'-O 6'-0

|3

sin9'd9'dA'.

H (R,9',A')do'

Wenn wir im Hinblick auf die Anomalien
des Schwerepotentials Differenzen der
beobachteten Werte gegenüber denjenigen

des Referenzellipsoids) dieTerme nullter

und erster Ordnung abspalten, gelangen

wir zum reduzierten POISSONschen
Integral:

du jt

HSä-ft/ /red 4jt
A'-o e'-o

r2 - R2 _
1 3R

|3 r
3R \fi" cositi 1 H (R,9',A')do'

Anwendung auf das Produkt rAg ergibt:

rAg
(A) _R_

red 4n

2lt 51

A'-O 6'-0

r2-R2 1 3R
|3

COSIJJ CAg)|r. Ddo'

Ag^)(r,9,A)-
2ji n

*?! fA'-o e'-o

^^-fcos^AgUdo'

In dieserGleichung ist das Flächenelement
do' dimensionslos, do' ist als Element
eines Raumwinkels zu interpretieren.

2.5. Das Stokes'sche Integral
Ausgehend von

Ag(r,9,A)=-g-^T
erhält man nach Multiplikation mit (— r2)

und anschliessender Integration / dr der

neuen Gleichung über r mit Berücksichtigung

der obigen Formel für Ag
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S(ip) und F(tjj) r sira(j S(i|i)

+ 15*

STOKES FUNKTION
SW

FW

50 100 150 180°

sphärischer Abstand <Jj

Abb. 10: Verlauf der Stokes'schen Funktion

4jt JJ

-rR2

fläche (Geoid). S(r,nj) wird als STOKES-
sche Funktion bezeichnet.
Für r — R erhalten wir:

y (-e^ + i+ *«,)*] TM».J//,M4,|r^
• Mlsin -»-

Ag|r_Rdo'

Das Integral in der eckigen Klammer ergibt: Wegen l 2Rsin£

r r^ ì Hrl Tr2 /2._31, 1__ R costi) für r R (gleichschenkliges
L/uarj Lr ^, f2-r f f2 Dreieck)

ergibt sich die STOKESsche Funktion

(5 + 3 In
r-Rcosm +1

2r )]
Nach Division durch r2 erhalten wir

T(r.e,A) - g//[(....)]Ag do'.

sinü

Mit der Abkürzung

S (r,ip) - R

ergibt sich:

S(r,w)-R[(f-g+ ...)]

T (r, 9, A) - &- ff S (r,i|i) Ag |
r _ Rdo'

Dies ist die Formel für das Störpotential T
im Aussenraum, ausgedrückt durch die
Schwereanomalien Ag auf der Erdober-

(Abb. 10) zu

S(r R,uj) =S(uj)

6sin * + 1 — öcosijj

- 3cosi)j In (sin * + sin2 ï)V

Für die gesuchte Geoidundulation N erhalten

wir aufgrund des BRUNSschen

Theorems N — das
9n

STOKESsche Integral:

N-d^J7sM*»lr-Rdo'

Erste Anwendungen des Stokes'schen
Integrals konnten zunächst nur in ozeanischen

Bereichen vorgenommen werden,
da dort keine grösseren Umrechnungen
von beobachteten Schwereanomalien auf
Freiluftanomalien vorgenommen werden
müssen. Beispiele sind die gravimetrischen

Geoide des Nordatlantiks (Talwani
et al., 1972), des Indischen Ozeans (Kahle
and Talwani, 1973) und des Pazifiks (Watts
and Leeds, 1977). In Europa wurden gra-
vimetrische Geoide z.B. von Graten und
Rummel (1974), Arabelos (1980) und kürzlich

von Brennecke et al. (1983) sowie von
deröster. Komm. f. Int. Erdmessung (1983)
publiziert.

2.6 Berechnungsablauf
und Ausgangsdaten
2.6.1 Berechnungsablauf
Im folgenden wird die effektive Berechnung
des Stokes'schen Integrals der Poisson'
sehen Lösung in Form eines Flussdiagramms

konkreter dargestellt.
In diskretisierter Form erscheint das Sto-
kes'sche Integral als Summe über kleine
Kugelflächenelemente, multipliziert mit
mittleren Funktionswerten innerhalb dieser

Elemente. Die Elemente haben die
Seitenlängen von 6' in der Breite und 10'
in der Länge. Sämtliche Daten müssen daher

auf dieses Raster bezogen und ggf.
innerhalb der einzelnen Elemente gemit-
telt werden (h, Ag). Zusätzlich sind alle
verwendeten Grössen auf eine gemeinsame

