
Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik : VPK = Mensuration,
photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =
Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 83 (1985)

Heft: 2

Artikel: Zur Entwicklung interaktiver Programme und Systeme

Autor: Kuhn, W.

DOI: https://doi.org/10.5169/seals-232582

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-232582
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Zur Entwicklung interaktiver Programme und Systeme
W. Kuhn

In den vergangenen zwei bis drei Jahren sind verschiedene Modelle eines neuen
Typs von Arbeitsplatz-Computern auf den Markt gekommen (Xerox Star, ICL
Perq, Apple Macintosh), die eine radikal neue Benutzer-Schnittstelle anbieten.
Als Eingabemedium verwenden sie neben der Tastatur eine <Maus>, d. h. ein
handliches Gerät, mit dem der Cursor rasch zu jedem beliebigen Punkt des
Bildschirms geführt werden kann. Die Ausgabe erfolgt auf einen <Bit-Map>
Bildschirm, d.h. eine Anzeige, die aus mehreren 100 000 einzeln ein- und
ausschaltbaren Bildpunkten (Pixeln) besteht. Die Information ist in Fenstern gruppiert,

die sich meistens überlagern können. Arbeitsschritte, soweit sie nicht durch
(direct manipulation) (siehe Abschnitt 5) ausgeführt werden, sind in Menus
zusammengefasst. Diese erscheinen durch Antippen mit der Maus entweder am
oberen Bildschirm-Rand (<pull-down> Menus) oder dort auf dem Bildschirm, wo
gerade gearbeitet wird (<pop-up> Menus).

Au cours des deux ou trois dernières années est apparu sur le marché un nouveau
type d'ordinateur monoposte (Xerox Star, /CL Perq, Apple Macintosh), qui propose
un interface-utilisateur radicalement nouveau. A part l'emploi d'un clavier comme
moyen de communication, l'utilisateur dispose d'une souris, c.-à-d. un petit appareil
maniable, qui permet de placer rapidement un curseur sur n'importe quels points
de l'écran de visualisation. Cet affichage ou écran (Bit-Map) se compose de quelques

100 000 points, qui peuvent être enclenchés ou déclenchés individuellement.
Les informations sont groupées dans des fenêtres, qui peuvent se superposer. Les
différentes possibilités de travail sont contenues dans des menus. Au moyen de la
souris, ceux-ci apparaissent soit au bord supérieur de l'écran (menus <pull-down>),
soit à l'endroit, où l'on travaille actuellement (menus <pop-up>).

1. Einleitung
Am Institut für Geodäsie und
Photogrammetrie sind in den vergangenen

Jahren im Lehrbereich von Prof.
Conzett einige grössere Programmpakete

entwickelt worden. Drei davon
dienen hauptsächlich den im Unterricht
und den Diplomkursen anfallenden
Entwurfs- und Berechnungs-Aufgaben:
INTRA für den Entwurf und die
Ausgleichung von Triangulations-Netzen,
DATAUF für die Datenerfassung und -

aufbereitung in Triangulationen, PRIMA
für Matrizenoperationen.
Alle diese Programme haben eine
wichtige Eigenschaft gemeinsam: Sie
sind interaktiv, d. h. der Benutzer arbeitet

am Terminal, sieht das Resultat
einzelner Arbeitsschritte und kann den
Ablauf entsprechend steuern.
Die Qualität eines Programms misst
sich heute vor allem daran, ob es
einfach zu bedienen ist. Interaktive
Programme, die richtig rechnen, sind
nicht zwingend auch <gute> Programme.

Die Frage, wie Programme
möglichst benützerfreundlich zu gestalten
sind, wird gegenwärtig von Informatikern

und Psychologen intensiv erforscht
(siehe z.B. Janda 1983). Ein Projekt an
unserem Institut untersucht dieses
Problem im Zusammenhang mit
Landinformationssystemen

Institut für Geodäsie und Photogrammetrie
ETH-Hönggerberg, CH-8093 Zürich
Separata Nr. 83

Die allgemeinsten Forderungen an
interaktive Programme oder Systeme
sind etwa, dass sie

- einfach zu bedienen
- einfach zu erlernen
- einfach zu erinnern
sein sollen. Je nach den erwarteten
Benützerklassen (Anfänger, gelegentliche

oder erfahrene Benutzer) erhalten
diese Anforderungen unterschiedliche
Gewichte. Im Zweifelsfalle wird
empfohlen, sich am unerfahrenen Benutzer
zu orientieren.
Es geht hier nicht darum, neue Theorien
über Interaktivität zu erarbeiten oder
Normen für die Programmierung
aufzustellen. Vielmehr soll anhand unserer
Erfahrungen1 bei der Entwicklung und
im intensiven Einsatz der erwähnten
Programme (je über 100 Benutzer) auf
kritische Punkte in den folgenden Phasen

der Entstehung interaktiver
Programme aufmerksam gemacht werden:
Dem Entscheid, was ein Programm tun
soll, dem Vorgehen beim Entwurf, der
Dialog- und Bildschirm-Gestaltung, der
Beurteilung des Benutzer-Verhaltens
und der Programm-Dokumentation.

'Dieser Artikel beruht auf Erfahrungen und
Erkenntnissen aus mehrjähriger Arbeit, an
denen der Autor nur einen kleinen Anteil
hatte. Für unzählige Anregungen und
Hinweise danke ich Prof. Conzett, allen ehemaligen

und heutigen Kollegen und den Studenten,

von derern Erfolgen und (Fehlern) (siehe
10. Postulat) wir viel gelernt haben

Zuerst werden zwölf allgemeine Postulate

zur Interaktivität formuliert
(Abschnitt 2). Dann folgen in Abschnitt 3

einige Bermerkungen zum Vorgehen
beim Programm-Entwurf. Abschnitt 4
soll zeigen, dass für den Dialog-Entwurf
und dessen Beurteilung nicht nur Tips
und Tricks, sondern ingenieurmässige
Methoden zur Verfügung stehen. Ein
Hinweis auf die veränderte Rolle der
Graphik (Abschnitt 5) leitet zu einem
Ausblick auf die zu erwartenden
Entwicklungen (Abschnitt 6) über.
Wir glauben, dass diese Betrachtungen,
die keinen Anspruch auf Vollständigkeit
erheben, auch für den Praktiker von
Interesse sind. Sei es, weil er selbst mit
der Entwicklung von Programmen zu
tun hat, sei es als Anhaltspunkte, um
Software auf dem Markt zu bewerten,
oder als allgemeine Orientierungshilfe
in der EDV-Diskussion.

