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3) Let the user choose the first two
nodes, because he will certainly
know which are the along- and
across-stnp directions, if the network
length is much greater than its width.

Conclusion
Of the algorithms investigated, the
bandwidth reduction methods are the
most convenient to employ because
most software for block bundle adjustments

has been designed for banded
matrices. For networks of moderate
size, any of the bandwidth methods will
suffice, if some inefficiency in computer
utilization can be tolerated. All of the
tested algorithms need additional tie-
breaking rules, however, to perform as
well as the idealized applications given
in this paper.
If storage is not as important a consideration

as speed, the banker's algorithm
appears to be a good choice. If most
networks are expected to be of the
densification type, having side overlap
of 60 per cent or more, then the heuristic

algorithm seems to be a better all-
round choice.
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Triangulation spatiale avec SPOT

G. de Masson d'Autume

1. Introduction
Le satellite SPOT, dont le lancement est
prévu pour octobre 1985, est muni de
deux imageurs <à défilement) HRV1 et
HRV2 pouvant fonctionner en mode
panchromatique ou multispectral. Le
récepteur est constitué par une barrette
de détecteurs à transfert de charge, ou
CCD, disposés linéairement dans le
plan focal d'un objectif dont la distance
focale est de 1082 mm En mode
panchromatique, la barrette contient
6000 détecteurs de 13 x 13 um.
L'altitude moyenne du satellite est de
830 km et sa vitesse de 7 km/sec. A un
instant donné, l'ensemble des points de
l'espace-objet dont l'image se forme sur
l'axe de la barrette est contenu dans un
plan dit <plan de visée>, approximativement

vertical et normal au déplacement.

La partie utile de la trace du plan
de visée sur la surface terrestre balaie
une bande de terrain de 50 à 70 km.
A des intervalles de 1,504 ms,
correspondant à un déplacement de 10 m
environ, les charges accumulées dans
l'intervalle par chacun des détecteurs
sont enregistrées sous forme d'un
entier compris entre 0 et 255. Les 6000
valeurs constituent une ligne de l'image
numérique.

Un miroir orientable télécommandé
permet de faire varier l'inclinaison
latérale du rayon central de - 27° à

+ 27° par pas de 0,6° Des images
différentes d'une même région peuvent
donc être enregistrées à partir de
plusieurs orbites, l'angle d'intersection
des rayons pouvant atteindre près de
60°. Cette particularité, jointe à une
résolution au sol voisine de 10 m,
permet d'envisager l'utilisation de SPOT

pour la triangulation spatiale, c'est-à-
dire le calcul des coordonnées de
points inconnus à partir d'un petit
nombre de points connus, exactement
comme dans l'aérotnangulation.

2. Notations
Les référentiels utilisés seront en principe

désignés par une lettre: G,S, I,...
Par convention (AB) est la matrice-
rotation qui donne les composantes Vb
du vecteur V dans le repère B à partir
des composantes Va dans le repère A
par la formule:

VB=(AB)VA (D

Une rotation quelconque peut être
représentée par un vecteur œ dont la

direction est celle de l'axe de rotation et
le module la valeur de l'angle en

radians. Dans un changement de
repère, les vecteurs-rotation sont
transformés par la formule (1).

Les rotations (élémentaires), effectuées
autour des axes d'un repère cartésien
orthonormé, seront notées (i.a), i étant
le numéro de l'axe et a la valeur de
l'angle. Les notations a, ß, Y et tr,l
seront aussi utilisées.

3. Référentiels utilisés
- Repère inertiel (pour mémoire)
-G: Repère cartésien géocentrique

international 1980.

- S: Repère orbital local (fig. 1)

Fig 1 Définition du repère orbital local dans
le référentiel inertiel.
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II est construit sur les vecteurs S et V,

position et vitesse inertielle dans le
repère G. L'origine est le centre de
masse du satellite, l'axe de lacet est le
vecteur S. L'axe de tangage est le
produit vectoriel VaS. L'axe de roulis est
le vecteur SaVaS, voisin de V.