Referenz zu beziehen. Hier wurde das
IAG 75 Ellipsoid gewählt. Um die Schweredaten

zu glätten, kann man Effekte
Agstörm bekannter Massenkörper von
den Schweredaten subtrahieren. Allerdings
fehlt dann der Beitrag zum Geoid im
Stokes'schen Integral. Der direkt aus dem
Massenmodell berechnete Effekt des
Massenkörpers auf die Geoidundulation
Nstörm muss also nach der Stokes'schen
Integration wieder hinzugefügt werden.
Bekanntlich ist das Stokes'sche Integral
über die gesamte Erdoberfläche zu
nehmen. Diese umfangreiche Integration ist

jedoch mit der Berücksichtigung eines
regionalen oder eines globalen Geoides
vermeidbar. Lokal wird lediglich die Differenz
zu diesem Referenz-Geoid berechnet. Als
Schweredaten müssen dann nur Werte
im interessierenden Gebiet betrachtet werden.

Zum Referenz-Geoid Nref gehört
natürlich auch das entsprechende Schwerefeld

gref, das von den mittleren
Schwereanomalien subtrahiert wird. Die Undula-
tionen des Referenz-Geoides müssen
nach der Berechnung des Stokes-Integral
wieder hinzugefügt werden. Zur Abschätzung

der Fehler und Bestimmung von
Transformationsparametern ôNg, ô^o, ôvq;
òx, ôy, ôz wurde zusätzlich eine Transformation

des gravimetrischen Geoids ins
Schweizer Datum berechnet und mit dem
astro-geodätisch bestimmten Geoid (Gurtner,

1978) verglichen.
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I
Lösung der Differentialgleichung (1)

T(,,,-^://Ag S(V»da
6 i

BRUNSsches Theorem

STOKES
INTEGRAL

N Zw//ä9 S(u» da

Aufpunkt

dcr

Anmerkung: In dieser Darstellung bedeutet Y 9norm

(1)
Randwertbedingung:
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u Abb. 11 : Zusammenfassung der gravimetrischen Methode zur Bestimmung der
^ Geoidundulation N
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Abb. 12: Ablauf der Geoidberechnung



Partie rédactionnelle

«Ol> 300 SOO 700 KO MO

wo-

200

0

m

-200

- IO0

0

t sur r
• i

-
H n ^h ei

• -- - -

- - -

-

Bern

i

j
Y

~JJ ._
0 J >n ri -

/
"T ,-.

-
t- - -

>

¦

'i
J V.

)V.r-y

' !•—
i'
i..

-
-

_

- - ,i
"\ i

-
,.—'W"°
ì

S \
-

-
-

Tt r

-
M li ta n<1

- -
n -

0 SOO «00 700 MO MO

innere Zone ¦ miniere Hohen pro 500 m - Feld äussere Zone miniere Hohen pro 10 km - Block

Abb. 13: Einzugsgebiet der verwendeten mittleren Höhen der Schweiz

n*A

D
F Basel

Zurich

Luzern

ern
Chur

Lausanne

fc-Sion

Geneve Lugano

*X.8
50km

Abb. 14: Freiluftanomalien. Die Freiluftanomalien sind sehr eng mit der Topographie
korreliert. Isolinienabstand 25 mgal. Diese und andere Isolinienkarten wurden

mit Programmen von Klingele (1980) erstellt.

2.6.2 Digitales Höhenmodell
Zur Bildung von mittleren Höhen in den
6' x 10' Elementen wurde das von Elmiger
(1969) compilierte digitale Höhenmodell
MH500 (mittlere Höhen 500 m x 500 m)
verwendet.

2.6.3 Schweredaten
Die etwa 2'500 Gravimetrie-Daten stammen

aus Arbeiten zur neuen Schwerekarte

der Schweiz von Klingele und Olivier
(1980) und aus Messungen von Kissling
(1980). Die Daten sind im Referenzsystem

1930 gegeben. Sie mussten daher auf das
Ellipsoid IAG 75 umgerechnet werden.
Punkte an denen nur Bougueranomalien
vorhanden waren, wurden gleichwohl zur
Stützung der Mitteilung der Freiluftanomalien

mitberücksichtigt.

2.6.4 Digitale Störmassenmodelle
In den vorliegenden Berechnungen wurde
ein Massenmodell des Ivrea-Körpers, der
das Schwerefeld in der Südschweiz
besonders stark beeinflusst, berücksichtigt.
Zur Berechnung des Schwereeffektes wur¬

de ein Ivrea-Modell (Bürki, 1985) und
(Wirth, 1985) verwendet.