2. Postulate zur Interaktivität
2.1 Postulat: Der Computer ist ein
Instrument und hat sich dem Menschen
anzupassen, nicht umgekehrt.
Herkömmliche Maschinen bewältigen
eine bestimmte Aufgabe auf eine meist
unveränderliche Weise und verlangen
oft eine beträchtliche Anpassung vom
Menschen. Im Gegensatz dazu erlaubt
uns der Computer, insbesondere im
interaktiven Einsatz, durch ein
Programm die Lösung von Problemen den
verschiedenen Anwendern anzupassen.
Diese Chance wird bis heute viel zu

wenig wahrgenommen. Schlagworte
wie (computergerecht), (Umstellung auf
EDV) usw. werden häufig dazu
missbraucht, dem Menschen Arbeitsabläufe
aufzuzwingen, die ihm unvertraut sind
und die sich von der zu lösenden
Aufgabe her nicht begründen lassen.
Der Computer verändert unsere
Arbeitsweise. Wir haben es in der Hand,
dafür zu sorgen, dass dies zu
menschen- und problemgerechten Lösungen

führt. Ein Beispiel dafür liefert das

2.2 Postulat: Manuelle Arbeitsabläufe
zu programmieren bedeutet oft
Zeit- und Geldverschwendung. Der
Computer eröffnet neue Wege
zur Problemlösung.
Programme sollen nicht einfach
Berechnungs-Formulare automatisieren.
Formulare sind Hilfsmittel für Lösungen
von Hand oder mit dem Taschenrechner.

Sie organisieren den Arbeitsablauf
und die notwendigen Rechenkontrollen.
Die Eintragungen sind redundant, d. h.

die gleiche Information wird mehrfach
aufgeschrieben, z.B. neben dem Wert

44 Mensuration. Photogrammetne, Génie rural 2/85

eines Winkels auch sein Sinus und sein
Cosinus. Der Berechnungsvorgang lässt
die zugrundeliegende Lösungsidee oft
kaum erkennen.
Der Schritt vom Taschenrechner zum
Computer ist wesentlich grösser als
jener von der Logarithmentafel zum
Taschenrechner. Er bedeutet den Übergang

vom automatischen Rechnen, wo
der Anwender weiterhin die Last der
(Buchhaltung) trägt, zur Datenverarbeitung,

wo ihm diese uninteressante
Arbeit vom Computer abgenommen
wird, der sie überdies viel zuverlässiger
erledigt.
Bei einer sinnvollen Lösung mit dem
Computer ist das Programm für die
Organisation und die Hardware für die
Rechenkontrollen verantwortlich. Somit
kann sich der Benutzer auf die Fragen
konzentrieren, die sein Problem betreffen.

Trotzdem soll es noch Programme
geben, denen man zusätzlich zu einem
Winkel auch noch dessen Sinus und
Cosinus füttern muss
Nebenbei bemerkt: Reine Rechenkontrollen

zu programmieren ist sinnlos.
Heutige Computer machen etwa einen
Fehler in 10'° Operationen. Ist ein
Programm korrekt geschrieben, so
braucht es keine Rechenkontrollen
auszuführen, andernfalls nützen auch diese
nichts. Sie können allenfalls zur Fehlersuche

während der Programmierung
dienen.

2.3 Postulat: Kein Programm kann
alles. Wenn es 90 Prozent der Fälle
korrekt erledigt, kann es in 10 Prozent
der Zeit erstellt werden, die für ein
99prozentiges Programm nötig wäre.
Vor allem ist es dann aber viel
einfacher zu bedienen.
Die Benützerfreundlichkeit vieler
Programme leidet am Ehrgeiz des
Programmierers, für jeden noch so seltenen

Spezialfall eine Lösung anbieten zu
wollen. Die Befehle werden komplizierter

und ihre Anzahl unüberblickbar. Die
Entwicklungszeit kann derart wachsen,
dass das Programm schon vor seinem
Einsatz veraltet ist. Auch der
Programmunterhalt wird erschwert.
Bei notwendigen Lösungen für Sonderfälle

gilt die Regel (Einfaches einfach.
Komplizierteres möglich). Dies bedeutet,

dass eine einfache Lösung für den
Normalfall nicht durch die Möglichkeit
zur Behandlung von seltenen
komplizierteren Fällen erschwert werden soll.
Das Meistern der Komplexität einer
Aufgabe, ihre gedankliche Durchdringung,

ist die erste Voraussetzung für
jedes erfolgreiche Programm. Wenn
sich Spezialfälle häufen, liegt das meist
an der gewählten Lösung, nicht am
Problem. Ein Überdenken des Lösungsweges

führt dann oft zu unerwarteten
Vereinfachungen und zum Verschwinden

von Spezialfällen.

2.4 Postulat: Der Erfolg von
Programmsystemen hängt davon ab, wie
einheitlich die einzelnen Programme
mit dem Benutzer sprechen.
Es gibt für den Benutzer nichts Verwir-
renderes, als wenn die gleiche Aktion in

verschiedenen Programmen
unterschiedliche (leider oft entgegengesetzte)

Reaktionen bewirkt. Die Konsistenz
der Benutzer-Schnittstellen mehrerer
Programme in sich und untereinander
hat einen entscheidenden Einfluss auf
das Verständnis und die Lernbarkeit.
Sie erlaubt dem Benutzer Verallgemeinerungen,

mit denen er den Aufbau von
Operationen teilweise erraten,
hauptsächlich aber leichter erlernen und
erinnern kann.
Ein einfaches, konsequent durchgehaltenes

Muster für Befehle ist deshalb
sehr wichtig. Routinen für alle Ein- und
Ausgabefunktionen sollen einmal
erstellt und dann in allen Programmen als
Bauelemente verwendet werden. Beim
Ausbau bestehender Programmsysteme

muss hier oft Einheitlichkeit gegen
punktuelle Verbesserungen abgewogen
werden.
Moderne Arbeitsplatz-Computer (siehe
Kasten) bieten Bausteine für eine
einheitliche Schnittstelle als Bestandteil
des Betriebssystems an. Ohne diese
Unterstützung ist Konsistenz in grösseren

Anwendungen kaum zu erreichen.

