Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik : VPK = Mensuration,
photogrammeétrie, génie rural

Herausgeber: Schweizerischer Verein fur Vermessung und Kulturtechnik (SVVK) =
Société suisse des mensurations et améliorations foncieres (SSMAF)

Band: 83 (1985)

Heft: 2

Artikel: Zur Entwicklung interaktiver Programme und Systeme

Autor: Kuhn, W.

DOl: https://doi.org/10.5169/seals-232582

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-232582
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Zur Entwicklung interaktiver Programme und Systeme

W. Kuhn

In den vergangenen zwei bis drei Jahren sind verschiedene Modelle eines neuen
Typs von Arbeitsplatz-Computern auf den Markt gekommen (Xerox Star, ICL
Perg, Apple Macintosh), die eine radikal neue Benitzer-Schnittstelle anbieten.
Als Eingabemedium verwenden sie neben der Tastatur eine (Maus), d.h. ein
handliches Gerat, mit dem der Cursor rasch zu jedem beliebigen Punkt des
Bildschirms gefiihrt werden kann. Die Ausgabe erfolgt auf einen (Bit-Map»
Bildschirm, d.h. eine Anzeige, die aus mehreren 100 000 einzeln ein- und aus-
schaltbaren Bildpunkten (Pixeln) besteht. Die Information ist in Fenstern grup-
piert, die sich meistens Gberlagern konnen. Arbeitsschritte, soweit sie nicht durch
«direct manipulationy (siehe Abschnitt 5) ausgefiihrt werden, sind in Menus
zusammengefasst. Diese erscheinen durch Antippen mit der Maus entweder am
oberen Bildschirm-Rand («<pull-down) Menus) oder dort auf dem Bildschirm, wo
gerade gearbeitet wird (<pop-up> Menus).

Au cours des deux ou trois derniéres années est apparu sur le marché un nouveau
type d'ordinateur monoposte (Xerox Star, ICL Perq, Apple Macintosh), qui propose
un interface-utilisateur radicalement nouveau. A part 'emploi d’un clavier comme
moyen de communication, /'utilisateur dispose d’une souris, c.-3-d. un petit appareil
maniable, qui permet de placer rapidement un curseur sur n’importe quels points
de I'écran de visualisation. Cet affichage ou écran (Bit-Map» se compose de quel-
ques 100 000 points, qui peuvent étre enclenchés ou déclenchés individuellement.
Les informations sont groupées dans des fenétres, qui peuvent se superposer. Les
différentes possibilités de travail sont contenues dans des menus. Au moyen de la
sourfs, ceux-ci apparaissent soit au bord supérieur de I'écran (menus (pull-down;),
soit & l'endroit, ot I'on travaille actuellement (menus (pop-up).

1. Einleitung

Am Institut fur Geodasie und Photo-
grammetrie sind in den vergange-
nen Jahren im Lehrbereich von Prof.
Conzett einige grossere Programm-
pakete entwickelt worden. Drei davon
dienen hauptsachlich den im Unterricht
und den Diplomkursen anfallenden
Entwurfs- und Berechnungs-Aufgaben:
INTRA fir den Entwurf und die Aus-
gleichung von Triangulations-Netzen,
DATAUF fur die Datenerfassung und -
aufbereitung in Triangulationen, PRIMA
fr Matrizenoperationen.

Alle diese Programme haben eine
wichtige Eigenschaft gemeinsam: Sie
sind /nteraktiv, d.h. der Beniitzer arbei-
tet am Terminal, sieht das Resultat
einzelner Arbeitsschritte und kann den
Ablauf entsprechend steuern.

Die Qualitat eines Programms misst
sich heute vor allem daran, ob es
einfach zu bedienen ist. Interaktive
Programme, die richtig rechnen, sind
nicht zwingend auch «gute) Program-
me. Die Frage, wie Programme mog-
lichst bendtzerfreundlich zu gestalten
sind, wird gegenwartig von Informati-
kern und Psychologen intensiv erforscht
(siehe z.B. Janda 1983). Ein Projekt an
unserem Institut untersucht dieses Pro-
blem im Zusammenhang mit Landinfor-
mationssystemen.

Institut fur Geodésie und Photogrammetrie
ETH-HOnggerberg, CH-8093 Zirich
Separata Nr. 83

44

Die allgemeinsten Forderungen an in-
teraktive Programme oder Systeme
sind etwa, dass sie

- einfach zu bedienen

- einfach zu erlernen

- einfach zu erinnern

sein sollen. Je nach den erwarteten
Bentitzerklassen (Anfanger, gelegentli-
che oder erfahrene Benitzer) erhalten
diese Anforderungen unterschiedliche
Gewichte. Im Zweifelsfalle wird emp-
fohlen, sich am unerfahrenen Bentutzer
zu orientieren.

Es geht hier nicht darum, neue Theorien
Uber Interaktivitdt zu erarbeiten oder
Normen fir die Programmierung aufzu-
stellen. Vielmehr soll anhand uniserer
Erfahrungen' bei der Entwicklung und
im intensiven Einsatz der erwéhnten
Programme (je Uber 100 Benutzer) auf
kritische Punkte in den folgenden Pha-
sen der Entstehung interaktiver Pro-
gramme aufmerksam gemacht werden:
Dem Entscheid, was ein Programm tun
soll, dem Vorgehen beim Entwurf, der
Dialog- und Bildschirm-Gestaltung, der
Beurteilung des Benutzer-Verhaltens
und der Programm-Dokumentation.

" Dieser Artikel beruht auf Erfahrungen und
Erkenntnissen aus mehrjahriger Arbeit, an
denen der Autor nur einen kleinen Anteil
hatte. Fur unzdhlige Anregungen und Hin-
weise danke ich Prof. Conzett, allen ehemali-
gen und heutigen Kollegen und den Studen-
ten, von derern Erfolgen und «Fehlerns (siehe
10. Postulat) wir viel gelernt haben.

Zuerst werden zwolf allgemeine Postu-
late zur Interaktivitdt formuliert (Ab-
schnitt 2). Dann folgen in Abschnitt 3
einige Bermerkungen zum Vorgehen
beim Programm-Entwurf. Abschnitt 4
soll zeigen, dass fur den Dialog-Entwurf
und dessen Beurteilung nicht nur Tips
und Tricks, sondern ingenieurmaéssige
Methoden zur Verfugung stehen. Ein
Hinweis auf die verénderte Rolle der
Graphik (Abschnitt 5) leitet zu einem
Ausblick auf die zu erwartenden Ent-
wicklungen (Abschnitt 6) Uber.