2.6.5 Referenzfeld
Als Referenzfeld wurde das GEM9 (Goddard

Earth Modell, Lerch et al., 1979)
verwendet. Das Modell wird durch eine
Kugelfunktionsentwicklung bis zum 30. Grad
dargestellt. Dadurch kann zwar eine im

globalen Massstab recht gute Beschreibung

gewonnen werden. Im lokalen
Bereich jedoch hat das Modell eher den Zweck
einer Trendfunktion.

3. Methode der Fourier-
Transformation in der
Anwendung auf die
Schwerefeldbestimmung
3.1 Konzept der Fouriertransformation
Nach einem Satz von Fourier lässt sich jede

periodische Funktion durch eine Summe

von Sinus und Cosinus-Funktionen
mit Frequenzen von ganzen Vielfachen
einer Grundfrequenz w darstellen:

N

f(t) =2 (an ¦ cos(n ¦ w • t)

n 1

+ bn sin(n ¦ w • t)j

Umgekehrt kann jede beliebige periodische

Funktion durch Überlagerung,
Summenbildung, der einzelnen Basisfunktionen

dargestellt werden. Am «ohrenfälligsten»

wird dieses Phänomen in der Akustik

demonstriert. Durch das Zusammenfügen

verschiedener Töne und Obertöne
mit gleicher Grundfrequenz können Töne
mit beliebiger Klangfarbe generiert werden.

Um eine Funktion zu beschreiben,
muss man also angeben, mit was für einer
Stärke (Amplitude: an bzw. bn) eine
bestimmte Basisfunktion mit der Frequenz
(n • w) zur ganzen Summe beitragen soll.

Trägt man die Amplituden gegen die
Frequenzen auf, so enthält man das
sogenannte Amplituden-Spektrum.
Es zeigt, welche Frequenzen wie stark in

der Funktion f(t) vertreten sind. Die
Amplitudenfunktion a a(w) beschreibt die
Funktion f(t) im sogenannten Spektraloder

Frequenzbereich voll und ganz. Das

Bildungsgesetz nach obiger Formel
erlaubt es, aus der Beschreibung im

Frequenzbereich die Funktion im sogenannten
Zeitbereich direkt zu rekonstruieren.

Die Beschreibung im Zeitbereich und jene
im Frequenzbereich sind einander äquivalent.

Die harmonische Zerlegung einer Funktion

kann in funktionentheoretischer Weise

verallgemeinert werden. Dabei führt
man den Begriff der Transformation, im

speziellen der Fouriertransformation, ein.
Da nicht mehr nur diskrete Frequenzwerte
n • w, sondern auch beliebige (kontinuierliche)

Zwischenwerte im Intervall (-<», + œ

berücksichtigt werden, sind die Summatio-
nen durch Integrationen zu ersetzen. Zu-
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Abb. 15: Modell des Ivrea-Körpers (Wirth, 1985)

sätzlich werden die Cosinusse und Sinusse
als komplexe Funktionen geschrieben
(EULERscherSatz):

cos cp + i sin cp e icP

i die imaginäre Zahl V-1

e Exponentialfunktion
cp ein Winkel.

Die Fourier-Transformation gibt die
Vorschrift, wie man vorzugehen hat, um von
der Beschreibung einer Funktion im
Zeitbereich zur Beschreibung im Frequenzbereich

zu gelangen. Der umgekehrte Schritt
wird durch die inverse Fouriertransformation

vorgeschrieben. Es ist zu beachten,
dass sowohl F(w) als auch f(t) komplex-
wertige Funktionen sind. Der Übergang
vom Zeit- in den Frequenzbereich erfolgt
mit

+ °o

F(w) J f(t) • e("2jt ' wt) dt
— OO

und die Umkehrung mit

+ 00

f(t)= f F(w) ¦ e(t2:ii wt) dw
— OO

Man mag sich wohl fragen, was diese

komplizierte Umrechnerei für Vorteile bieten

mag. Zum einen sind die quantitativen

Aussagen über den Spektralbereich
oftmals direkte Zielgrössen der
Untersuchungen insbesondere in Bereichen,
wo schwingungsförmige Phänomene zu
behandeln sind, etwa in der Akustik, Optik,

Bildverarbeitung, Elektrotechnik, aber

auch in der Geophysik und Geodäsie. Diese

Methode, Vorgänge im Frequenzbereich

zu untersuchen, wird als Spektralanalyse

bezeichnet. Zum andern lohnt
sich oftmals der Transformationsaufwand,
da viele im Zeitbereich aufwendige
mathematische Manipulationen im Frequenzbereich

als einfache Operationen ausgeführt
werden können.
Wenn die Rede von Zeitbereich ist, so soll
dies nicht heissen, dass die Fourier-Transformation

nur auf Zeitfunktionen anwendbar

sei. Der Parameter t kann durch irgendeine

Grösse ersetzt werden. Für die hier
gezeigten Anwendungen steht vor allem
die Behandlung von Ortsfunktionen im
Ortsbereich im Vordergrund des Interesses.