- S': Repère satellite.
II est défini par les axes de construction
du satellite On passe du repère S au
repère S' par la rotation co, dont les
composantes sont les rotations t, r, I

(tangage, roulis, lacet). Noter que la

rotation s'applique aux vecteurs et non
aux repères
-1: Repère interne.
L'origine est le point nodal arrière de
l'objectif. L'axe des x est parallèle à celui
de la barrette.
On passe du repère interne I au repère
S' par la chaîne de rotations élémentaires:

- (1, to) dépointage systématique en
tangage, imposé par construction et dû
au fait que l'axe de la barrette est
excentré par rapport au point principal.
La valeur de to est 0,529.
-(2, ro) dépointage systématique en
roulis, ro a pour valeur:

r0 0,163°+0,6° (n-48)

où n est la valeur du pas-miroir
télécommandé, variant de 3 à 93
Le premier terme est imposé par
construction et son signe est différent
pour HRV1 et HRV2.
-1': Repère intermédiaire
Le passage de S à I s'effectue par la
chaîne de rotations u, -ro, -to équivalente

à la chaîne -ro, -to, co' où oo'

(f, r', I') est le transformé de oo (t, r, I) par
les rotations successives -ro, -to.
Le repère intermédiaire I est très voisin
du repère interne I, mais n'est pas
affecté par les variations des
paramètres d'attitude.
Les référentiels suivants servent à

repérer la position des points du terrain
plus commodément que le repère G.

- O: repère horizontal
L'origine est un point quelconque, voisin
de la surface terrestre, de coordonnées
géographiques Âo. 90 et d'altitude ho-
L'axe des z est la verticale locale, l'axe
des y est dans le plan méridien, dirigé
vers le Nord. On passe du repère G au
repère O par les rotations successives:

(3,-Ao-tt/2).(1.(Po-tt/2)
Une rotation supplémentaire (3, y) permet

d'orienter à volonté l'axe Ox.

- Systèmes de coordonnées rectangulaires

La position d'un point est définie par
ses coordonnées rectangulaires dans
une projection conforme: Lambert,
UTM, etc.. Pour une scène, correspondant

à une durée d'enregistrement de 9

secondes et couvrant une surface de
l'ordre de 60x60 km, il est intéressant

d'utiliser une projection locale définie
comme suit:
Soit O le centre de scène, ho l'altitude
moyenne, p le rayon de courbure
moyen de l'ellipsoïde en O, C le centre
de courbure moyen. Les coordonnées
rectangulaires x, y d'un point A sont les
coordonnées cartésiennes de la trace
du rayon CA sur la sphère de centre C

et de rayon p+ho dans le repère
horizontal O, ou l'angle y a été choisi de
manière que l'axe des x coïncide avec
la trace du plan de visée sur le plan
horizontal de O (Guichard). L'altitude est
égale à CA - (p+ ho).

- Projection pseudo-Mercator oblique
Pour un segment de quelques centaines
de km de long, ou plusieurs segments
couvrant une bande de terrain de
largeur inférieure à 100 km, on peut
utiliser la projection suivante:
Partant du repère horizontal O ci-dessus,

l'angle y est choisi de manière à

minimiser les écarts en x. On définit
alors les quantités:

X =arctg [y/(z+p+h0)]
pseudo-longitude

o?' arctg [x/-/y2+ (z+ p+ ho)*]
pseudo-latitude

et les coordonnées pseudo-Mercator
sont:

x' (p+h0)X'
y' (p+h0)y'
h' V x2 + y2 + (z + p + h0)" - (P + h0)

Les pseudo-altitudes h' peuvent différer
de quelques mètres des altitudes
vraies, ce qui est sans importance.

4. Données disponibles
La zone à traiter est couverte par M

passages du satellite, sensiblement
parallèles. A partir de chaque segment
d'orbite, les images d'une, ou
éventuellement deux bandes de terrain, ont
été enregistrées par les imageurs HRV1

et HRV2, avec un pas-miroir connu.
Pour chaque segment, les éphémérides
publiés par le C.N.E.S. donnent, pour
chaque minute de temps TU, les
valeurs approchées des composantes
des deux vecteurs S et V, position et
vitesse inertielle du satellite, dans le

repère G.

En outre, 3 gyromètres embarqués
fournissent, au pas de 0,125 sec, les
vitesses de rotation autour des 3 axes
de S', dont l'intégration numérique
donne, à une constante près, les
valeurs des paramètres d'attitude, t, r, I.