Wir glauben, dass diese Betrachtungen,
die keinen Anspruch auf Vollstandigkeit
erheben, auch fir den Praktiker von
Interesse sind. Sei es, weil er selbst mit
der Entwicklung von Programmen zu
tun hat, sei es als Anhaltspunkte, um
Software auf dem Markt zu bewerten,
oder als allgemeine Orientierungshilfe
in der EDV-Diskussion.

2. Postulate zur Interaktivitat

2.1 Postulat: Der Computer ist ein
Instrument und hat sich dem Menschen
anzupassen, nicht umgekehrt.
Herkommliche Maschinen bewaéltigen
eine bestimmte Aufgabe auf eine meist
unveranderliche Weise und verlangen
oft eine betréchtliche Anpassung vom
Menschen. Im Gegensatz dazu erlaubt
uns der Computer, insbesondere im
interaktiven Einsatz, durch ein Pro-
gramm die Losung von Problemen den
verschiedenen Anwendern anzupassen.
Diese Chance wird bis heute viel zu
wenig wahrgenommen. Schlagworte
wie «computergerecht, <Umstellung auf
EDV) usw. werden haufig dazu miss-
braucht, dem Menschen Arbeitsabléaufe
aufzuzwingen, die ihm unvertraut sind
und die sich von der zu ldsenden
Aufgabe her nicht begrinden lassen.
Der Computer verdndert unsere Ar-
beitsweise. Wir haben es in der Hand,
daftir zu sorgen, dass dies zu men-
schen- und problemgerechten Ldsun-
gen fuhrt. Ein Beispiel dafur liefert das

2.2 Postulat: Manuelle Arbeitsablaufe
zu programmieren bedeutet oft

Zeit- und Geldverschwendung. Der
Computer erdffnet neue Wege

zur Problemlésung.

Programme sollen nicht einfach Be-
rechnungs-Formulare automatisieren.
Formulare sind Hilfsmittel fur Losungen
von Hand oder mit dem Taschenrech-
ner. Sie organisieren den Arbeitsablauf
und die notwendigen Rechenkontrollen.
Die Eintragungen sind redundant, d.h.
die gleiche Information wird mehrfach
aufgeschrieben, z.B. neben dem Wert

Mensuration, Photogrammeétrie, Génie rural 2/85

eines Winkels auch sein Sinus und sein
Cosinus. Der Berechnungsvorgang lasst
die zugrundeliegende Losungsidee oft
kaum erkennen.

Der Schritt vom Taschenrechner zum
Computer ist wesentlich grosser als
jener von der Logarithmentafel zum
Taschenrechner. Er bedeutet den Uber-
gang vom automatischen Rechnen, wo
der Anwender weiterhin die Last der
Buchhaltungy tragt, zur Datenverarbei-
tung, wo ihm diese uninteressante
Arbeit vom Computer abgenommen
wird, der sie Uberdies viel zuverlassiger
erledigt.

Bei einer sinnvollen Lésung mit dem
Computer ist das Programm fir die
Organisation und die Hardware fir die
Rechenkontrollen verantwortlich. Somit
kann sich der Benitzer auf die Fragen
konzentrieren, die sein Problem betref-
fen. Trotzdem soll es noch Programme
geben, denen man zusétzlich zu einem
Winkel auch noch dessen Sinus und
Cosinus futtern muss . ..

Nebenbei bemerkt: Reine Rechenkon-
trollen zu programmieren ist sinnlos.
Heutige Computer machen etwa einen
Fehler in 10 Operationen. Ist ein
Programm korrekt geschrieben, so
braucht es keine Rechenkontrollen aus-
zufiihren, andernfalls nutzen auch diese
nichts. Sie kdnnen allenfalls zur Fehler-
suche wéahrend der Programmierung
dienen.

2.3 Postulat: Kein Programm kann
alles. Wenn es 90 Prozent der Félle
korrekt erledigt, kann es in 10 Prozent
der Zeit erstellt werden, die fir ein
99prozentiges Programm nétig ware.
Vor allem ist es dann aber viel
einfacher zu bedienen.

Die Benutzerfreundlichkeit vieler Pro-
gramme leidet am Ehrgeiz des Pro-
grammierers, fur jeden noch so selte-
nen Spezialfall eine Lésung anbieten zu
wollen. Die Befehle werden komplizier-
ter und ihre Anzahl untberblickbar. Die
Entwicklungszeit kann derart wachsen,
dass das Programm schon vor seinem
Einsatz veraltet ist. Auch der Pro-
grammunterhalt wird erschwert.

Bei notwendigen Losungen fur Sonder-
falle gilt die Regel <Einfaches einfach,
Komplizierteres maoglichy. Dies bedeu-
tet, dass eine einfache Losung fur den
Normalfall nicht durch die Moglichkeit
zur Behandlung von seltenen kompli-
zierteren Fallen erschwert werden soll.
Das Meistern der Komplexitdt einer
Aufgabe, ihre gedankliche Durchdrin-
gung, ist die erste Voraussetzung fir
jedes erfolgreiche Programm. Wenn
sich Spezialfélle haufen, liegt das meist
an der gewahlten Losung, nicht am
Problem. Ein Uberdenken des Losungs-
weges fuhrt dann oft zu unerwarteten
Vereinfachungen und zum Verschwin-
den von Spezialféllen.

2.4 Postulat: Der Erfolg von Pro-
grammsystemen hangt davon ab, wie
einheitlich die einzelnen Programme
mit dem Benitzer sprechen.

Es gibt fur den Benitzer nichts Verwir-
renderes, als wenn die gleiche Aktion in
verschiedenen Programmen unter-
schiedliche (leider oft entgegengesetz-
te) Reaktionen bewirkt. Die Konsistenz
der Benltzer-Schnittstellen mehrerer
Programme in sich und untereinander
hat einen entscheidenden Einfluss auf
das Verstédndnis und die Lernbarkeit.
Sie erlaubt dem Benutzer Verallgemei-
nerungen, mit denen er den Aufbau von
Operationen teilweise erraten, haupt-
séchlich aber leichter erlernen und
erinnern kann.

Ein einfaches, konsequent durchgehal-
tenes Muster fur Befehle ist deshalb
sehr wichtig. Routinen fir alle Ein- und
Ausgabefunktionen sollen einmal er-
stellt und dann in allen Programmen als
Bauelemente verwendet werden. Beim
Ausbau bestehender Programmsyste-
me muss hier oft Einheitlichkeit gegen
punktuelle Verbesserungen abgewogen
werden.