Man spricht auch oft vom physikalischen

Bereich. Die Fourier-Transformation
kann auch für mehrere Variablen
verallgemeinert werden. Die Ortsfunktion mit
mehreren Veränderlichen f(x,y,z,...) würde
im Abbild im ebenfalls mehrdimensionalen

Frequenzbereich durch die Transformation

erhalten:

F(u,v,w,...) M f(x,y,z...) •

e-2jti(xu + yv + zw+...) dxdydz...

mit der Umkehrung

f(x,y,z...) JJJ F(u,v,w...)^

et2rc i(xu + yv + zw + dudvdw...

Die meisten, den Geodäten interessierenden

Berechnungen, beschränken sich auf
zwei, allenfalls drei unabhängige
Veränderliche. Die oben erwähnten Eigenschaften

der transformierten Funktionen lassen
sich sinngemäss auch auf mehrere
Veränderliche übertragen. Für die hier beschriebenen

Anwendungen kommen vorrangig
zwei Eigenschaften zum Zuge:
Ist f(x) eine Funktion im physikalischen

Abb. 16a: GEM9. Geoid berechnet aus
G EM9-Kugelfunktionskoeffizienten.
Überhöhung der Undulation 1:15 000.

Vermessung, Photogrammetrie. Kulturtechnik, 8/86
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Abb. 16b: GEM9-Geoid im lokalen Bereich der Schweiz. Isolinienabstand: 20 cm.
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Bereich und F(w) ihre Transformierte im

Frequenzbereich, so verwandeln sich
Differentiationen in Multiplikationen im

Frequenzbereich. Es gilt:

df(x)/dx —> 2jtiw F(w)

Eine weitere sehr hilfreiche Beziehung
betrifft die Integration von Produkten von
Funktionen mit speziellen Argumenten.
Die unter dem Namen Faltung bekannte
Integralformel wird ebenfalls zu einem
Produkt transformiert:

<p(x)

cb(w)

I f(y)«g(x-y)dy
F(w) • G(w)

Integrale dieser Art treten im Zusammenhang

mit Filterproblemen, Korrelationsund

Kovarianzberechnungen und in
verschiedenen Formeln der Physikalischen
Geodäsie auf. Um die Integraltransformationen

numerisch anwenden zu können,
müssen etliche Vorkehrungen getroffen
werden, zumal Intervalle von [-00, +00]
und infinitesimal kleine Grössen dt oder
dw im Computer nicht streng dargestellt
werden können. Das Problem muss also
diskretisiert werden, indem man von der
Integration zur Summation, von infinitesimalen

auf kleine Grössen, von unendlichen
Intervallen auf endliche und von
kontinuierlichen Funktionen auf diskretisierte
Funktionen übergeht. Damit werden
jedoch Genauigkeitsverluste induziert.
Um eine Funktion f(x) rekonstruieren zu
können, muss dem «Abtasttheorem»
zufolge die Funktion in Schritten von Ax
1/ (2 ¦ v) digitalisiert, abgetastet werden.
Hier bedeutet v die höchste im Signal f(x)
vorkommende Frequenz. Wird die Schrittweite

zu gross gewählt, so geht die
Information der höheren Frequenzen verloren.
Durch die Einschränkung der Integration
auf ein endliches Intervall wird der Funktion

eine künstliche Periodizität von der
Länge des Intervalls aufgeprägt. An den
Intervallgrenzen können Randeffekte
auftreten, die das Transformationsresultat
verfälschen. Diesen, der diskreten Fourier-
Transformation eigenen Fehlerquellen gilt
es, bei der numerischen Anwendung Rechnung

zu tragen (z.B. Kunt, 1980). Für die
Berechnung der Transformation wurden
effiziente Algorithmen entwickelt. Die schnelle
Fourier-Transformation (Fast Fourier Transform,

FFT) spielt in diesem Zusammenhang

eine hervorragende Rolle.