Les constantes sont choisies pour que
ces valeurs soient nulles à l'instant
central, pris comme origine des temps.
Pour les N points de triangulation
choisis, les coordonnées-image p et q,
dont les valeurs entières sont le numéro
de ligne et le numéro de colonne (i. e. le

numéro du détecteur dans la barrette),
sont mesurées au stéréo-comparateur

ou obtenues par corrélation automatique,

sur toutes les images où ils

figurent.
Pour chaque image, la relation T To +
0,00154 p permet de calculer le temps
T en fonction de p. Par ailleurs l'abs-
cisse-barrette dans le repère I est
donnée en fonction de q par la formule:

xb 0,013 (3000,5-q) en mode pan-
chronomatique.

Les composantes de S et V peuvent
être interpolées par un polynôme de
Lagrange de degré 7 sur 8 minutes
rondes T encadrant l'instant T selon la

formule:

F(T) ICiF(T,) i variant de 1 à 8

En posant: A, n(T-T,) et B, n(T,-T,),
pour j=£ i variant de 1 à 8 on a: c, A,/B,
(En passant par l'intermédiaire des
paramètres osculateurs des arcs
d'orbite, on peut utiliser un polynôme
de degré 3 sur 4 points seulement,
mais le calcul est un peu plus compliqué).

Les termes des lignes 1, 2, 3 de la

matrice (GS) sont les cosinus directeurs
des vecteurs Va s, sa va s, s.

5. Modélisation classique
5.1. Pose des équations d'observation
pour un rayon.
Soit P et S les positions approchées
d'un point de triangulation de
coordonnées-image p et q et du satellite à

l'instant T déduit de p. Les vecteurs P et
S sont donnés dans un repère cartésien
lié à la terre, par exemple le repère
horizontal du centre O de la zone de
travail. Les origines des repères S et I
seront supposées confondues.
La direction <calculée> du rayon est
définie par le vecteur U P - S. Dans le

repère I, elle est définie par le vecteur
W=(OI)U, avec (OI) (GI) (OG) et (GI)

(SI) (GS), ou encore par les
paramètres directeurs:

Uc W1/W3etvc W2/W3

Dans le repère interne I, la direction
<observée> du rayon est définie par les
paramètres directeurs:

u0 xb/f et v0 O

où f est la distance principale, égale à la

focale divisée par cos (to) pour tenir
compte du décentrement de la barrette.
Les équations d'observation s'écrivent:

uc + duc u0 et vc + dvc v0

où du et dv sont les accroissements
résultant des correction dP dS et dR (a,
p, y), définies dans le repère I. Ces
accroissements sont:

duc=(dWj -udW3)/W3-
-auv + ß(1 + u2) -yv

dvc=(dW2-vdW3)/W3-
-a(1 + v2) + UV+ yu

avecdW dP-dS.
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Les différences entre les paramètres
observés et calculés étant petites et
tendant vers zéro dans le calcul itératif,
on peut prendre pour u et v les valeurs
observées. On a alors:

duc= (dWj - udW3)/W3 + P(1 + u2)

dvc (dW2 - vdW3)/W3 - a + yu

En posant:

A:
I/W3 O - u/W3

O I/W3 O

O 1 + u2 O"

-1 O u

xb/f-Wj/W3

- W2/W3

les équations d'observation s'écrivent:

A(dP-dS) + BdR=L

ou encore, en posant
C A(OI), D A(SI). E=B(SI):

CdP-DdS+EdR=L
où dP se réfère au repère O, dS et dR
au repère S

Les corrections (instantanées) dS et dR
sont des fonctions de T. Pour des
segments de quelques centaines de
kilomètres de longueur, en se basant
sur les simulations d'orbite et d'attitude
du C.N.E.S., dS peut se représenter par
des polynômes du premier degré et dR

par des polynômes du second degré,
dont les coefficients sont les inconnues
du problême. En explicitant ces
polynômes, les équations d'observation
deviennent:

dX ra + a'T
dY -D b + b'T
dZ c + c'T

+ E

d + d'T + d'T2
e + e'T + e"T2
f + f'T+ f"T2

L

5.2 Equations d'observation
complémentaires
Aux équations d'observation écrites
pour chaque rayon s'ajoutent pour les

points connus des équations du type
dX 0, dY=0, dZ=0
Le traitement par moindres carrés de
l'ensemble des équations conduit à un
système d'équations normales très mal
conditionné, par suite de la corrélation
entre les inconnues dS et dR: il est clair
en effet que, pour une altitude du
satellite constante, le résultat d'un
déplacement tangentiel a de S sera
pratiquement identique à celui d'une
rotation en tangage d Cette difficulté
peut être éliminée en introduisant des
équations d'observation fictives du type
a 0, b=0 e"=0, f" 0, ce qui a

en outre l'avantage d'assurer l'existence
d'une solution si le nombre de points
connus est insuffisant, ou même nul.

