Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik : VPK = Mensuration,
photogrammeétrie, génie rural

Herausgeber: Schweizerischer Verein fur Vermessung und Kulturtechnik (SVVK) =
Société suisse des mensurations et améliorations foncieres (SSMAF)

Band: 83 (1985)

Heft: 9: Sonderheft zum Rucktritt und 70. Geburtstag von Prof. Dr. Dr. h. c.
H. H. Schmid

Artikel: Struktur-Vergleich von zwei- und dreidimensionalen Ausgleichungen
fundamentaler Triangulationsnetze

Autor: Wolf, H.

DOl: https://doi.org/10.5169/seals-232622

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-232622
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Struktur-Vergleich von zwei- und dreidimensionalen Ausgleichungen
fundamentaler Triangulationsnetze

H. Wolf

Dem verehrten Jubilar, Herrn Professor
Dr. Dr. E.h. Hellmut Schmid, dem die
Fachwelt eine Vielzahl hochbedeutsa-
mer Arbeiten auf dem Gebiet der
dreidimensionalen Geodéasie verdankt,
sei — mit herzlichen Winschen - der
nachfolgende Beitrag aus dem Bereich
der geodatischen Netzberechnungen
gewidmet.

Fundamentale Triangulationsnetze - in
der Regel noch durch Entfernungsmes-
sungen ergdnzt - dienen, als Netze |.
Ordnung, der nationalstaatlichen
Grundlagenvermessung. Sie nehmen
insofern eine besondere Stellung ein,
als in ihnen - wegen der grossen
Seitenldngen - keine Zenitdistanzen
gemessen werden. Dieser Umstand
erfordert besondere Beachtung bei der
theoretischen Modellbildung und bei
der rechnerischen Auswertung.

1. Die Messungsgrossen

Hierfur stehen zur Verfigung:

a) Horizontalwinkel, operationell die
Winkel zwischen je zwei Vertikalebe-
nen, welche durch das natirliche Lot
im Standpunkt P, und die beiden
Zielpunkte definiert werden. (Die
Messung erfolgt in der Regel in
Richtungssatzen.)

b) Astronomische Azimute, definiert als
Horizontalwinkel zwischen dem na-
trlichen (astronomischen) Meridian
in P; und dem Zielpunkt P,.

c) Astronomische Breiten ¢ und Lan-
gen A, definiert als Richtungsparame-
ter des natirlichen Schwerevektors.

d) Entfernungen s, definiert als Raum-
strecken zwischen je zwei Beobach-
tungspunkten.

2. Koordinatensysteme, Modelle

2.1 Dreidimensional (= 3D)

a) Der Beschreibung des einzufiihren-
den Modells dient ein orthogonales
XY.,Z-System in spezieller (CIO-BIH)-
Orientierung: Z-Achse parallel zur mitt-
leren Erdachse, X-Achse parallel zum
Greenwich-Meridian.

b) Ausserdem wird ein konzentrisches,
koaxiales ellipsoidisches (B,L,h)-System
benutzt: B und L=die ellipsoidische
Breite bzw. Lange, h = die ellipsoidische
Hohe, identisch mit dem rdumlichen
Abstand des Gelandepunktes P(X)Y.Z)
vom Ellipsoid, so dass

=(N+h)cosBcosL,
Y=(N+h)cosBsinL, M
Z=[N(1-€% + h] sin B.

N (und M) sind die Hauptkrimmungsra-
dien des gewahlten Ellipsoides mit den
Halbachsen a und b bzw. der 1. Exzen-
trizitste=+v"a’- b2 /a.

c) Das geometrische Modell ist das des
Euklidischen Raums, in dem sich z. B.
fir das Azimut a;, der Richtung PP,
ableiten lasst [Wolf 1963]:

(Formel 1) (2)

2.2 Zweidimensional (= 2D)

a) Die Orthogonalprojektion (der Punkte
P) auf das vorerwéhnte Ellipsoid fihrt
zu den Bildpunkten P mit den Koordina-
tenB=B,L=L h=0.

b) Es kann die Ellipsoidoberflache zu-
séatzlich noch in einer Ebene abgebildet
werden, wodurch die Bildpunkte Pg mit
den ebenen Koordinaten XgYg be-
stimmt sind.