2.5 Postulat: Werden gleiche Eingaben
an verschiedenen Orten unterschiedlich

interpretiert, soll der Benutzer
immer sehen, welche Interpretation
(welcher Modus) gerade gilt.
Die Vielzahl möglicher Befehle in einem
interaktiven System macht es meist
unumgänglich, dass gewisse Tätigkeiten

je nach Systemzustand unterschiedliche

Auswirkungen haben, etwa das
Drücken der RETURN-Taste oder eines
Maus-Knopfs. Dies bedeutet keinen
Widerspruch zum 4. Postulat, wenn der
gültige Modus für den Benutzer
offensichtlich ist und wenn irrtümliche Eingaben

einfach korrigiert werden können.
Auch alphanumerische Terminals bieten
viele Möglichkeiten, Modi verständlicher

darzustellen als nur durch eine
Textzeile, z. B. indem die jeweils aktiven
Befehle und Daten hervorgehoben werden

((highlighting)).

2.6 Postulat: Der Benutzer will sehen,
nicht lesen oder sich erinnern müssen.
Einerseits ist die Informations-Menge,
die der Anwender zwischen zwei
aufeinanderfolgenden Handlungen erfassen

kann, gering. Jedes Zeichen, das
keine Information liefert (d.h. Unsicherheit

vermindert), stört die Nachricht der
anderen Zeichen. Floskeln und Dekorationen

verschwenden die Zeit des
Programmierers, des Anwenders und
des Computers. Sätze erfasst man

selten in einem Blick. Deshalb sind in

vielen Fällen Stichwörter mit Symbolen
(Pfeilen usw.) klarer als ausformulierte
Sätze. Sie müssen aber einheitlich
verwendet und dargestellt sein.
Andererseits ist das Kurzzeit-Gedächtnis des
Benutzers beschränkt und wird durch
die Lösung seiner Aufgabe
beansprucht. Alle für den nächsten Arbeitsschritt

benötigte Information soll deshalb

auf dem Bildschirm vorhanden
sein. Diese Forderung führt meist zur
Darstellung der Befehle in Form von
Menus, die sich den jeweils tatsächlich
angebotenen Befehlen anpassen. Die
Daten werden dem Benutzer so präsentiert,

dass er sie direkt bearbeiten und
ihre Veränderung auf dem Bildschirm
verfolgen kann.

2.7 Postulat: Der Benutzer soll auf
einen Blick erkennen können, was das
Programm von ihm erwartet.
Ein Programm kann im wesentlichen
auf drei verschiedene Arten zum Benutzer

sprechen: Es kann von ihm Eingaben

verlangen (Antwort auf eine Frage,
Wahl aus einem Menu, Ausfüllen einer
Maske), ihn zu sonstigen Handlungen
auffordern (Anschliessen eines
Peripheriegeräts, Wechseln einer Diskette),
oder es kann eine Meldung ausgeben
(Fehler, Systemzustand). Ausgaben auf
den Bildschirm sollen auf wenige Muster

beschränkt und so gekennzeichnet
werden, dass sofort klar wird, um
welche Dialog-Form es sich handelt.
Eine graphische Unterscheidung ist
natürlich auch hier dem blossen
Anschreiben vorzuziehen.
Systeme, die statt einer zeilenweise
über den Bildschirm laufenden Ausgabe

mehrere Fenster verwenden, erleichtern

diese Typisierung sehr.

2.8 Postulat: Ein benützerfreundliches
Programm lässt keine Ungewissheit
aufkommen.
Die Geduld und das Selbstvertrauen
des Anwenders im Umgang mit dem
Computer sind beschränkt. Er erwartet
auf einfache Befehle eine sofortige
Reaktion, auch wenn das Resultat mehr
Zeit benötigt. In Fällen, die er als
schwieriger empfindet, sind etwas
längere Antwortzeiten zulässig. Es darf
aber nie Unsicherheit darüber aufkommen,

ob das Programm eine Lösung
sucht, sich in einer endlosen Schlaufe
bewegt oder blockiert ist. Im
Unterschied zum Menschen lässt der Computer

nicht erkennen, ob er (nachdenkt)
oder (nicht mehr weiter weiss». Deshalb
muss diese Information vom Programm
geliefert werden. Eindeutige Symbole,
etwa ein Cursor, der blinkt oder die
Form ändert (Sanduhr, Biene, Buddha),
um anzudeuten, dass ein Prozess
abläuft, sind Meldungen ((Bitte warten»)
vorzuziehen. Wichtig für den Arbeits-

Vermessung, Photogrammetrie, Kulturtechnik, 2/85 45

Interaktion mit modernen Arbeitsplatz-Computern
Einige wenige Entwurfsprinzipien sorgen
für einfache und einheitliche Interfaces in

allen Anwendungen. Diese Grundsätze
lassen sich wie folgt zusammenfassen
[Smith et al. 1982]:
• Das Modell, das der Benutzer vom
System erhält, verwendet vertraute
Konzepte: Weit verbreitet ist die Schreibtisch-
Metapher, mit der auf dem Bildschirm die
gewohnte Arbeitsumgebung simuliert
wird: Dokumente, Ordner, Briefkasten,
Papierkorb usw. Alle diese Gegenstände
erhalten eindeutige Symbole ((icons>), und
der Benutzer kann damit die gewohnten
Operationen ausführen, etwa einen Ordner
öffnen oder ein Dokument wegwerfen.
Will er den Inhalt eines Dokuments
anschauen oder verändern, so eröffnet das
System dafür ein Fenster auf dem
Bildschirm. Dieses zeigt einen Ausschnitt des
Inhalts und kann an beliebige Stellen im
Dokument bewegt werden. Fenster können
sich überlagern, wie übereinanderliegende
Papiere auf dem Schreibtisch. Das System
lässt klar erkennen, welches Fenster <aktiv>

ist, d.h. von den Operationen berührt wird.