Les équations d'observation
complémentaires doivent être pondérées en
fonction de la précision estimée des
valeurs approchées des inconnues: on
sait par exemple que la valeur maximale

du déplacement tangentiel a est
de 1000 m et celle de d de 0.15°
Pratiquement, cela revient à ajouter une
constante appropriée au terme pivot de
chaque inconnue dans les équations
normales. La solution dépendra des
poids adoptés, mais cela n'empêchera
pas les rayons d'être bien déterminés
au voisinage du sol.
Cette constatation a conduit à la mise
au point d'une autre modélisation du
système imageur, inspirée en partie par
les travaux de Guichard.

6. Traitement par modélisation au
voisinage du sol
Dans cette conception, les points de
triangulation sont repérés par leurs
coordonnées rectangulaires x, y et leur
altitude h dans un des systèmes de
projection énumérés plus haut.
La trace O de l'axe Sz du repère
intermédiaire I' sur la surface h 0 est une
courbe régulière, puisque l'orientation
de cet axe est corrigée des variations
d'attitude enregistrées par les gyro-
mètres embarqués. Elle peut être
représentée par les polynômes en T:

x a + a'T-f- a"T2 +
y=b+b'T + b"T2+... (2)

On passe du repère horizontal O au
repère intermédiaire F par les troix
rotations élémentaires successives y a,
P dont la signification géométrique est
évidente (fig. 2).

Fig. 2 Modélisation du système imageur au
voisinage du sol.

Les angles a, p. y et la distance D OS
varient eux aussi lentement et régulièrement

et peuvent être représentés par
les polynômes:

a ao + aiT +
p=Po+PiT+... (3)

Y=Yo + yT +
D=D0+DiT+D2T2 +

Des valeurs approchées des coefficients

des développements de xo, yo, a,
P,y, D s'obtiennent aisément en calcu¬

lant, pour chaque minute de TU, à l'aide
des vecteurs S et V donnés par les

éphémérides, l'intersection du rayon Sz

du repère F avec la surface h 0. Ce
calcul effectué sur des données simulées,

montre que les variations des six
paramètres sont lentes, et que l'angle a
reste de l'ordre de 1°.

Soit P (x, y, h) un point de triangulation.
Les formules (2) et (3) donnent les

valeurs approchées de xo, yo. a. P. Y et
D pour l'instant T.

A l'échelle locale en O de la projection,
les coordonnées cartésiennes de P

dans le repère O sont, en posant
k=(1 + h/p), où P est le rayon de
courbure moyen de la surface h= O:

x'=k(x-xo)
y'=k(y-y0)
z' h-[(x-x0)2 + (y-yo)2]/2p

Dans le repère intermédiaire F, la

direction (calculée» du rayon PS est
définie par le vecteur:

W=(OF)U + avec

U
k(xo-x)
k(yo - y)
[(xo-x)2 + (y0-y)2]/2p-h

ou encore par les paramètres directeurs

Uc W!/W3 et vc W2/W3. La

matrice (OF) correspond au produit des
rotations successives y, a, p.

Dans le repère interne I, la direction
<observée> est définie par les
paramètres u xb/f et v=0. On passe du
repère I au repère F par la rotation - co'

(f, r', I1), où co' est le vecteur transformé
de co (t, r, I) par les rotations successives

-ro, -to- La direction du rayon
dans le repère F a donc pour
paramètres:

uo Xb/f-r' (1 + u2) et vo t'-l'u
Les corrections dx, dy, dx, dy, dh
entraînent un accroissement:

dU C
dx0 -dx
dyo--dy

-dh

avec C

k O O

O k O

(x0-x))/p (yo-y)/p 1

L'accroissement correspondant de W
est:

(OF)C
dxo-dx
dyo - dy

-dh

Par ailleurs l'introduction des corrections

da, dp, dy transforme la chaîne
de rotations y, a, P en y, dy a, da, p, dp
équivalente à y, a, p.dy', dp.da', où da'est
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le transformé de da par la rotation p et
dy' le transformé de dy, par les
rotations a, p.