3.2 Anwendungen
in der Physikalischen Geodäsie
Eine direkte Anwendung der Fourier-Transformation

ergibt sich bei der Korrelationsrechnung.

Sind zwei reelle Funktionen
f(x.) und g(x) im physikalischen Bereich
gegeben, so wird die Korrelation zwischen
f und g mit dem Erwartungswert des
Produktes definiert (Kreuzkorrelation von f
und g), x soll bedeuten, dass es sich hier
um mehrere Variablen, die in einem Vektor

zusammengefasst sind, handelt.

Jura

RhonetalMittelland

AlpenThuner- und
Brienzersee

Abb. 17: Gravimetrisches Geoid (oben) und Topographie der Schweiz. Ansicht von
Westen. Für die Darstellung der Topographie wurden die Höhendaten MH500
verwendet. B: Bern, C: Chur, G: Genf, Z: Zürich.

ffgte) E{f(x) • g(x>y)}

J/f(x)-gQc + yJdx

fl f*(-x') • gte-x^dx1

Mit dem Faltungssatz erhält man die Fou-
rier-Transfomierte

Rfg(w) F(w) • G(w).

Um z.B. die Korrelation von Freiluftanomalien

mit den Höhen zu berechnen,
genügt es, die Fourier-Transformierte der
Anomalien mit dem transformierten
Höhenmodell zu multiplizieren. Die Rücktransformation

liefert dann die Korrelation im
physikalischen Bereich. Anwendungen für
Kovarianzfunktionen zeigt z.B. Forsberg
(1984). Dazu ist zu bemerken, dass dieser
scheinbar komplizierte Weg um Faktoren
schneller ist als die direkte Ausführung der
ursprünglichen Integration. Weitere
Anwendung des Faltungssatzes finden sich

G

Vu

bei allen Integralen von Produkten, in deren

Argumenten Differenzen der Variablen

auftreten. Als klassisches Beispiel
diene die Newton'sche Gravitationswirkung
von Massenkörpern. Das Gravitationspotential

ist (vgl. Kapitel 2)

J P(yj • (.(y.-*))"1 d3v

'Körper

Gravitationskonstante
Volumen des Massenkörpers
dyidy2dy3

I Abstand zwischen Aufpunkt x und
Integrationsstelle y

ç(y) Dichte-Funktion

Darin erkennt man sofort das Faltungsintegral,

da

f(y.-2) G-(l(y-x.))-1

nur von der Koordinaten-Differenz
zwischen Aufpunkt x und dem Integrations-

Ute)

G

v
d3v
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punkt jL abhängt. Die dreidimensionale
Fourier-Transformation ergibt dann unmittelbar:

F(w)

P(w)

V(w) F(w) • P(w)

f(x) G • (Ite))"1

Pte)

Ute)

Die Schwerewirkung erhält man direkt
durch Gradientenbildung und Anwendung
der oben erwähnten Transformationseigenschaften

der Ableitungsoperatoren.

9te) -grad (U(x)) -> ü(w) -2% i w V(w)

Der Übergang vom Potential zum
Schwerevektor und umgekehrt ist im Spektralbereich

sehr bequem. Er reduziert sich auf
eine einfache Multiplikation.
Das Problem besteht nun darin, dass die
Punkt-Verteilung in z-Richtung im
allgemeinen sehr schlecht ist, da die Messungen

sich auf die Erdoberfläche beziehen.
Dies führt zu einer flächenartigen, manchmal

sogar zu einer profilmässigen
Punktverteilung. Die Fourier-Transformation der
Höhenvariablen z wird daher numerisch
kaum sinnvoll sein. Die explizite Ausführung

der Transformation der z-Variablen
ergibt den ganzen Schwerevektor im
Spektralbereich für ein allgemeines, geschichtetes

Massenmodell. Die dreidimensionale

Transformation ist auf zwei Dimensionen

(x und y) reduziert worden:

G(w,z) 2ra (w,i|w|)--£_ • e-2* Nz.