c) Im geometrischen Modell werden
die Bildpunkte P durch geodétische
Linien auf dem Ellipsoid miteinander
verbunden. Daneben bestehen noch die
ellipsoidischen Vertikalschnitte (= Nor-
malschnitte) als ellipsoidische Flachen-
kurven. - Die geodéatischen Linien
bilden mit den ellipsoidischen Meridia-
nen die ellipsoidisch-geodatischen Azi-
mute A, berechenbar z. B. aus

(Formel 2), (3)

wobei Fy,Fy,F3 definierte Funktionen der
Koordinaten von P, und P, sind [Gross-
mann 1976, S. 104 ff.).

Die ellipsoidischen Horizontalwinkel,
messbar in den ellipsoidischen Tangen-
tenebenen, findet man als Differenz
zweier solcher Azimute A.

3. Linearisierung

Sind X°Y°Z°@°)\° wahlbare Néahe-

rungswerte fur XY.Z@A so gilt mit
=X3-XJ, AY’=Y3- Y9,

AZ° =75 - 7%, entsprechend (2):

(Formel 3). (4)
Nach einer Taylor-Entwicklung unter

Verzicht auf die Glieder Il. und hoherer
Ordnung wird mit p=B,L und i=1,2:

Qo =0y + Zaa'z dpi + %am o, +
(]
0 0 .
[S5P) 0dyy
+ N, O + ah, Oh,.
0at;5/0h; = 0. 8p;,59,.8\,,8h, sind kleine

endliche Anderungen von  pi.@i.Ahy
(gegenuber den N&herungswerten).
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4. Verbindung von zweidimensio-
nalem und dreidimensionalem
Modell

Hierfir werden gesetzt: h®=h3=0,
Spi=Q, so dass

X=NcosBcosL

Y=NcosBsinL (6)
Z=N(1-¢%sinB

die Kartesischen Koordinaten der Ellip-
soidpunkte P sind. Wahlt man ausser-
dem @°=B, N°=L, so ergibt sich
entsprechend (4):

(Formel 4).

Geometrisch ist dies auf dem Ellipsoid
das Azimut der Normalschnitt-Kurve
vom Punkt P, zum Punkt P,. Entspre-
chend () ist dann:

0 6
Cip= Ay + a°‘”5 a";‘]? B, +

6012 (6h2)
ah2 N

Wobei 6(p1=¢] -B1, 6)\]:}\1 —L1,
8hy/N=hy/N (als kleine endliche Gros-
se zu betrachten), oder

Qjo=Aja+ —%a‘2(¢‘ —By)+
P
(7)

8012 hg‘

acx 0d9
1 (}‘1 ) ah

Fir die partiellen Ableitungen gilt [vgl.
Wolf 1963]:

day, .
—~—=2SIN o, COt ;
a(p] 12 B12

aam_
N

Sin @ — COS O3 COS @ COt Py,

(Formel 5), (8)

worin By, die Zenitdistanz der Zielung
P,P, ist.

5. Geometrische Interpretation
Dass in (7) die beiden mittleren Glieder
rechter Hand die bekannte Lotabwei-
chungsreduktion d; darstellen, die im
2D-Modell an dem gemessenen Azimut
a4, anzubringen ist, ist ohne weiteres
ersichtlich, denn mit

@ -B=&. A -Li=n,/cos ¢, (9)
wird
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da,
de

doy, Ny
O\, cos @,

28+ = (Formel 6),
1

(&, 0y =, Lotabweichungskomponenten
in Py).

Dass aber das letzte Glied in (7) die
sogenannte Torsionsreduktion (wegen
Hohenlage des Zielpunktes P,) darstellt,
ist so ohne weiteres nicht zu ersehen.
Die Untersuchung ergibt nach (8),
wenn nicht allzu grosse AB=B,- B,
und AL=L, - L, betrachtet werden:

(Formel 7)

Nun ist [vgl. Grossmann 1976, S. 90 ff ]
mit e'?= (a® - b?)/b%

AL cos By=pS sin A;o/N,+ ...,

AB=pi(1+e?cos?B;)ScosAo/N,+...,

so dass mit ausreichender Naherung
gilt:

(Formel 8)

oder

(Formel 9) (10)

in volliger Ubereinstimmung z.B. mit
[Grossmann 1976, S. 71].
Damit wird dann aus (7):