Moderne Arbeitsplatz-Computer (siehe
Kasten) bieten Bausteine flr eine ein-
heitliche Schnittstelle als Bestandteil
des Betriebssystems an. Ohne diese
Unterstltzung ist Konsistenz in grésse-
ren Anwendungen kaum zu erreichen.

2.5 Postulat: Werden gleiche Eingaben
an verschiedenen Orten unterschied-
lich interpretiert, soll der Bentitzer
immer sehen, welche Interpretation
(welcher Modus) gerade gilt.

Die Vielzahl moglicher Befehle in einem
interaktiven System macht es meist
unumganglich, dass gewisse Tétigkei-
ten je nach Systemzustand unterschied-
liche Auswirkungen haben, etwa das
Driicken der RETURN-Taste oder eines
Maus-Knopfs. Dies bedeutet keinen
Widerspruch zum 4. Postulat, wenn der
glltige Modus fur den Benlitzer offen-
sichtlich ist und wenn irrtimliche Einga-
ben einfach korrigiert werden kénnen.
Auch alphanumerische Terminals bieten
viele Moglichkeiten, Modi verstandli-
cher darzustellen als nur durch eine
Textzeile, z.B. indem die jeweils aktiven
Befehle und Daten hervorgehoben wer-
den (<highlighting).

2.6 Postulat: Der Benutzer will sehen,

nicht lesen oder sich erinnern mussen.
Einerseits ist die Informations-Menge,
die der Anwender zwischen zwei auf-
einanderfolgenden Handlungen erfas-
sen kann, gering. Jedes Zeichen, das
keine Information liefert (d. h. Unsicher-
heit vermindert), stort die Nachricht der
anderen Zeichen. Floskeln und Dekora-
tionen verschwenden die Zeit des
Programmierers, des Anwenders und
des Computers. Séatze erfasst man

Vermessung, Photogrammetrie, Kulturtechnik, 2/85

selten in einem Blick. Deshalb sind in
vielen Féllen Stichworter mit Symbolen
(Pfeilen usw.) klarer als ausformulierte
Satze. Sie mussen aber einheitlich
verwendet und dargestellt sein. Ande-
rerseits ist das Kurzzeit-Gedachtnis des
Benutzers beschrankt und wird durch
die Losung seiner Aufgabe bean-
sprucht. Alle fir den nachsten Arbeits-
schritt benotigte Information soll des-
halb auf dem Bildschirm vorhanden
sein. Diese Forderung fihrt meist zur
Darstellung der Befehle in Form von
Menus, die sich den jeweils tatsachlich
angebotenen Befehlen anpassen. Die
Daten werden dem Benditzer so prasen-
tiert, dass er sie direkt bearbeiten und
ihre Veranderung auf dem Bildschirm
verfolgen kann.

2.7 Postulat: Der Benutzer soll auf
einen Blick erkennen kdénnen, was das
Programm von ihm erwartet.

Ein Programm kann im wesentlichen
auf drei verschiedene Arten zum Benut-
zer sprechen: Es kann von ihm Einga-
ben verlangen (Antwort auf eine Frage,
Wahl aus einem Menu, Ausfillen einer
Maske), ihn zu sonstigen Handlungen
auffordern (Anschliessen eines Periphe-
riegerats, Wechseln einer Diskette),
oder es kann eine Meldung ausgeben
(Fehler, Systemzustand). Ausgaben auf
den Bildschirm sollen auf wenige Mu-
ster beschrankt und so gekennzeichnet
werden, dass sofort klar wird, um
welche Dialog-Form es sich handelt.
Eine graphische Unterscheidung ist
natlrlich auch hier dem blossen An-
schreiben vorzuziehen.

Systeme, die statt einer zeilenweise
Uber den Bildschirm laufenden Ausga-
be mehrere Fenster verwenden, erleich-
tern diese Typisierung sehr.

2.8 Postulat: Ein benltzerfreundliches
Programm lasst keine Ungewissheit
aufkommen.

Die Geduld und das Selbstvertrauen
des Anwenders im Umgang mit dem
Computer sind beschrankt. Er erwartet
auf einfache Befehle eine sofortige
Reaktion, auch wenn das Resultat mehr
Zeit benotigt. In Féllen, die er als
schwieriger empfindet, sind etwas 1an-
gere Antwortzeiten zuldssig. Es darf
aber nie Unsicherheit dartber aufkom-
men, ob das Programm eine LOsung
sucht, sich in einer endlosen Schlaufe
bewegt oder blockiert ist. Im Unter-
schied zum Menschen lasst der Com-
puter nicht erkennen, ob er (nachdenkt
oder «nicht mehr weiter weissy. Deshalb
muss diese Information vom Programm
geliefert werden. Eindeutige Symbole,
etwa ein Cursor, der blinkt oder die
Form &ndert (Sanduhr, Biene, Buddha),
um anzudeuten, dass ein Prozess ab-
lduft, sind Meldungen (Bitte warten))
vorzuziehen. Wichtig fir den Arbeits-

45

Einige wenige Entwurfsprinzipien sorgen
fur einfache und einheitliche Interfaces in
allen Anwendungen. Diese Grundsatze
lassen sich wie folgt zusammenfassen
[Smith et al. 1982]:

@ Das Modell, das der Benltzer vom
System erhélt, verwendet vertraute Kon-
zepte: Weit verbreitet ist die Schreibtisch-
Metapher, mit der auf dem Bildschirm die
gewohnte Arbeitsumgebung simuliert
wird: Dokumente, Ordner, Briefkasten,
Papierkorb usw. Alle diese Gegenstande
erhalten eindeutige Symbole (<icons)), und
der Beniitzer kann damit die gewohnten
Operationen ausfiihren, etwa einen Ordner
offnen oder ein Dokument wegwerfen.

Will er den Inhalt eines Dokuments an-
schauen oder verdndern, so eroffnet das
System dafir ein Fenster auf dem Bild-
schirm. Dieses zeigt einen Ausschnitt des
Inhalts und kann an beliebige Stellen im
Dokument bewegt werden. Fenster konnen
sich Uberlagern, wie tUbereinanderliegende
Papiere auf dem Schreibtisch. Das System
|asst klar erkennen, welches Fenster (aktivy
ist, d. h. von den Operationen berthrt wird.

Interaktion mit modernen Arbeitsplatz-Computern

o Alle bendtigte Information, oder ein
Zugang zu ihr, ist jederzeit sichtbar. Der
Benutzer muss sich keine Befehle merken
und kann somit sein Gedéachtnis voll fur
seine Aufgabe einsetzen.