N

I
n=1

(2k |w|)
n-1

n!
Fxv{p(x,y)(bn(x,y)-an(x,y))}

xy

miti V-1
G Gravitationskonstante
G(w,z) Schwerevektor im zweidi¬

mensionalen Frequenzbereich

Fourier-Transformation der
zwei Variablen x und y

N Ordnung der Reihenent¬
wicklung

ç(x,y) Dichte der Schicht (mit late¬
ralen Änderungen)

a(x,y) Höhe der oberen Begren¬
zung der Schicht

b(x,y) Höhe der unteren Begren¬
zung der Schicht

Die dritte Komponente dieser Gleichung,
die Fourier-Transformation der z-Kompo-
nente des Schwerevektors, entspricht der
von Parker (1972) auf anderem Weg
erhaltenen Formel.
Eine weitere Möglichkeit der Berechnung
von Schwereeffekten von Massen, vor
allem in Anwendung auf die topographische

Korrektur von Schwerewerten, führt
Sideris (1984) vor. Den Ausgangspunkt
bildet das Integral für die topographische
Korrektur für Punkte auf einer sphärischen
Referenzfläche (Moritz, 1980).

13.00

50km

Abb. 18: Gravimetrisches Geoid im IAG 75 Bezugssystem (ohne Ivrea-Cogeoid;
Isolinienabstand: 50 cm)

O
¦V ij

Abb. 19: Gravimetrisches Geoid im Schweizer-Datum (Bessel); Isolinienabstand:
50 cm. Die Verkippung und der Offset (ca. 50 m) gegenüber dem IAG 75-System ist
im Mittelland deutlich zu sehen (vergi. Abb. 18 und 19).

C(P)= 1/2 GpR2 J[h(Q)-h(P)]2

(l(Q,P))-3do
C Topokorrektur in P
G Gravitationskonstante
P Aufpunkt
Q Integrationsstelle
R Kugelradius der Referenzflächen
Ç Dichte
I Distanz zwischen den Punkten Q und P
h Höhe des Punktes Q bzw. P
o Kugeloberfläche

Betrachtet man ein nicht allzu ausgedehntes
Gebiet, so ist es statthaft die Kugel¬

fläche auf eine (x,y)-Ebene zu projizieren.
Das Integral geht dann über in

Cte) 1/2 G p J [h(yj - h(x)]2 •

^Ebene

te - y)"3 d2y

C(x) 1/2 G p J (h%) • (x-y)-3 -

YEbene

2h(x) • h(y) • (x-y)-3 + h2(x).(x-y)-3)d2y

Die drei Terme sind sofort als Faltungsintegrale

zu erkennen.
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Partie rédactionnelle
In ähnlicher Weise können auch die Sto-
kes'sche Formel oder die Vening-Meinesz-
Formeln behandelt werden.

Nach Stokes gilt:

N(P) ~ Js(P,Q)

o Kugel

Ag(Q) d2o

Der Integralkern (Stokes'sche Funktion)
hängt im wesentlichen nur von der Distanz
zwischen den Punkten P und Q ab, was
die Form der Faltung nach sich zieht. Ebenso

verhält es sich mit den Vening-Meinesz-
Formeln, die man durch Differentiation der
Stokes'schen Formel erhält:

Ç(P) ~ 3N/3dcp

~ J 3S(P,Q)/3cp • Ag(Q) d2o

o"kugel

itfP) ~ coscp(P)- 3N/9X.

~ J 8S(P,Q)/8X Ag(Q) d2G

akugel

cp,£ geogr. Breite bezw. Lotabweichung

\,r] geogr. Länge bezw. Lotabweichung

Der Charakter der Faltung ist auch in diesen

Formeln erkennbar.

Statt die Differentiation im physikalischen
Bereich auszuführen, transformiert man
zuerst das Stokes'sche Integral unter
Verwendung des Faltungssatzes und
differenziert anschliessend im Frequenzbereich.

Das heisst: man muss dann lediglich

mit dem Faktor 2jt i w multiplizieren,
um die transformierten Lotabweichungskomponenten

zu erhalten.

4. Vorläufige Ergebnisse
4.1 Gravimetrisches Geoid
Die Ergebnisse sind in dem Sinne vorläufig,

als dass man noch nicht alle heutzutage

zur Verfügung stehenden Daten in diese

Berechnungen eingeführt hat. Für eine
nochmalige Berechnung können die
Datensätze, wie sie unter Kapitel 2.6 dargestellt

wurden, wesentlich erweitert werden.
Insbesondere sind in der Ivreazone
etliche Schweremessungen im Zusammenhang

mit der Modellierung des Ivreakör-

pers (Bürki, 1985; Wirth, 1985) ausgeführt
worden. Die Berücksichtigung der obersten