• Alle benötigte Information, oder ein
Zugang zu ihr, ist jederzeit sichtbar Der
Benutzer muss sich keine Befehle merken
und kann somit sein Gedächtnis voll für
seine Aufgabe einsetzen
Jede Operation führt sofort zu einem
sichtbaren Resultat, das, falls nötig,
ruckgängig gemacht werden kann. Durch diese
Transparenz und Korrekturmöglichkeit verliert

der Benutzer weitgehend die Angst vor
Fehlmanipulationen
• Die Arbeitsweise ist in allen Anwendungen

einheitlich Gleiche Handlungen haben
an verschiedenen Orten sinngemässe
Auswirkungen. Alle Operationen folgen dem
gleichen Grundmuster, z.B. dem Objekt-
Verb Paradigma: Zuerst wird das Objekt
gewählt (durch Antippen mit der Maus)
und dann die Operation damit ausgeführt
(z.B. wird das Objekt mit der Maus über
den Bildschirm «gezogen», oder ein Befehl
wird aus einem Menu gewählt).
• Die Bedienung ist einfach, auch in

komplexen Anwendungen. Dies hängt eng
zusammen mit der Einheitlichkeit. Ideal ist
ein Minimum an wirksamen Operationen

Operat Netz Ausgleichen

schliessen
drucken
duplizieren

KB
rani
/37
Netz 2

x Y

Punkte

&
]| Di stanzen||

Abb.1 Wir haben das Triangulations-Programm

gestartet und ein Operat ausgewählt.

Das System zeigt am rechten
Bildschirmrand ein icon für jedes Dokument

in diesem Operat. Wir können eines
dieser Dokumente auswählen, um damit zu
arbeiten, z. B. die Variante 1 des Netzplans.
Dazu schieben wir den Cursor (geführt
durch die Maus) in das betreffende icon
((Netz 1») und (klicken» dort mit der Maustaste.

Dadurch wird dieses Dokument
(aktiv», was uns durch ein hervorgehobenes

icon angezeigt wird. Alle folgenden
Operationen beziehen sich also auf den
Inhalt von (Netz 1». Am oberen Bildschirm-
Rand stehen in einer Zeile die Titel aller
(pull-down)-Menus unserer Anwendung.
Auf ähnliche Art, wie wir (Netz 1» auswählten,

verlangen wir nun einen Arbeitsschritt
im Menu (Dokument»: Wir führen den
Cursor (Pfeil) zum Menu-Titel und drücken
dort die Maustaste, worauf der Menu-
Inhalt angezeigt wird. Nun wählen wir
jenes Feld, das die gewünschte Operation
enthält. Sobald wir die Taste dort loslassen,
verschwindet das Menu, und diese Operation

wird ausgeführt. Wenn wir den Netzplan

anschauen wollen, wählen wir
(öffnen». Das Vorgehen entspricht dem (Ob-

jekt-Verb-Paradigma>: Zuerst
wählen wir den Gegenstand
(Netz 1) und dann die Operation

(öffnen).
Das Menu bietet uns auch
einen Ausdruck auf Papier
oder eine zweite Speicherung
der Netzplandaten an. Im jetzigen

Zustand hat die Operation
(schliessen» keine Bedeutung,
da noch kein Dokument geöffnet

ist. Das gleiche gilt, da
noch kein Netz dargestellt ist,
für das ganze (Netz»-Menu
(das Operationen auf dem
Netz-Graph anbietet, z. B. die
Anzeige aller Distanzen oder
der Punkte allein). Deshalb
sind der Arbeitsschritt (schliessen»

und der Menu-Titel (Netz»
nur schwach angezeigt: sie können nicht
ausgewählt werden
Abb. 2 Als Resultat erscheint auf dem
Bildschirm ein Fenster, das den Netzplan
enthält und Editier-Funktionen in Form
neuer icons anbietet. Wir können mit dem
beschriebenen Verfahren z. B. das Symbol
für einen Fixpunkt wählen und es direkt
manipulieren: Mit heruntergedrückter
Maustaste (ziehen» wir das
Dreieck bis zu einem Punkt,
den wir in der Ausgleichung
festhalten wollen und lassen
dort die Taste und damit das
Symbol los. So sind die Punkte
301 und 313 als Fixpunkte
gekennzeichnet worden. In der
Abbildung wurde das Distanz-
icon aktiviert. Wir schieben
den Cursor, der nun die Form
eines Strichkreuzes hat, zum
Anfangspunkt der einzuführenden

Distanz-Beobachtung und
drücken dort die Maustaste
Die Abbildung zeigt den
Zustand unterwegs zum
Endpunkt, wo durch Loslassen der
Taste die Distanz in den Netzplan

eingefügt wird.

für jede Anwendung. Mehrere Möglichkeiten,
das selbe zu erreichen, können verwirren

Trotzdem sollten dem erfahrenen
Benutzer Abkürzungen angeboten werden
Einfachheit lässt sich immer nur unter
Nebenbedingungen maximieren.

• (What you see is what you get).
Dokumente sehen auf dem Bildschirm genau so
aus, wie sie nachher z B. ausgedruckt
werden. Der Text wird nicht durch Kontroll-
Zeichen gestört, und das Resultat von
Formatierungen, Schriftwechseln usw. ist
sofort sichtbar.

Die Abbildungen 1 und 2 sollen anhand
von (Momentaufnahmen» einer denkbaren
Benutzer-Schnittstelle für ein
Triangulations-Programm einige der erwähnten
Techniken moderner Interaktion illustrieren.
Die Absicht ist, die gegenüber herkömmlichen

Systemen völlig veränderte Arbeitsweise

zu zeigen, deren Hauptmerkmal ist,
dass alle relevanten Vorgänge sichtbar
sind Es geht also nicht darum, einen
Entwurf für ein bestimmtes Programm
darzulegen.

Um einzelne Beobachtungen aus dem
Netzplan zu entfernen, stehen die
durchgestrichenen icons zur Verfügung. Das (Netz>-
Menu bietet zudem ständig einen UNDO-
Befehl für die letzte Operation an. So
müssen wir nie befürchten, den Netzplan
durch eine irrtümliche Veränderung
(verdorben» zu haben.
Zu beachten sind die im Hintergrund
weiterhin angebotenen icons. Wir können
damit jederzeit die Arbeit am Netzplan
unterbrechen und in einem anderen Fenster

(das je nach Bildschirm-Grösse den
Netzplan überlagern wird) etwa die Liste
der Richtungs-Beobachtungen oder der
Koordinaten anschauen und verändern.
Andererseits bietet uns das Menu (Ausgleichen»

die Berechnung und Auflösung der
Normalgleichungen für das gerade aktive
Netz an. Die Wahl dieser Schritte würde
neue Resultat-icons (z.B. für den Lösungsvektor

und für die Qxx-Matrix) hervorbringen.