Jede Operation fuhrt sofort zu einem
sichtbaren Resultat, das, falls notig, rlck-
gangig gemacht werden kann. Durch diese
Transparenz und Korrekturmaoglichkeit ver-
liert der Beniitzer weitgehend die Angst vor
Fehlmanipulationen.

e Die Arbeitsweise ist in allen Anwendun-
gen einhetrtlich. Gleiche Handlungen haben
an verschiedenen Orten sinngemasse Aus-
wirkungen. Alle Operationen folgen dem
gleichen Grundmuster, z.B. dem Objekt-
Verb Paradigma: Zuerst wird das Objekt
gewahlt (durch Antippen mit der Maus)
und dann die Operation damit ausgefiihrt
(z.B. wird das Objekt mit der Maus Uber
den Bildschirm (gezogens, oder ein Befehl
wird aus einem Menu gewahlt).

o Die Bedienung ist einfach, auch in
komplexen Anwendungen. Dies hangt eng
zusammen mit der Einheitlichkeit. |deal ist

ein Minimum an wirksamen Operationen

Dokument

Abb.1 Wir haben das Triangulations-Pro-
gramm gestartet und ein Operat ausge-
waéhlt. Das System zeigt am rechten
Bildschirmrand ein icon fur jedes Doku-
ment in diesem Operat. Wir kénnen eines
dieser Dokumente auswahlen, um damit zu
arbeiten, z. B. die Variante 1 des Netzplans.
Dazu schieben wir den Cursor (gefihrt
durch die Maus) in das betreffende icon
(«Netz 1) und «<klickeny dort mit der Maus-
taste. Dadurch wird dieses Dokument
«aktivy, was uns durch ein hervorgehobe-
nes icon angezeigt wird. Alle folgenden
Operationen beziehen sich also auf den
Inhalt von (Netz 1>. Am oberen Bildschirm-
Rand stehen in einer Zeile die Titel aller
¢pull-down)-Menus unserer Anwendung.
Auf dhnliche Art, wie wir (Netz 1) auswahl-
ten, verlangen wir nun einen Arbeitsschritt
im Menu (Dokumenty: Wir fihren den
Cursor (Pfeil) zum Menu-Titel und driicken
dort die Maustaste, worauf der Menu-
Inhalt angezeigt wird. Nun wahlen wir
jenes Feld, das die gewunschte Operation
enthdlt. Sobald wir die Taste dort loslassen,
verschwindet das Menu, und diese Opera-
tion wird ausgefuhrt. Wenn wir den Netz-
plan anschauen wollen, wahlen wir (6ff-
nen). Das Vorgehen entspricht dem <Ob-

Ausgleichen

jekt-Verb-Paradigma»: Zuerst
wahlen wir den Gegenstand
(Netz 1) und dann die Opera-
tion (6ffnen).

Das Menu bietet uns auch
einen Ausdruck auf Papier
oder eine zweite Speicherung
der Netzplandaten an. Im jetzi-
gen Zustand hat die Operation
«schliesseny keine Bedeutung,
da noch kein Dokument geoff-
net ist. Das gleiche gilt, da
noch kein Netz dargestellt ist,
fur das ganze <Netz»-Menu
(das Operationen auf dem
Netz-Graph anbietet, z.B. die
Anzeige aller Distanzen oder
der Punkte allein). Deshalb
sind der Arbeitsschritt <schlies-
sen und der Menu-Titel (Netz)
nur schwach angezeigt; sie konnen nicht
ausgewahlt werden.

Abb.2 Als Resultat erscheint auf dem
Bildschirm ein Fenster, das den Netzplan
enthélt und Editier-Funktionen in Form
neuer icons anbietet. Wir kdnnen mit dem
beschriebenen Verfahren z.B. das Symbol
fur einen Fixpunkt wahlen und es direkt

manipulieren: ~ Mit heruntergedrickter
Maustaste «ziehen) wir das

fur jede Anwendung. Mehrere Maoglichkei-
ten, das selbe zu erreichen, kdnnen verwir-
ren. Trotzdem sollten dem erfahrenen
Benutzer Abkurzungen angeboten werden.
Einfachheit lasst sich immer nur unter
Nebenbedingungen maximieren.

e (What you see is what you get). Doku-
mente sehen auf dem Bildschirm genau so
aus, wie sie nachher z.B. ausgedruckt
werden. Der Text wird nicht durch Kontroll-
Zeichen gestort, und das Resultat von
Formatierungen, Schriftwechseln usw. ist
sofort sichtbar.

Die Abbildungen 1 und 2 sollen anhand
von (Momentaufnahmen» einer denkbaren
Benutzer-Schnittstelle fir ein Triangula-
tions-Programm einige der erwahnten
Techniken moderner Interaktion illustrieren.
Die Absicht ist, die gegenuber herkdmmli-
chen Systemen vollig veranderte Arbeits-
weise zu zeigen, deren Hauptmerkmal ist,
dass alle relevanten Vorgange sichtbar
sind. Es geht also nicht darum, einen
Entwurf fir ein bestimmtes Programm
darzulegen.

Um einzelne Beobachtungen aus dem
Netzplan zu entfernen, stehen die durchge-
strichenen icons zur Verfugung. Das (Netz)-
Menu bietet zudem standig einen UNDO-
Befehl fur die letzte Operation an. So
missen wir nie befurchten, den Netzplan
durch eine irrtimliche Verdnderung «ver-
dorbeny zu haben.

Zu beachten sind die im Hintergrund
weiterhin angebotenen icons. Wir kdnnen
damit jederzeit die Arbeit am Netzplan
unterbrechen und in einem anderen Fen-
ster (das je nach Bildschirm-Grésse den
Netzplan Uberlagern wird) etwa die Liste
der Richtungs-Beobachtungen oder der
Koordinaten anschauen und verandern.
Andererseits bietet uns das Menu (Ausglei-
cheny die Berechnung und Auflésung der
Normalgleichungen fur das gerade aktive
Netz an. Die Wahl dieser Schritte wirde
neue Resultat-icons (z.B. fur den Losungs-
vektor und fur die Qxx-Matrix) hervorbrin-
gen. Um ein Dokument, z.B. den Netzplan,
zu schliessen, wahlen wir entweder im
«Dokumenty-Menu den entsprechenden
Schritt (er wirkt auf das zur Zeit aktive
Fenster) oder klicken in der kleinen
«Schliessbox) in der linken oberen Ecke
des betreffenden Fensters.