Ap= 04+ dy+dy (1)

Auf dem Ellipsoid soll nun aber im 2D-
Modell vom Azimut A,, des Normal-
schnittes noch zum Azimut A,, der
geodatischen Linie Ubergegangen wer-
den, weswegen an (11) eine weitere
Reduktionsgrosse ds anzubringen ist, so
dass

A]2=K12+d3=a12+d|+d2+d3. (12)

Solange man nur mit Vertikalschnitten
arbeitet, wie in der 3D-Geodasie,
kommt dj Uberhaupt nicht in Betracht.
Doch wird dj erforderlich, wenn mit der
Relation (3) gerechnet werden soll.
Wird Ubrigens in d;, die Grdsse n
gemass (9) ersetzt, so erhalt man das
Laplacesche Azimut

Alapl = afy— (A —Ly) sin @, +
+cot Bz (N COS ayp— & sinayy),  (13)

wenn aj, durch direkte, astronomische
Beobachtung gefunden wurde.

6. Wahl der Parameter in der Netz-
ausgleichung

Ob man dreidimensional mit den a oder
zweidimensional mit den A die Ausglei-
chung durchfihrt: — beiden Systemen
ist gemeinsam, dass als Parameter
(d. h. als Unbekannte) die Breite B und
die Lange L auftreten. Reduzierte Nor-
malgleichungen aus benachbarten Net-
zen, die nur noch die Unbekannten 8B,
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5L enthalten, kénnen - ungeachtet ihrer
Herkunft — ohne weiteres miteinander
kombiniert werden, auch wenn das
eine System zweidimensional und das
andere dreidimensional ausgeglichen
wurde.

Die Situation ist jedoch eine andere,
wenn bei der 2D-Ausgleichung die

M3B/'p =~ &X und N cos B 8L/p=38y (14)

(des Punktes P) benutzt werden und bei
der benachbarten 3D-Ausgleichung die
Incremente (M + h)éB/p=0x  bzw.
(N+h) cos BdL/p= 20y (fur den Punkt
P): Dann muss, vor einer Kombination,
durch Multiplikation mit (M + h)/M bzw.
mit (N+ h)/N auf die Parameter &x, dy
transformiert werden (oder umgekehrt).
Entsprechendes gilt, wenn einerseits
z.B. mit 8B, 8L gearbeitet wurde und
im angrenzenden Netz mit &x, 8y oder
mit X, &Y.

7. Vergleich der Koeffizienten-
Matrizen

Die a und die A sind - wegen ihrer
geometrischen Bedeutung - theore-
tisch zwei heterogene Funktionen der
B.L.h. Daher werden ihre partiellen
Ableitungen nach den Koordinaten p;,
d.h. die (0o/dp) und die (0A/0p;)
unterschiedliche Funktionen sein, die
nicht streng identisch miteinander sein
kdénnen, so dass in den Beobachtungs-
gleichungen die Erwartungsfunktionen
z.B.

E{A} = B,8p, mit

B,=[0A/0p] (zweidimensional)
und
E{a} = B3bp, mit

Bs=[0a/dp] (dreidimensional)

sich mit B,# B3 ergeben. Allerdings ist
der Unterschied Bz — B, numerisch nicht
sehr gross, da sich die A und a nur um
die kleinen Grossen A —a=d;+ d, + ds
unterscheiden, die in der Regel inner-
halb der Signifikanzgrenze (= Vertrau-
ensintervall der o) liegen.

Fur die in B, bzw. B; enthaltenen partiel-
len Ableitungen existieren mehrere
unterschiedliche Formen, so z.B. fir die
0A/0p (zweidimensional) in  [Jor-
dan/Eggert/Kneissl 1958, S. 615 ff.] und
in [Wolf 1975, S. 147 ff] fur die da/dp
(dreidimensional) in [Wolf 1963 und
1975, S. 183] sowie in [Vincenty 1980].
Was die numerische Rechnung anlangt,
durfte in der 3D-Rechnung die Bildung
der Absolutglieder an Hand von (2)
einfacher sein als die Handhabung von
(3) in der 2D-Ausgleichung. In der
Koeffizientenberechnung, d.h. der Bil-
dung der partiellen Ableitungen, wird
die 2D-Berechnung um ein geringes
kirzer sein.