Um ein Dokument, z. B. den Netzplan,
zu schliessen, wählen wir entweder im
(Dokument)-Menu den entsprechenden
Schritt (er wirkt auf das zur Zeit aktive
Fenster) oder klicken in der kleinen
(Schliessbox) in der linken oberen Ecke
des betreffenden Fensters.

Operat Dokument Netz Ausgleichen

=Oi

Fix

Stutz

Neu

286

0" 291

Richtung hin Ri hin ruck | Distanz

JIjML JtalL
Richtungen]! |DistanzenI

/$7
Netz 1B

z$7
Netz 2

X Y

Punkte

46 lensuration, Photogrammetrie. Génie rural 2/85

rhythmus und für das Gefühl des
Anwenders, die Lage zu beherrschen,
ist eine durchdachte Unterteilung der
Probleme in kurze, reversible Arbeitsschritte,

mit denen der Ablauf
überwacht und gesteuert werden kann.

2.9 Postulat: Programme, die dem
Benutzer Befehle erteilen, werden nur
widerwillig benützt, verfehlen somit
ihren Zweck und fördern eine Abwehrhaltung

gegenüber dem Computer.
Die Gewohnheit des Programmierers,
dem Computer Befehle zu erteilen,
schlägt leider oft bis in den Dialog
durch. Der Benutzer soll aber davon
überzeugt sein, dass er den Arbeitsablauf

bestimmt und ihn das Programm
dabei nur unterstützt.
Das bedeutet nicht, dass Aufforderungen

des Programms mit umständlichen
Höflichkeitsfloskeln ((Würden Sie bitte

...») vernebelt werden sollen. Weder
ein herablassendes noch ein unterwürfiges

Programm, sondern eines, von
dem der Benutzer jederzeit etwas nicht
Plangemässes (Unterbruch, Information
über Systemzustand usw.) verlangen
kann, gibt ihm das Gefühl, die Lage zu
beherrschen.

2.10 Postulat: Sogenannte Benutzer-
Fehler gibt es kaum. Handlungen, die
zu einem unerlaubten System-Zustand
((Absturz)) führen, haben ihre Ursache
meist in missachteten Interaktions-
Prinzipien.
Zu Unrecht schiebt man Fehler der
Anwender gerne auf deren Unerfahren-
heit ab. Ein Programm, das nur von
erfahrenen Benutzern eingesetzt werden

kann, ist ein schlechtes Programm.
Entscheidend ist, dass der Benutzer
keine Angst vor Fehlern haben muss.
Ein System, in dem keine Fehler möglich

sind, ist aber unerreichbar. Das Ziel
ist deshalb eine Minimierung der
Möglichkeiten, Fehler zu begehen, und der
Auswirkungen davon. Ideal, aber oft
schwierig zu programmieren ist ein
UNDO-Befehl, um mindestens die letzte
Operation rückgängig zu machen.
Wenn das System dem Benutzer ein
klar erkennbares, einfaches und
widerspruchfreies Modell von seiner Aufgabe
vermittelt, so werden Fehl-Eingaben
sehr selten und können vom Programm
abgefangen werden. Bei einer Untersuchung

am Programmpaket PRIMA konnten

alle mehrfach beobachteten
Fehlmanipulationen auf Schwächen des
Entwurfs zurückgeführt werden.

2.11 Postulat: Fehlermeldungen sollen
dem Benutzer in seiner Sprache
mitteilen, was er falsch gemacht hat
und wie er es korrigieren kann.
Die vielzitierten Beispiele der Art
(Err.92745 - Acc. Viol.) brauchen
leider nicht erfunden zu werden. Dass

etwas schiefläuft, merkt der Benutzer
meist auch sonst; darüber, was schiefging

und wie er Abhilfe schaffen kann,
sagt ihm eine solche Meldung aber
nichts. Wenn er diese Information in

einem Handbuch (in welchem?)
nachschlagen muss (wo?), wird er keine
Freude am Programm haben, besonders

wenn er auch dort keine verständliche

Auskunft findet.
Gute Fehler-Meldungen sind kurz und
konstruktiv. Sie erscheinen so schnell
wie möglich nach dem fehlerhaften
Ereignis, um wirkungslose Eingaben
oder grösseren Schaden zu verhüten
und um Korrekturen zu erleichtern.

2.12 Postulat: Dokumentation kann
schlechte Programme nicht verbessern.

Sie sollte nur in drei Fällen
benötigt werden: Zur Einführung für
den Anfänger, als Hilfe in schwierigen
Fällen und als Grundlage für den
Programm-Unterhalt.
Häufige Benutzer-Fehler durch vermehrte

Dokumentation beheben zu wollen
ist meist erfolglos oder sogar
kontraproduktiv.

Bedienungs-Anleitungen werden selten
gelesen und noch seltener verstanden.
Ein gutes Programm, eventuell mit einer
HELP-Funktion, macht sie fast überflüssig.

Programm-Beschreibungen für den
Programmierer werden selten nachgeführt.
Ein klar geschriebener, kommentierter
Programm-Code ist viel nützlicher.
Bei on-line-Dokumentation mittels einer
HELP-Funktion bewährt sich ein zweistufiges

Verfahren: Ein Überblick über alle
Befehle mit ihrer Syntax (entsprechend
den gedruckten Quick-Reference-
Cards) und vertiefte Information zu den
einzelnen Befehlen (je etwa eine
Bildschirmseite). Eine gute HELP-Funktion
ist aber sehr aufwendig zu programmieren

und dort fehl am Platz, wo sie nur
schlechte Programme (flicken) soll.
Neueste Entwicklungen [Espinosa und
Hoffman 1982] lassen vermuten, dass
sie sich bei einfachen und konsistenten
Interaktions-Modellen erübrigt.

3. Bemerkungen zum Entwurf
interaktiver Programme
Über Entwurfsmethoden für Programme

und über Projektmanagement gibt
es ausführliche Literatur [z.B. Kimm et
al. 1979]. Hier werden nur einige
Besonderheiten hervorgehoben, die sich
besonders auf die Interaktion auswirken.