Dreieck bis zu einem Punkt,
den wir in der Ausgleichung
festhalten wollen und lassen
dort die Taste und damit das

Operat

Dokument Netz Ausgleichen

Symbol los. So sind die Punkte

301 und 313 als Fixpunkte

Punkte |

gekennzeichnet worden. In der
Abbildung wurde das Distanz-

Al Fix |

icon aktiviert. Wir

schieben < |statzf

den Cursor, der nun die Form
eines Strichkreuzes hat, zum

O | Neu

Anfangspunkt der einzufiihren-

den Distanz-Beobachtung und

Richtung hin

dricken dort die Maustaste.
Die Abbildung zeigt den Zu-
stand unterwegs zum End-
punkt, wo durch Loslassen der
Taste die Distanz in den Netz-
plan eingefiigt wird.

e

e

46

Mensuration, Photogrammétrie, Génie rural 2/85

rhythmus und fir das Geflhl des
Anwenders, die Lage zu beherrschen,
ist eine durchdachte Unterteilung der
Probleme in kurze, reversible Arbeits-
schritte, mit denen der Ablauf Uber-
wacht und gesteuert werden kann.

2.9 Postulat: Programme, die dem
Beniitzer Befehle erteilen, werden nur
widerwillig benutzt, verfehlen somit
ihren Zweck und fordern eine Abwehr-
haltung gegeniiber dem Computer.

Die Gewohnheit des Programmierers,
dem Computer Befehle zu erteilen,
schldgt leider oft bis in den Dialog
durch. Der Beniitzer soll aber davon
Uberzeugt sein, dass er den Arbeitsab-
lauf bestimmt und ihn das Programm
dabei nur unterstutzt.

Das bedeutet nicht, dass Aufforderun-
gen des Programms mit umstandlichen
Hoflichkeitsfloskeln («Wirden Sie bit-
te..) vernebelt werden sollen. Weder
ein herablassendes noch ein unterwr-
figes Programm, sondern eines, von
dem der Benutzer jederzeit etwas nicht
Plangemasses (Unterbruch, Information
Uber Systemzustand usw.) verlangen
kann, gibt ihm das Gefiihl, die Lage zu
beherrschen.

2.10 Postulat: Sogenannte Benitzer-
Fehler gibt es kaum. Handlungen, die
zu einem unerlaubten System-Zustand
(<Absturz) fiihren, haben ihre Ursache
meist in missachteten Interaktions-
Prinzipien.

Zu Unrecht schiebt man Fehler der
Anwender gerne auf deren Unerfahren-
heit ab. Ein Programm, das nur von
erfahrenen Benltzern eingesetzt wer-
den kann, ist ein schlechtes Programm.
Entscheidend ist, dass der Benttzer
keine Angst vor Fehlern haben muss.
Ein System, in dem keine Fehler mog-
lich sind, ist aber unerreichbar. Das Ziel
ist deshalb eine Minimierung der Mog-
lichkeiten, Fehler zu begehen, und der
Auswirkungen davon. lIdeal, aber oft
schwierig zu programmieren ist ein
UNDO-Befehl, um mindestens die letzte
Operation riickgangig zu machen.
Wenn das System dem Benitzer ein
klar erkennbares, einfaches und wider-
spruchfreies Modell von seiner Aufgabe
vermittelt, so werden Fehl-Eingaben
sehr selten und kénnen vom Programm
abgefangen werden. Bei einer Untersu-
chung am Programmpaket PRIMA konn-
ten alle mehrfach beobachteten Fehl-
manipulationen auf Schwachen des
Entwurfs zuriickgefuhrt werden.

2.11 Postulat: Fehlermeldungen sollen
dem Benlitzer in seiner Sprache
mitteilen, was er falsch gemacht hat
und wie er es korrigieren kann.

Die vielzitierten Beispiele der Art
Err.92745 - Acc. Violy brauchen
leider nicht erfunden zu werden. Dass

etwas schieflauft, merkt der Bendtzer
meist auch sonst; dartber, was schief-
ging und wie er Abhilfe schaffen kann,
sagt ihm eine solche Meldung aber
nichts. Wenn er diese Information in
einem Handbuch (in welchem?) nach-
schlagen muss (wo?), wird er keine
Freude am Programm haben, beson-
ders wenn er auch dort keine verstand-
liche Auskunft findet.

Gute Fehler-Meldungen sind kurz und
konstruktiv. Sie erscheinen so schnell
wie moglich nach dem fehlerhaften
Ereignis, um wirkungslose Eingaben
oder grosseren Schaden zu verhlten
und um Korrekturen zu erleichtern.

2.12 Postulat: Dokumentation kann
schlechte Programme nicht verbes-
sern. Sie sollte nur in drei Fallen
bendtigt werden: Zur Einflihrung fir
den Anfanger, als Hilfe in schwierigen
Fallen und als Grundlage fiir den
Programm-Unterhalt.

Haufige Benltzer-Fehler durch vermehr-
te Dokumentation beheben zu wollen
ist meist erfolglos oder sogar kontra-
produktiv.

Bedienungs-Anleitungen werden selten
gelesen und noch seltener verstanden.
Ein gutes Programm, eventuell mit einer
HELP-Funktion, macht sie fast tberflis-
sig.

Programm-Beschreibungen fur den Pro-
grammierer werden selten nachgefiihrt.
Ein klar geschriebener, kommentierter
Programm-Code ist viel nitzlicher.

Bei on-line-Dokumentation mittels einer
HELP-Funktion bewaéhrt sich ein zweistu-
figes Verfahren: Ein Uberblick tber alle
Befehle mit ihrer Syntax (entsprechend
den gedruckten Quick-Reference-
Cards) und vertiefte Information zu den
einzelnen Befehlen (je etwa eine Bild-
schirmseite). Eine gute HELP-Funktion
ist aber sehr aufwendig zu programmie-
ren und dort fehl am Platz, wo sie nur
schlechte Programme «flickeny soll.
Neueste Entwicklungen [Espinosa und
Hoffman 1982] lassen vermuten, dass
sie sich bei einfachen und konsistenten
Interaktions-Modellen erlbrigt.

3. Bemerkungen zum Entwurf
interaktiver Programme

Uber Entwurfsmethoden fiir Program-
me und uber Projektmanagement gibt
es ausfihrliche Literatur [z.B. Kimm et
al. 1979]. Hier werden nur einige Beson-
derheiten hervorgehoben, die sich be-
sonders auf die Interaktion auswirken.