8. Formen der Netzausgleichung

8.1 Die 2D-Ausgleichung

Auf dem Ellipsoid ist eine reine Lage-
Ausgleichung unter Benutzung von
Werten A nach (12) bzw. von Aizpl
nach (13).

In der Regel werden die zur Reduktion
benotigten Werte h, @, A als fehlerfreie
Grossen behandelt. Nur gelegentlich
wird (folgerichtig) ein Teil der Verbesse-
rungen fur die Aiap. den A zugeschla-
gen.

Als Parameter werden zumeist - wie
z.B. beim Europaischen Dreiecksnetz
RETrig - die 8%, &y nach (14) bendtzt,
selten dagegen die 8B, dL.

Bei einer Abbildung des Ellipsoides in
der Ebene, z.B. nach Gauss-Kruger,
kann ein Netz sogar gleichzeitig in
mehreren benachbarten Meridianstrei-
fen ausgeglichen werden, wie von
[Wolf 1954] beschrieben.

Zwischen den &X, 8y und den ebenen
Sxg, Oy bestehen im Ubrigen Transfor-
mationsgleichungen von der Form

dxg=m (8X cos ¢ - &y sin ¢), (15)
dyg=m (X sin c - &y cos c),

worin m der lokale Abbildungsmass-
stab und c die lokale Meridiankonver-
genz ist.

8.2 Die 3D-Ausgleichung

Sie kann entweder im XY,Z-System mit
den Parametern 8X, &Y, 8Z oder im
ellipsoidischen System mit den Parame-
tern 8B, 8L, 8h (bzw. dx, &y, &h) durch-

gefuihrt werden, wobei [Wolf 1963,
S. 228]
(Formel 10) (16)

Von der Wahl des Koordinatensystems
- hierauf sei besonders hingewiesen -
hangt das Ergebnis nicht ab.

Da aus den gemessenen Horizontalwin-
keln und den astronomischen Messun-
gen keine Hohen ableitbar sind, mussen
alls 8h gleich Null gesetzt werden, d. h.
die eingefuhrten Hohen h® andern ihren
Wert nicht mehr. Das gleiche gilt fur die
eingefuhrten astronomischen ¢ und A,
die mit ihren gemessenen Werten in der
gesamten Ausgleichung beibehalten
werden. Diese Verfugung [&¢, OA,
dh]T=0 ist das Kernstiick der (hohen-
kontrollierteny  3D-Ausgleichung von
[Vincenty 1980]. Wenn dabei allerdings
im XY, Z-System ausgeglichen wird, so
ergibt sich zufolge von dh=0 die
nachstehende, sogleich aus (16) ables-
bare Bedingungs-(d.h. Restriktions-)
Gleichung:

dh=0=0X cosBcosL+
+8Y cosBsinL+&ZsinB

(17)

mit deren Hilfe z.B. eine der 3 Unbe-
kannten 8X, &Y oder &Z eliminiert
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werden kann (oder es kann das Nor-
malgleichungssystem um (17) erweitert
werden).

Wenn auf den Laplace-Punkten (mit
gleichzeitigen A- und a-Messungen) die
A nicht unverbessert bleiben sollen,
entsprechend der 2D-Ausgleichung,
s.0., S0 musste man bei der Bildung der
Fehlergleichungen (auf den Laplace-
Punkten) jeweils im vorletzten Glied von
(5) dementsprechend

...+%L)“‘2vx,+4..

setzen (vj, = Verbesserung fur A;).

Sind ausser den Horizontalwinkeln auch
noch Entfernungen (Schrégstrecken) s
gemessen worden, so konnen diese -
wegen ihrer geringen Neigung gegen
das Ellipsoid (eine Folge der langen
Dreiecksseiten im Fundamentalnetz) -
zur Hohenbestimmung ebenfalls nicht
herangezogen werden, was auch aus
[Rinner 1985] gefolgert werden kann,
so dass auch aus diesem Grund Uberall
8h=0 zu setzen ist. Auch wenn die h
als verbesserungsbediirftige Grossen in
die Ausgleichung eingefiihrt werden,
kann es - wegen der schleifenden
Schnitte, welche die s gegeneinander
bilden - nicht zur nennenswerten ver-
bessernden Beeinflussung der Hohen
durch die - schwach geneigten -
Strecken kommen.