3.1 Wo beginnen?
Sicher nicht am Terminal. Die Hauptarbeit

des Programmierens geschieht mit
Papier und Bleistift. Ein gründliches
Verstehen der zu programmierenden
Aufgabe und der herkömmlichen
Lösungen steht am Anfang jedes Pro¬

gramm-Entwurfs. Es gilt dabei, die
Problemanalyse nicht mit der Untersuchung

bestehender Lösungen zu
verwechseln, d.h. die mathematische
Struktur des Problems vom Formelapparat

des gewohnten Lösungswegs zu
unterscheiden. Eine Untersuchung des
grundsätzlichen Charakters der zu
lösenden Aufgabe kann zu überraschend
einfachen Lösungsmethoden führen.
Diese kommen dem Problem und dessen

Auffassung durch den Menschen
meist näher als herkömmliche Lösungen,

die mit beschränkteren Mitteln
auskommen müssen und deshalb oft
umständliche Methoden anwenden
(Reihenentwicklungen, schrittweise
Lösungen usw.).
Vor jeder Programmierung sind also
etwa folgende Fragen zu beantworten:
Um was für ein Problem handelt es
sich? Welches ist sein mathematischer
Hintergrund? Welche Lösungsmethoden

gibt es? Welche Entscheidungen
soll der Anwender treffen, welche
werden automatisiert?

3.2 Das Rad nicht neu erfinden
So ausgefallen die Aufgabe und so
originell die Lösungsideen sein mögen,
mit grosser Wahrscheinlichkeit wurde
das gleiche oder ein verwandtes
Problem schon mehrfach gelöst. Ein
Studium der Fach- und der Informatik-
Literatur sowie Diskussionen mit Leuten,

die ähnliche Aufgaben bearbeiten,
können manchen Umweg vermeiden
helfen. Ähnliches gilt innerhalb von
Arbeitsgruppen: Verschiedene
Programmierer kämpfen oft mit den selben
Problemen, z.B. mit der Gestaltung der
Ein- und Ausgabe. Individuelle ad-hoc-
Lösungen kosten viel Zeit und sind
meist schlechter als einmal gründlich
durchdachte Werkzeuge. Sie führen in

grösseren Projekten auch zu einer
inkonsistenten Benützerschnittstelle, die
verschiedene Programmierer-Handschriften

trägt.

3.3 Wer sind die Benutzer?
Eine möglichst genaue Kenntnis der
erwarteten Anwender ist Voraussetzung,

um ein Programm diesen anpassen

zu können. Bevor der Dialog
entworfen wird, sind also die Gewohnheiten

und Erwartungen der zukünftigen
Benutzer genau abzuklären.
Unabhängig von der Anwendung
haben ausserdem alle Benutzer mit einigen

Tätigkeiten und Konzepten
grundsätzlich mehr Mühe als mit anderen.
Hier eine Gegenüberstellung:

Einfach
konkret
sichtbar
kopieren und verändern
aus einer Liste auswählen
erkennen

Vermessung, Photogrammetrie, Kulturtechnik, 2/85 47

Schwierig
abstrakt
unsichtbar
aus dem Nichts erzeugen
in einen Leerraum einfüllen
sich erinnern

Einfaches und Schwieriges für den
Menschen (frei übersetzt nach [Smith
et al. 1983]).
Während der Implementierung und vor
der Inbetriebnahme helfen ausführliche
Tests mit Versuchspersonen, viele Fehler

frühzeitig zu erkennen. Oft genügen
auch Papier- und Bleistift-Experimente,
z.B. für die Reihenfolge einzelner
Arbeitsschritte, für die Gestaltung des
Bildschirms oder für die Formulierung
von Fehlermeldungen. Der Kontakt mit
den Benutzern und die genaue Analyse
ihrer Schwierigkeiten bleiben auch
nach der Inbetriebnahme die wichtigste
Quelle für Verbesserungs-Ideen.

3.4 Von oben nach unten, von aussen
nach innen
In der Entwurfsphase ist ein modulares
(top-down)-Vorgehen üblich und sinnvoll.

Die Idee dahinter ist, auf einer
hohen Abstraktionsebene, d. h. nahe an
der Wirklichkeit zu beginnen und
stufenweise die Auflösung für die
Besonderheiten der Implementation zu erhöhen.

Dies erlaubt, auf jeder Stufe Details
auszuklammern, die dort keinen
Einfluss haben. Angewandt auf interaktive
Programme bedeutet dies, zuerst die
Schnittstellen eines Systems zur (Aus-
senwelt) festzulegen: den Dialog mit
dem Benutzer und allenfalls die
Kommunikation mit anderen Programmen
oder mit einer Datenbank. Ein schriftlicher

Programmentwurf, der den
vollständigen Dialog mit allen Menus und
(Fehler-)Meldungen enthält, eignet sich
hervorragend zur Diskussion mit
Mitarbeitern und Anwendern, bevor nur eine
Zeile programmiert worden ist.

4. Methoden und Hilfsmittel für
den Dialog-Entwurf
4.1 Spezifikations-Methoden
Das Bedürfnis, die Entwurfsphase zu
formalisieren, hat eine ganze Reihe von
mehr oder weniger formalen Methoden
zur Beschreibung von Programmen
hervorgebracht. Vielen von ihnen ist die
Idee der Datenabstraktion gemeinsam
[Isner 1982].
Formale Methoden für den Entwurf von
Dialogen sind bisher aber weniger
verbreitet. Besonders die erforderliche
Konsistenz (4. Postulat) macht aber für
grössere Projekte den Einsatz solcher
Methoden unabdingbar. Sie ermöglichen,

mit geringem Aufwand und
anhand klarer Kriterien, Varianten zu
studieren und frühzeitig Schwachstellen
zu erkennen.

Die heute verwendeten Methoden
lassen sich zwei Hauptströmungen zuordnen:

Die einen verwenden Zustands-
Diagramme, in denen Ein- und
Ausgabe-Operationen die verschiedenen
Zustände des Systems verbinden [Kieras
und Poison 1983]. Die anderen betrachten

die Interaktion als Sprache und
definieren in Form von Grammatiken
(Backus-Naur-Form) oder Syntax-Diagrammen

die möglichen Sequenzen
von Operationen [Reisner 1981].
Unsere Erfahrungen zeigen, dass
formale Grammatiken einfach anzuwenden

sind und eine klare Struktur aufweisen

gegenüber den oft verwirrenden
Diagrammen. (Klassische Flussdiagramme

haben sich allzuoft als ein
Hilfsmittel erwiesen, das die Komplexität

eines Problems nicht nur vermindert,
sondern oft sogar steigert.)
Schwierigkeiten bieten noch die
Beurteilung der Konsistenz eines Dialogs
und die Übersetzung der Spezifikationen

im Programmcode. Die Konsistenz
versucht man mittels zweistufiger
Grammatiken [Turner 1984] zu formalisieren.