3.1 Wo beginnen?

Sicher nicht am Terminal. Die Hauptar-
beit des Programmierens geschieht mit
Papier und Bleistift. Ein grindliches
Verstehen der zu programmierenden
Aufgabe und der herkommlichen Lo-
sungen steht am Anfang jedes Pro-

Vermessung, Photogrammetrie, Kulturtechnik, 2/85

gramm-Entwurfs. Es gilt dabei, die
Problemanalyse nicht mit der Untersu-
chung bestehender Losungen zu ver-
wechseln, d.h. die mathematische
Struktur des Problems vom Formelap-
parat des gewohnten Losungswegs zu
unterscheiden. Eine Untersuchung des
grundsétzlichen Charakters der zu 16-
senden Aufgabe kann zu Uberraschend
einfachen Ldsungsmethoden flhren.
Diese kommen dem Problem und des-
sen Auffassung durch den Menschen
meist naher als herkdmmliche L&sun-
gen, die mit beschrankteren Mitteln
auskommen mussen und deshalb oft
umstandliche Methoden anwenden
(Reihenentwicklungen, schrittweise Lo-
sungen usw.).

Vor jeder Programmierung sind also
etwa folgende Fragen zu beantworten:
Um was fir ein Problem handelt es
sich? Welches ist sein mathematischer
Hintergrund? Welche L&sungsmetho-
den gibt es? Welche Entscheidungen
soll der Anwender treffen, welche
werden automatisiert?

3.2 Das Rad nicht neu erfinden

So ausgefallen die Aufgabe und so
originell die Losungsideen sein mogen,
mit grosser Wahrscheinlichkeit wurde
das gleiche oder ein verwandtes Pro-
blem schon mehrfach gelost. Ein Stu-
dium der Fach- und der Informatik-
Literatur sowie Diskussionen mit Leu-
ten, die dhnliche Aufgaben bearbeiten,
kénnen manchen Umweg vermeiden
helfen. Ahnliches gilt innerhalb von
Arbeitsgruppen: Verschiedene Pro-
grammierer kdmpfen oft mit den selben
Problemen, z.B. mit der Gestaltung der
Ein- und Ausgabe. Individuelle ad-hoc-
Lésungen kosten viel Zeit und sind
meist schlechter als einmal grindlich
durchdachte Werkzeuge. Sie fuhren in
grosseren Projekten auch zu einer
inkonsistenten Benutzerschnittstelle, die
verschiedene Programmierer-Hand-
schriften tragt.

3.3 Wer sind die Benitzer?

Eine moglichst genaue Kenntnis der
erwarteten Anwender ist Vorausset-
zung, um ein Programm diesen anpas-
sen zu koénnen. Bevor der Dialog ent-
worfen wird, sind also die Gewohnhei-
ten und Erwartungen der zukinftigen
Benutzer genau abzuklaren.

Unabhangig von der Anwendung ha-
ben ausserdem alle Benutzer mit eini-
gen Tatigkeiten und Konzepten grund-
satzlich mehr Muhe als mit anderen.
Hier eine Gegenuberstellung:

Einfach

konkret

sichtbar

kopieren und veréandern
aus einer Liste auswéhlen
erkennen

47

Schwierig

abstrakt

unsichtbar

aus dem Nichts erzeugen
in einen Leerraum einfullen
sich erinnern

Einfaches und Schwieriges fur den
Menschen (frei Ubersetzt nach [Smith
et al. 1983]).

Wéhrend der Implementierung und vor
der Inbetriebnahme helfen ausfuhrliche
Tests mit Versuchspersonen, viele Feh-
ler frihzeitig zu erkennen. Oft genligen
auch Papier- und Bleistift-Experimente,
z.B. fur die Reihenfolge einzelner Ar-
beitsschritte, fur die Gestaltung des
Bildschirms oder fir die Formulierung
von Fehlermeldungen. Der Kontakt mit
den Benutzern und die genaue Analyse
ihrer Schwierigkeiten bleiben auch
nach der Inbetriebnahme die wichtigste
Quelle fur Verbesserungs-ldeen.

3.4 Von oben nach unten, von aussen
nach innen

In der Entwurfsphase ist ein modulares
(top-downy-Vorgehen ublich und sinn-
voll. Die ldee dahinter ist, auf einer
hohen Abstraktionsebene, d. h. nahe an
der Wirklichkeit zu beginnen und stu-
fenweise die Auflosung fur die Beson-
derheiten der Implementation zu erho-
hen. Dies erlaubt, auf jeder Stufe Details
auszuklammern, die dort keinen Ein-
fluss haben. Angewandt auf interaktive
Programme bedeutet dies, zuerst die
Schnittstellen eines Systems zur (Aus-
senwelty festzulegen: den Dialog mit
dem Benutzer und allenfalls die Kom-
munikation mit anderen Programmen
oder mit einer Datenbank. Ein schriftli-
cher Programmentwurf, der den voll-
standigen Dialog mit allen Menus und
(Fehler-)Meldungen enthélt, eignet sich
hervorragend zur Diskussion mit Mitar-
beitern und Anwendern, bevor nur eine
Zeile programmiert worden ist.

4. Methoden und Hilfsmittel fiir
den Dialog-Entwurf

4.1 Spezifikations-Methoden

Das Bedurfnis, die Entwurfsphase zu
formalisieren, hat eine ganze Reihe von
mehr oder weniger formalen Methoden
zur Beschreibung von Programmen
hervorgebracht. Vielen von ihnen ist die
Idee der Datenabstraktion gemeinsam
[Isner 1982].

Formale Methoden fiir den Entwurf von
Dialogen sind bisher aber weniger
verbreitet. Besonders die erforderliche
Konsistenz (4. Postulat) macht aber fir
grossere Projekte den Einsatz solcher
Methoden unabdingbar. Sie ermogli-
chen, mit geringem Aufwand und
anhand klarer Kriterien, Varianten zu
studieren und frihzeitig Schwachstellen
zu erkennen.

48

Die heute verwendeten Methoden las-
sen sich zwei Hauptstromungen zuord-
nen: Die einen verwenden Zustands-
Diagramme, in denen Ein- und Ausga-
be-Operationen die verschiedenen Zu-
stdnde des Systems verbinden [Kieras
und Polson 1983]. Die anderen betrach-
ten die Interaktion als Sprache und
definieren in Form von Grammatiken
(Backus-Naur-Form) oder Syntax-Dia-
grammen die moglichen Sequenzen
von Operationen [Reisner 1981].