Erdkruste als Massenmodell
(Topographie bis Mohorovicic-Diskontinuität)
in der gleichen Weise, wie es für das Ivrea-
Modell gemacht wurde, reduziert den
kurzwelligen Anteil im Schwerefeld drastisch,
d.h., das Feld der Schwereanomalien wird
stark geglättet. Mittelbildung und Interpolation

der Anomalien werden so wesentlich

genauer. Dieses Verfahren wurde von
Elmiger (1969) und Gurtner (1978) für die
Prädikation von Lotabweichungen
angewandt. Die Ergebnisse zeigen, dass be¬

reits mit relativ einfachen und traditionellen

Methoden das gravimetrische Geoid
auch in einer Hochgebirgsregion mit
hinreichender Genauigkeit bestimmt werden
kann.
Das Geoid widerspiegelt in groben Zügen
die Topographie (Abb. 17). neben den
Grossstrukturen Jura, Mittelland und
Alpen sind auch die Täler der Voralpenseen
(besonders des Thuner- und Brienzersees)
sowie das Rhonetal gut zu erkennen. Die
glatten Formen kommen durch die
Integration der Freiluftanomalien zustande.
Der ganze Vorgang der Mittelbildung und
der Stokes'schen Integration entspricht
also in gewissem Sinne einer Filterung der
Freiluftanomalien (man vergleiche hierzu
die relativ stark variierenden Anomalien
in Abb. 14). In diesem Zusammenhang
wird man sich auch an den Begriff Fourier-
Transformation erinnern (s. Kapitel 3).
Die Randzonen des Geoides sind deutlich
abgeflacht. Dies deutet auf mangelnde
Datendichten in den ausserhalb der
Schweiz liegenden Gebieten hin.
Da alle Daten auf das Internationale Ellipsoid

IAG 75 bezogen sind, muss das
Ergebnis der Berechnungen (Abb. 18) in das
gebräuchliche Schweizerdatum (Bessel-
Ellipsoid mit Fundamentalpunkt in Bern)
zurücktransformiert werden. Die
Hinzunahme des Ivrea-Cogeoids bewirkt einen
beachtlichen Effekt, der nicht ganz im
Einklang mit den aktuellen Lotabweichungen
in diesem Gebiet steht. Die Klärung dieser
Diskrepanz muss einer weiteren Bearbeitung

vorbehalten bleiben.

4.2 Genauigkeitsabschätzung und
Koordinatentransformation
Da wir primär an Geoidunterschieden im

relativ kleinen Gebiet Schweiz interessiert
sind, treten Fehler der absoluten Lagerung
in den Hintergrund. Ebenso können kleine
Effekte vernachlässigt werden .Die sphärische

Approximation der Stokes-Formel
bewirkt z.B. einen Fehler in der Grössenordnung

von (Heiskanen und Moritz, 1967)

ÔN Nf,

wobei f Abplattung des Bezugsellipsoids
1/298.3

N Geoidundulation.

Für unser Differenzgeoid ergibt sich 6N
< 1 cm. Die Berücksichtigung atmosphärischer

Massen bewirken im betrachteten
Gebiet eine höhenabhängige Korrektur
der Freiluftanomalien von weniger als 1

mgal. Dieser Wert liegt weit unter der
Unsicherheit der mittleren Freiluftanomalien.
Ebenso werden die numerischen Unge-
nauigkeiten der Diskretisierung und
Mittelbildung der Stokes-Funktion von den
Fehlern in den mittleren Freiluftanomalien
und der Vernachlässigung gemessener
Schwerewerte in der Umgebung des
Untersuchungsgebietes überdeckt. Für den
mittleren Fehler an den gemittelten
Schwerewerten innerhalb eines 6' x 10' Kompar-

timentes ist mit 5-10 mgal zu rechnen
(Kuhn, 1981 Mit der Annahme von fehlerlosen

Referenz-Anomalien (GEM9) und
unkorrelierten beobachteten Freiluftanomalien

kann man eine grobe Abschätzung
des Integrationsfehlers vornehmen. Dabei

zeigt sich, dass der mittlere Fehler 15

cm nicht übersteigt. Eine zweite,
gravierendere Fehlerquelle ergibt sich dadurch,
dass man die ausserhalb des
Integrationsgebietes liegenden Schwerewerte
durch GEM9-Werte ersetzt. Der Effekt
wird am Rand des Datengebiets besonders

augenfällig. Die Grössenordnung
des Fehlers ergibt sich aus einer groben
Abschätzung und aus Fehlerangaben für
das GEM9-Modell [Rapp, 1973; Tscherning

and Rapp, 1974; Arabelos, 1980]
zu ca. 1 m für Randpunkte. Der Fehler nimmt
zur Mitte des Integrationsgebietes hin stark
ab. Zur Überprüfung dieser Fehler wurde
das gravimetrische Geoid vom IAG 75-
Bezugssystem auf das Schweizerdatum
(Bessel) transformiert und mit dem astro-
geodätischen Geoid (Elmiger, 1975; Gurtner,

1978) verglichen. Aus den Restklaf-
fungen ergab sich für die kritische Randzone

(5-20 km) ein mittlerer Fehler von
1.1 m und für die übrigen Punkte etwa 30
cm. Die Transformationsfehler liegen also

durchaus im Bereich der groben
Fehlerabschätzungen.