Eine mögliche Lösung für das
Übersetzungsproblem sind sogenannte
Compiler-Compiler. Sie übersetzen
formale Grammatiken in ausführbaren
Programmcode, welcher die Eingaben
der Benutzer verarbeitet und die
notwendigen Berechnungsroutinen aufruft.

4.2 Beurteilungs-Methoden
In engem Zusammenhang mit den
formalen Spezifikations-Methoden stehen

die Versuche, die Benützerfreund-
lichkeit von Dialogen zu quantifizieren,
um Kriterien für den Vergleich von
Entwürfen zu schaffen [Reisner 1983].
Es zeigt sich und ist intuitiv verständlich,

dass die Anzahl der notwendigen
Regeln in formalen Grammatiken ein
gutes Mass für die Konsistenz einer
Interaktion darstellt: gleiche oder ähnliche

Operationen werden durch die
selben Regeln beschrieben. Die Anzahl
verschiedener elementarer Handlungen
(etwa das Drücken einer Maustaste
oder das Verschieben des Cursors) und
die Länge der Sequenzen aus solchen
Handlungen sind sodann wichtige
Indikatoren dafür, ob ein System einfach zu
erlernen und zu bedienen ist.
Andere Methoden verwenden die
notwendige Anzahl Elementaroperationen
und die Antwortzeiten des Systems, um
die Zeit zu beurteilen, die ein erfahrener
Benutzer für das Lösen einer Aufgabe
mit dem System benötigt.

4.3 Hilfsmittel
Der grosse und stereotype Aufwand für
die Programmierung von Dialogen (50
bis 80% des Codes!) hat zur Entwicklung

von Software zur Dialog-Generierung

geführt, die dem Programmierer
erlauben, in allen seinen Programmen

Menus und Masken für die Ein- und
Ausgabe mit wenigen Makro-Befehlen
aufzubauen. Neben der grossen
Zeitersparnis bewirken diese Werkzeuge vor
allem eine erhöhte Konsistenz verschiedener

Dialoge.
Natürlich hängen solche Hilfsprogramme

stark von der verfügbaren Hardware
ab (alphanumerische oder graphische

Bildschirme, Tastatur, Maus usw.).
Bei modernen Kleinsystemen werden
sie oft als Software-Pakete mitgeliefert,
oder das Betriebssystem enthält bereits
die notwendigen Bausteine. Andernfalls
ist der Aufwand für den Bau eines
eigenen Masken- und Menu-Generators
nicht viel grösser als für die Codierung
des Dialogs eines einzelnen grösseren
Programms. Zu den Werkzeugen für
den Bau interaktiver Systeme gehören
im weiteren auch Graphik- und Symbol-
Pakete sowie die erwähnten Compiler-
Compiler.

5. Die Rolle der Graphik
Unabhängig von den graphischen
Aspekten einer Anwendung wird Graphik

mehr und mehr zu einem Bestandteil

aller interaktiven Systeme. Eigene
Graphik-Prozessoren, hochauflösende
Raster-Bildschirme und neuere
Eingabe-Techniken, wie Maus oder elektronischer

Griffel, ermöglichen eine grundlegende

Veränderung des Graphik-Konzepts:

von der reinen Illustration der
Resultate alphanumerisch erteilter
Befehle zu einem Modell des behandelten
Gegenstands, das der Benutzer am
Bildschirm bearbeiten kann.
Dieses Modell sollte so nahe wie
möglich an der Vorstellung, die der
Benutzer von seiner Aufgabe hat,
liegen. Es spielt dabei keine Rolle, ob der
Gegenstand ein eigentliches graphisches

Gebilde (etwa ein Triangulations-
Netz) oder ein simpler Text ist. Wesentlich

ist, dass in beiden Fällen der Benutzer

direkt mit den Bestandteilen des
Modells arbeiten, sie verändern,
verschieben, erzeugen oder löschen kann
((direct manipulation)). Dies vermittelt
ihm das Gefühl, das System zu beherrschen.

Zudem muss er keine umständlichen,

verschlüsselten Befehle lernen,
sondern kann viele seiner Operationen
direkt ausführen (z.B. eine Linie zeichnen)

und andere durch Menu-Wahl
aufrufen. Die damit erzielte bedeutende
Steigerung der Benützerfreundlichkeit
erklärt sich teilweise mit dem Ursprung
vieler dieser Ideen und Techniken in

Video-Spielen.
Ein realistischeres Interface ruft aber
auch wesentlich höhere Ansprüche der
Benutzer an die Vollständigkeit und
Macht der angebotenen Operationen
hervor. Entscheidend ist unter anderem,
wie (intelligent) ein System auf die
Operationen des Benutzers am Modell
reagiert, d. h. ob es für die Einhaltung

48 Mensuration, Photogrammetrie, Génie rural 2/85

von Konsistenz-Bedingungen sorgt. Diese

Frage geht aber über das hier
gestellte Thema hinaus (siehe [Frank
1984]).

6. Ausblick
Moderne Arbeitsplatz-Computer, die
mit Bit-Map-Graphik, Fenstertechnik,
(icons) und flexiblen Menus heute neue
Massstäbe für die Interaktion von
Mensch und Computer setzen (siehe
Kasten), sind nicht das Ende, sondern
der Anfang einer Entwicklung. Bedeutende

Fortschritte sind sowohl in der
Handhabung und der äusseren Erscheinung

von interaktiven Systemen als
auch in ihrem inneren Aufbau und in
den Entwicklungs-Methoden zu erwarten.

Flache und grössere Bildschirme,
Farbgraphik mit höherer Auflösung, schneller

bewegliche Bilder, eine bessere
Integration verschiedener Anwender-
Software (etwa Text- und Graphik-Editoren),

wirksamere Anpassungsmöglichkeiten

an verschiedene Benützer-
gruppen, Erkennung und Synthese von
natürlicher Sprache und von realistischen

Bildern sind nur einige Stichworte
zu den erwarteten sichtbaren

Verbesserungen in der Beziehung zwischen
Mensch und Maschine. Einen guten
Eindruck von den bereits bestehenden
Möglichkeiten geben uns die hochkomplexen

Flugsimulatoren, die eine sehr
umfassende (künstliche Realität) schaffen.