Unsere Erfahrungen zeigen, dass for-
male Grammatiken einfach anzuwen-
den sind und eine klare Struktur aufwei-
sen gegenlber den oft verwirrenden
Diagrammen. (Klassische Flussdia-
gramme haben sich allzuoft als ein
Hilfsmittel erwiesen, das die Komplexi-
tét eines Problems nicht nur vermindert,
sondern oft sogar steigert.)
Schwierigkeiten bieten noch die Beur-
teilung der Konsistenz eines Dialogs
und die Ubersetzung der Spezifikatio-
nen im Programmcode. Die Konsistenz
versucht man mittels zweistufiger
Grammatiken [Turner 1984] zu formali-
sieren. Eine mdgliche Losung fur das
Ubersetzungsproblem sind sogenannte
Compiler-Compiler. Sie Ubersetzen for-
male Grammatiken in ausfihrbaren
Programmcode, welcher die Eingaben
der Benutzer verarbeitet und die not-
wendigen Berechnungsroutinen aufruft.

4.2 Beurteilungs-Methoden

In engem Zusammenhang mit den
formalen Spezifikations-Methoden ste-
hen die Versuche, die Benitzerfreund-
lichkeit von Dialogen zu quantifizieren,
um Kriterien fur den Vergleich von
Entwirfen zu schaffen [Reisner 1983].
Es zeigt sich und ist intuitiv verstand-
lich, dass die Anzahl der notwendigen
Regeln in formalen Grammatiken ein
gutes Mass fir die Konsistenz einer
Interaktion darstellt: gleiche oder ahnli-
che Operationen werden durch die
selben Regeln beschrieben. Die Anzahl
verschiedener elementarer Handlungen
(etwa das Drlcken einer Maustaste
oder das Verschieben des Cursors) und
die Ladnge der Sequenzen aus solchen
Handlungen sind sodann wichtige Indi-
katoren daftr, ob ein System einfach zu
erlernen und zu bedienen ist.

Andere Methoden verwenden die not-
wendige Anzahl Elementaroperationen
und die Antwortzeiten des Systems, um
die Zeit zu beurteilen, die ein erfahrener
Benutzer fur das Losen einer Aufgabe
mit dem System bendtigt.

4.3 Hilfsmittel

Der grosse und stereotype Aufwand fiir
die Programmierung von Dialogen (50
bis 80% des Codes!) hat zur Entwick-
lung von Software zur Dialog-Generie-
rung gefihrt, die dem Programmierer
erlauben, in allen seinen Programmen

Menus und Masken fir die Ein- und
Ausgabe mit wenigen Makro-Befehlen
aufzubauen. Neben der grossen Zeiter-
sparnis bewirken diese Werkzeuge vor
allem eine erhohte Konsistenz verschie-
dener Dialoge.

Naturlich hangen solche Hilfsprogram-
me stark von der verfliigbaren Hardwa-
re ab (alphanumerische oder graphi-
sche Bildschirme, Tastatur, Maus usw.).
Bei modernen Kleinsystemen werden
sie oft als Software-Pakete mitgeliefert,
oder das Betriebssystem enthélt bereits
die notwendigen Bausteine. Andernfalls
ist der Aufwand fir den Bau eines
eigenen Masken- und Menu-Generators
nicht viel grosser als fur die Codierung
des Dialogs eines einzelnen grosseren
Programms. Zu den Werkzeugen fur
den Bau interaktiver Systeme gehdren
im weiteren auch Graphik- und Symbol-
Pakete sowie die erwdhnten Compiler-
Compiler.

5. Die Rolle der Graphik

Unabhédngig von den graphischen
Aspekten einer Anwendung wird Gra-
phik mehr und mehr zu einem Bestand-
teil aller interaktiven Systeme. Eigene
Graphik-Prozessoren, hochauflésende
Raster-Bildschirme und neuere Einga-
be-Techniken, wie Maus oder elektroni-
scher Griffel, ermdglichen eine grundle-
gende Verénderung des Graphik-Kon-
zepts: von der reinen lllustration der
Resultate alphanumerisch erteilter Be-
fehle zu einem Modell des behandelten
Gegenstands, das der Benltzer am
Bildschirm bearbeiten kann.

Dieses Modell sollte so nahe wie
moglich an der Vorstellung, die der
Benutzer von seiner Aufgabe hat, lie-
gen. Es spielt dabei keine Rolle, ob der
Gegenstand ein eigentliches graphi-
sches Gebilde (etwa ein Triangulations-
Netz) oder ein simpler Text ist. Wesent-
lich ist, dass in beiden Féllen der BenUt-
zer direkt mit den Bestandteilen des
Modells arbeiten, sie verandern, ver-
schieben, erzeugen oder I6schen kann
(«direct manipulationy). Dies vermittelt
ihm das Geflhl, das System zu beherr-
schen. Zudem muss er keine umstandli-
chen, verschlUsselten Befehle lernen,
sondern kann viele seiner Operationen
direkt ausfiihren (z.B. eine Linie zeich-
nen) und andere durch Menu-Wahl
aufrufen. Die damit erzielte bedeutende
Steigerung der Benltzerfreundlichkeit
erklart sich teilweise mit dem Ursprung
vieler dieser ldeen und Techniken in
Video-Spielen.

Ein realistischeres Interface ruft aber
auch wesentlich hohere Ansprliche der
Benutzer an die Vollstandigkeit und
Macht der angebotenen Operationen
hervor. Entscheidend ist unter anderem,
wie «intelligenty ein System auf die
Operationen des Bentitzers am Modell
reagiert, d.h. ob es fur die Einhaltung

Mensuration, Photogrammétrie, Génie rural 2/85

von Konsistenz-Bedingungen sorgt. Die-
se Frage geht aber Uber das hier ge-
stellte Thema hinaus (siehe [Frank
1984]).

6. Ausblick

Moderne Arbeitsplatz-Computer, die
mit Bit-Map-Graphik, Fenstertechnik,
<iconsy und flexiblen Menus heute neue
Massstabe fir die Interaktion von
Mensch und Computer setzen (siehe
Kasten), sind nicht das Ende, sondern
der Anfang einer Entwicklung. Bedeu-
tende Fortschritte sind sowohl in der
Handhabung und der dusseren Erschei-
nung von interaktiven Systemen als
auch in ihrem inneren Aufbau und in
den Entwicklungs-Methoden zu erwar-
ten.

Flache und grossere Bildschirme, Farb-
graphik mit héherer Auflosung, schnel-
ler bewegliche Bilder, eine bessere
Integration verschiedener Anwender-
Software (etwa Text- und Graphik-Edi-
toren), wirksamere Anpassungsmaog-
lichkeiten an verschiedene Benutzer-
gruppen, Erkennung und Synthese von
natdrlicher Sprache und von realisti-
schen Bildern sind nur einige Stichwor-
te zu den erwarteten sichtbaren Verbes-
serungen in der Beziehung zwischen
Mensch und Maschine. Einen guten
Eindruck von den bereits bestehenden
Maoglichkeiten geben uns die hochkom-
plexen Flugsimulatoren, die eine sehr
umfassende <kinstliche Realitéty schaf-
fen. Simulationen spielen eine zuneh-
mend wichtige Rolle auch in vielen
anderen Gebieten (Medizin, Maschinen-
bau usw.).