9. Abschliessende Bemerkungen

In Vorstehendem war vorausgesetzt
worden, dass die ellipsoidischen Héhen
h verfugbar sind, d.h. sich aus der
Summe von orthometrischen Héhen H
und Geoidundulationen G (oder von
Normalhéhen H und Quasigeoidundu-
lationen G) bilden lassen, wobei diese G
(bzw. G) fest vorgegebene Grdssen
sind, wie sie sich z.B. aus Schwere-
Anomalien oder aus einem astronomi-
schen Nivellement oder auch aus Satel-
litenbeobachtungen ergeben haben.
Denkbar wére, alle diese Bestimmun-
gen zusammen mit der Fundamental-
netz-Ausgleichung in  einem Guss
durchzufihren, so dass auch alle G-
Werte sowie alle H, @, A Verbesserun-
gen erhalten, also Veranderungen er-
fahren wirden, entsprechend dem Kon-
zept der <Integrierten Geodasier. Wie in
[Wolf 1985] dargelegt, ist indessen der
mogliche Einfluss aus Anderungen der
Geoidundulationen und der Lotabwei-
chungen auf die gesuchten Lage-Koor-
dinaten B, L sehr klein, wenn keine
Zenitdistanzen gemessen worden sind;
- und gerade das ist aber das kenn-
zeichnende Merkmal der geodétischen
Fundamentalnetze I. Ordnung.

Doch zeichnet sich hiermit eine neue
Entwicklung ab, indem in Sondernetzen
mit klrzeren Zielweiten bei vorhande-
nen Zenitdistanzmessungen und mit
steileren Zielungen (wie z. B. im Loreley-

oh, s sin By,

Formel 1 _
( orine )t i (Yo=Y,) cos Ay = (Xqo=Xy) sin A,
g ais s (Zy-2Z,) cos @, —sin @[(X, = X;) cos A + (Yo = Y,) sin ]
(Formel 2)

. B,+B
Arp=arc tan (g!) — Fo(lo— Ly) sin (F5—),
2

(Formel 3)

0 _arct AY° cos A% — AXC sin A°
= ale L 0 s @° - sin @°(AX® cos A? - AY? sin A9)
(Formel 4) _ B
- AY cos L, - AX sin L,

2 AZ cos B, -sin B, (AX cos L, =Y sinL,)
(Formel 5)
004, COS 0y, COS B,y

[Sin (LQ - [_|) +

+{sin B, cos (L,— L,) —tan B, cos B,} tan a5,

(Formel 6)

& sin oy cot Bro+ Ny (tan @, — cos oy, COt Byo) =

=N, tan @, —cot By, (N COS ap— & sin o) =—dy,
(Formel 7)
004y, _ COS Oy, COS By, . ; B AB B.ltan b &
ah2 hQ— P s sin B]Q [sin AL + {S'n 81 tan (B] o ) COSs 1} (X]Q] 2
B, AL . cos B, AB
%p%}fos?[?+ {sin B, —tan B, cos B, —m?}tan Qyo]ho.
(Formel 8)
%"r‘]‘: hy~p CO;":'? [ Sy 8in Ajp— (14 €2 cos2 By) Syp cOs Ajp tan Ajy] hy/N,y =~
~ (p/N;) [1—1—e? cos?B,] sin A5 cos Ay hy,
(Formel 9)
%‘;‘1’: h, ~—pe'? cos? B, sin 2 A, hy/(2N;) =—d,
(Formel 10)
OX -(M+h)sinBcosL,-(N+h)cosBsinL, +cosBcosL B
8| = |-(M+h)sinBsinL,+ (N+h) cosBcosL,+cosBsinL oL
&7 -(M+h)cosB 0 , sin B &h

Formelubersicht

Netz) - mithin also in ganz anderen
Situationen - eine spirbare Verbesse-
rung der nach einem geometrischen
Modell erhaltenen Ergebnisse stattfin-
det, wenn mittels Kollokation und inte-
grierter Geodasie gearbeitet wird, wie
von [Hein u.a. 1984] in beispielgeben-
der Weise dargetan worden ist.
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