5. Schlussfolgerung und
Ausblick
Aus der Transformation des gravimetrischen

Geoids auf das astro-geodätische
Geoid gewinnt man zusätzlich interessante
Angaben über den Bezug des Schweizerischen

Bessel-Ellipsoids zum IAG 75-
Ellipsoid. Das astronomische Geoid wurde
mit der willkürlichen Geoidundulation [N
0 m in Schwerzenbach, Kanton Zürich, in

der Höhenlage fixiert. Die Lotabweichungen

hängen von der Definition eines
Nullpunktes des Koordinatensystems ab. Als
Bezug wird der Fundamentalpunkt in Bern
festgehalten. Dagegen ist das gravimetrische

Geoid in seiner Lage, in unserem Fall

bezüglich dem IAG 75-Ellipsoid, absolut
bestimmt. Die Transformation gibt also
direkt die Parameter an, um die die
Schweizer-Koordinaten beaufschlagt werden müssen,

um auf IAG 75 bezogene Werte zu
erhalten. Für den Fundamentalpunkt Bern
erhält man eine Höhenänderung von oNg

49.60 m und Lotabweichungen von 6^
3.03" bzw. ÔJt 2.69".
Der Verschiebungsvektor der Ellipsoid-
zentren beträgt in geozentrischen karte-
sischen Koordinaten ôx -484.4 m, ôy
-61.6 m, òz -126.8 m mit Fehlern kleiner
als ± 1.5 m. Dies ist eine bemerkenswerte
Möglichkeit, aus Daten der Physikalischen
Geodäsie verschiedene Koordinatensysteme

miteinander in Verbindung zu brin-
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Fachteil
gen: Eine Aufgabe, die im allgemeinen
mit Methoden der Satellitengeodäsie
gelöst wird.
In einem ersten Schritt zur satellitengestützten

Geoidbestimmung in der Schweiz
wurde 1984 das U.S. Transit-Satelliten-
Navigationssystem zur Messung der
ellipsoidischen Koordinaten in der Schweiz
und im Gebiet der Ivrea-Zone benutzt
(SWISSDOC [Wiget et al., 1985] und
ALGEDOP [Wiget et al., 1986; Geiger et
al., 1986]). In einem nächsten Schritt wird
das neue satellitengestützte U.S. NAV-
STAR-Global-Positioning System (GPS)
zur Anwendung kommen, das auch für die
Geoidbestimmung eine wesentliche
Genauigkeitssteigerung ermöglicht.
Insbesondere ist dank der erhöhten
Messgeschwindigkeit eine grössere Punktdichte
realisierbar. Trotzdem werden die terrestrischen

Verfahren in naher Zukunft für die
Untersuchung des lokalen Schwerefeldes
nicht an Bedeutung verlieren. Dabei ist vor
allem von der inertialen Messtechnik, die
heute in der Flugnavigation nicht mehr
wegzudenken ist, auch in der Geodäsie
eine stärkere Verbreitung zu erwarten.
Neben den Geschwindigkeits- und
Koordinatenbestimmungen des Messfahrzeuges

ermöglicht das inertiale Messsystem
eine praktisch kontinuierliche Erfassung
der Schwerebeschleunigungen längs der
Messstrecke. In Kombination mit einem
modernen GPS-Satellitenempfänger
erhält man damit ein universelles geodätisches

Messsystem, das zugleich Stations-
Koordinaten und Schwerefeldparameter
bestimmen lässt. Durch Vergleich der vom
GPS-Empfänger gelieferten ellipsoidischen
Stations-Koordinaten mit den lokalen
Koordinatendifferenzen, wie sie vom Inertialsystem

durch Integration der Bewegungsund

Schwerebeschleunigungen berechnet

werden, lassen sich Lotabweichungen,

Schwereanomalien und Geoidundulationen,

die klassischen Zielgrössen der
Geodäsie, Operationen bestimmen und
können damit in heutige Fragestellungen
der aktuellen Geodynamik einbezogen
werden.
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