Im Bereich der internen Verbesserun-
gen sind Betriebssysteme zu erwarten,
die auf gleichzeitige Eingaben von
verschiedenen Quellen (Tastatur, Maus,
Sprache usw.) ausgelegt sind, im Ge-
gensatz zu den heutigen Standard-Be-
triebssystemen, welche durchwegs
noch auf der Idee eines einzelnen

Die Doppler-Messkampagne SWISSDOC:

Eingabe-Stroms pro Beniitzer (Lochkar-
ten!) aufbauen.

Die Methodik bei der Entwicklung
interaktiver Systeme schliesslich wird
ihren «Versuch und Irrtumy-Charakter
mindestens teilweise verlieren und auf
soliderer theoretischer Grundlage ver-
suchen, die Benutzerfreundlichkeit von
Systemen schon im Entwurfsstadium
analytisch zu beurteilen. Integrierte Pro-
grammier-Umgebungen, die, ihrerseits
mit hoher Interaktivitat, die erwahnten
Hilfsmittel anbieten, werden die «<allein-
stehendeny Editoren, Compiler und
Debugger ablésen. Die Ebene, auf der
wir unsere Programme formulieren,
wird standig hoher, was uns erlaubt,
stdrker von den Besonderheiten der
Ausristung zu abstrahieren und immer
mehr die «natlrlichey Sprache der
Probleme zu verwenden. Als Anwen-
dungs-Programmierer stehen wir am
Ubergang von den Sprachen, mit denen
die einzelnen Schritte einer Operation
formuliert werden, zu solchen, mit
denen nur noch das gewinschte Resul-
tat beschrieben wird. Direkt ausflhrba-
re Spezifikationen von Programmen
erlauben, innert kurzer Zeit Prototypen
fur den Dialog wie fur den Rechenteil zu
erstellen und mehrere Varianten zu
prufen. Die problemnahe Formulierung
erhoht auch wesentlich die Korrektheit
der Programme.

Dieser Artikel will Erfahrungen weiter-
geben, die wir beim Entwurf und
Einsatz interaktiver Programme ge-
macht haben. Ein Teil davon ist in den
Postulaten formuliert, die vor allem auf
haufige Schwachstellen in solchen Pro-
grammen aufmerksam machen sollen.
Unsere wichtigste Erfahrung ist aber,
dass die einer Problemldsung zugrun-
de gelegte mathematische Struktur den
grossten Einfluss auf eine gute Benlt-
zer-Schnittstelle hat. Wenn dort Unklar-
heit herrscht, nitzen die besten Richtli-
nien fur die Dialog-Gestaltung nichts.

Wenn aber die zu programmierende
Aufgabe, unabhangig von bestehenden
Losungen, klar herausgearbeitet wurde,
schlagt sich das meist auch in einfach
zu lernenden und einfach zu benutzen-
den Programmen nieder.

Literatur:

Degano, P. und Sandewall, E. (Eds.): Integra-
ted Interactive Computing Systems. Procee-
dings of the European Conference ECICS 82,
Stresa North Holland 1983.

Espinosa und Hoffman: Macintosh User
Interface Guidelines, Apple Computer Inc.
1982.

Frank, A.: Computergestltzte Planerstellung
- Graphik oder Geometrie? In: Vermessung,
Photogrammetrie, Kulturtechnik 12/84

Isner, J.F: A programming Methodology
Based on Data Abstraction, In: Bulletin
Geodesique vol. 56, No. 2, 1982.

Janda, A. (Ed.): Human Factors in Compu-
ting Systems. CHI'83 Conference Procee-
dings, ACM, Boston, December 1983.

Kieras, D. und Polson, P.G.: A Generalized
Transition Network Representation for Inter-
active Systems. In: Janda 1983, pp.103-106.

Kimm et al.: Einfihrung in Software Engi-
neering. DeGruyter 1979.

Reisner, P: Formal Grammar and Human
Factors Design of an Interactive Graphic
System. In: IEEE Transactions on Software
Engineering SE-7, 1981, pp. 229-240.

Reisner, P: Analytic Tools for Human Factors
of Software. In: Blaser und Zoeppritz (Ed.):
Enduser Systems and their Human Factors,
Lecture Notes in Computer Science, vol. 150,
Springer 1983.

Smith, D.C. et al.: Designing the STAR User
Interface. In: Degano and Sandewall 1983,
pp.297-313.

Turner, S.J.. W-Grammars fur Logic Pro-
gramming. In: Campbell (Ed.): Implementa-
tions of PROLOG Edis. Horwood Ltd. 1984.

Adresse des Verfassers:

Werner Kuhn

Institut fiir Geodasie und Photogrammetrie
ETH-Honggerberg, CH-8093 Zirich

z.Z. University of Maine at Orono

Dept. of Civil Engineering

103 Boardman Hall, Orono ME 04469, USA

Ein Beitrag zur Landesvermessung in der Schweiz

A. Wiget, A. Geiger, H.-G. Kahle

In den Monaten Juli und August 1984 hat das Institut fir Geodasie und Photo-
grammetrie (IGP) der ETH Zlrich in Zusammenarbeit mit mehreren auslandischen
Instituten Gelandemessungen fiir die Doppler-Messkampagne SWISSDOC (Swiss
Doppler Observation Campaign) durchgefiihrt. Das Ziel dieses satellitengeodéti-
schen Projektes bestand darin, die Lage- und Hohenkoordinaten von ausgewéhl-
ten Punkten des Schweizerischen Landestriangulationsnetzes mit Dopplermes-
sungen an U. S. TRANSIT-Satelliten zu bestimmen.

Institut fir Geodasie und Photogrammetrie, ETH-HOnggerberg, CH-8093 Zurich,

Separata Nr. 82

Vermessung, Photogrammetrie, Kulturtechnik, 2/85

Messmethode des TRANSIT-Systems
Die Methode der Dopplermessungen
an den TRANSIT-Satelliten des U.S.
Navy Navigation Satellite Systems
(NNSS) wurde in dieser Zeitschrift be-
reits ausfihrlich beschrieben [1]. Sie soll
hier nur kurz erwéhnt werden.

Die Grundlage des TRANSIT-Systems
bilden heute sechs Satelliten, die von
den USA zwischen 1967 und 1979 in

49

	Zur Entwicklung interaktiver Programme und Systeme