Simulationen spielen eine zunehmend

wichtige Rolle auch in vielen
anderen Gebieten (Medizin, Maschinenbau

usw.).
Im Bereich der internen Verbesserungen

sind Betriebssysteme zu erwarten,
die auf gleichzeitige Eingaben von
verschiedenen Quellen (Tastatur, Maus,
Sprache usw.) ausgelegt sind, im
Gegensatz zu den heutigen
Standard-Betriebssystemen, welche durchwegs
noch auf der Idee eines einzelnen

Eingabe-Stroms pro Benutzer (Lochkarten!)

aufbauen.
Die Methodik bei der Entwicklung
interaktiver Systeme schliesslich wird
ihren (Versuch und Irrtum>-Charakter
mindestens teilweise verlieren und auf
soliderer theoretischer Grundlage
versuchen, die Benützerfreundlichkeit von
Systemen schon im Entwurfsstadium
analytisch zu beurteilen. Integrierte Pro-
grammier-Umgebungen, die, ihrerseits
mit hoher Interaktivität, die erwähnten
Hilfsmittel anbieten, werden die
(alleinstehenden) Editoren, Compiler und
Debugger ablösen. Die Ebene, auf der
wir unsere Programme formulieren,
wird ständig höher, was uns erlaubt,
stärker von den Besonderheiten der
Ausrüstung zu abstrahieren und immer
mehr die (natürliche) Sprache der
Probleme zu verwenden. Als
Anwendungs-Programmierer stehen wir am
Übergang von den Sprachen, mit denen
die einzelnen Schritte einer Operation
formuliert werden, zu solchen, mit
denen nur noch das gewünschte Resultat

beschrieben wird. Direkt ausführbare

Spezifikationen von Programmen
erlauben, innert kurzer Zeit Prototypen
für den Dialog wie für den Rechenteil zu
erstellen und mehrere Varianten zu
prüfen. Die problemnahe Formulierung
erhöht auch wesentlich die Korrektheit
der Programme.
Dieser Artikel will Erfahrungen weitergeben,

die wir beim Entwurf und
Einsatz interaktiver Programme
gemacht haben. Ein Teil davon ist in den
Postulaten formuliert, die vor allem auf
häufige Schwachstellen in solchen
Programmen aufmerksam machen sollen.
Unsere wichtigste Erfahrung ist aber,
dass die einer Problemlösung zugrunde

gelegte mathematische Struktur den
grössten Einfluss auf eine gute
Benutzer-Schnittstelle hat. Wenn dort Unklarheit

herrscht, nützen die besten Richtlinien

für die Dialog-Gestaltung nichts.

Wenn aber die zu programmierende
Aufgabe, unabhängig von bestehenden
Lösungen, klar herausgearbeitet wurde,
schlägt sich das meist auch in einfach
zu lernenden und einfach zu benützenden

Programmen nieder.

Literatur:

Degano, P. und Sandewall, E. (Eds.): Integrated

Interactive Computing Systems. Proceedings

of the European Conference ECICS 82,
Stresa North Holland 1983.

Espinosa und Hoffman: Macintosh User
Interface Guidelines, Apple Computer Inc.
1982.

Frank, A.: Computergestützte Planerstellung
- Graphik oder Geometrie? In: Vermessung,
Photogrammetrie, Kulturtechnik 12/84
Isner, J.F: A programming Methodology
Based on Data Abstraction, In: Bulletin
Géodésique vol. 56, No. 2,1982.
Janda, A. (Ed.): Human Factors in Computing

Systems. CHI'83 Conference Proceedings,

ACM, Boston, December 1983.

Kieras, D. und Poison, P.G.: A Generalized
Transition Network Representation for
Interactive Systems. In: Janda 1983, pp. 103-106.

Kimm et al.: Einführung in Software
Engineering. DeGruyter 1979.

Reisner, R: Formal Grammar and Human
Factors Design of an Interactive Graphic
System. In: IEEE Transactions on Software
Engineering SE-7,1981, pp. 229-240.
Reisner, P.: Analytic Tools for Human Factors
of Software. In: Blaser und Zoeppritz (Ed.):
Enduser Systems and their Human Factors,
Lecture Notes in Computer Science, vol.150,
Springer 1983.

Smith, D.C. et al.: Designing the STAR User
Interface. In: Degano and Sandewall 1983,
pp. 297-313.
Turner, S.J.: W-Grammars für Logic
Programming. In: Campbell (Ed): Implementations

of PROLOG Edis. Horwood Ltd. 1984.

Adresse des Verfassers:
Werner Kuhn
Institut für Geodäsie und Photogrammetrie
ETH-Hönggerberg, CH-8093 Zürich
z. Z. University of Maine at Orono
Dept. of Civil Engineering
103 Boardman Hall, Orono ME 04469, USA

Die Doppler-Messkampagne SWISSDOC:
Ein Beitrag zur Landesvermessung in der Schweiz
A. Wiget, A. Geiger, H.-G. Kahle

In den Monaten Juli und August 1984 hat das Institut für Geodäsie und
Photogrammetrie (IGP) der ETH Zürich in Zusammenarbeit mit mehreren ausländischen
Instituten Geländemessungen für die Doppler-Messkampagne SWISSDOC (Swiss
Doppler Observation Campaign) durchgeführt. Das Ziel dieses satellitengeodätischen

Projektes bestand darin, die Lage- und Höhenkoordinaten von ausgewählten
Punkten des Schweizerischen Landestriangulationsnetzes mit Dopplermessungen

an U.S.TRANSIT-Satelliten zu bestimmen.

Institut für Geodäsie und Photogrammetrie, ETH-Hönggerberg. CH-8093 Zürich,
Separata Nr. 82

Messmethode des TRANSIT-Systems
Die Methode der Dopplermessungen
an den TRANSIT-Satelliten des U.S.
Navy Navigation Satellite Systems
(NNSS) wurde in dieser Zeitschrift
bereits ausführlich beschrieben [1]. Sie soll
hier nur kurz erwähnt werden.
Die Grundlage des TRANSIT-Systems
bilden heute sechs Satelliten, die von
den USA zwischen 1967 und 1979 in

Vermessung, Photogrammetrie, Kulturtechnik, 2/85 49

	Zur Entwicklung interaktiver Programme und Systeme