L'accroissement correspondant de W
est donc:

da
dp
dy

avec

B
0 u3 -U21
U3 0 U,
U2-U1 0

cos p O cos a sin ß

O 1 -sina
sinß 0 cosa cosß

En posant A (OI')C, on a finalement:

dW A
dxo -dx da 0
dyo - dy + B dp + 0

-dh dy 1

dD

Les équations d'observation pour un
rayon sont:

uc + duc=u0 et vc + dvc v0

Les coefficients de dx, dy, dh, dx0, dy0,
dD, da, dp, dy dans les expressions de
duc et dvc sont donnés par les formules:

duc=(dW!-udW3)/W3 et

dvc=(dW2-vdW3)/W3

Ces coefficients sont ceux des inconnues

correspondant aux termes
indépendants de T. Ceux des inconnues
correspondant aux termes en T. T2, etc.

s'obtiennent en multipliant ceux des
termes indépendants par T, T2,...
Le vecteur des termes constants est:

L xb/f-r'(1 + u2)-W1/W3
f- IU-W2/W3

L'introduction d'équations d'observation
complémentaires se fait exactement
comme dans le traitement classique.
Toutefois l'absence de corrélation entre
les inconnues conduit à un système
d'équations normales mieux
conditionné, et la solution dépend beaucoup
moins de la pondération adoptée.

7. Expérimentation et conclusions
Les deux méthodes présentées ont été
essayées avec des orbites et des
paramètres d'attitude élaborarés par le
C.N.E.S.
Pour la méthode classique trois
segments de 90 sec, couvrant une surface
de 700 x60 km environ, avec des
inclinaisons latérales de - 24, 0 et + 24 ont
été utilisés. Les coordonnées-image de
25 points de contrôle bien répartis,
d'altitudes variant de 0 à 1000 m, ont
été calculées à partir des paramètres
orbitaux et des paramètres d'attitude
(vrais). Les éphémérides donnant les
vecteurs S et V de minute en minute
ont été établis à partir d'orbites bruitées
et les vitesses de rotation au pas de
0,125 sec, servant à calculer les
paramètres t, r, I par intégration numérique,
ont aussi été bruitées.

Le calcul en un seul bloc des 3
segments, en utilisant 6 points connus, a

fait apparaître sur les coordonnées-
terrain des points de contrôle des
écarts de l'ordre de 2,5 m avec deux
itérations.
Pour la deuxième méthode, les essais
n'ont porté que sur un arc d'orbite de
9 sec, correspondant à une (scène) de
60x60 km environ, forme sous laquelle
les images SPOT seront découpées.
Avec 6 points connus, les écarts sur 25
points de contrôle ont été de l'ordre du
mètre.
Bien entendu, ces résultats n'ont de
signification que dans la mesure où la

régularité des variations d'attitude sera
bien conforme aux prévisions. II faut
aussi noter que les points de contrôle
utilisés étaient situés à l'intérieur du

polygone des points connus. En raison
de l'impossibilité de calculer la position
du satellite et la matrice d'orientation
exactes à partir de points connus au
sol, il sera sans doute impossible
d'obtenir les coordonnées de points
situés à l'extérieur de ce polygone.
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Zur Gewichtsbestimm ung von Bedingungsgleichungen
T. Schenk

Parallel zur stetigen Weiterentwicklung
der elektronischen Datenverarbeitung
wurden auch die Messverfahren und
die Ausgleichungsmethoden in den
letzten zwei Jahrzehnten verfeinert und
vervollkommnet. Heute stehen ausgefeilte

Verfahren zur Verfügung, die es
gestatten, alle zu einer Messanordnung
gehörende Information nicht nur rigoros
auszugleichen, sondern auch statistisch
zu analysieren, so dass bezüglich der
berechneten Resultate, deren Genauigkeit

und Zuverlässigkeit weit mehr
Angaben zur Verfügung stehen, als dies
früher, ohne leistungsfähige Rechner
und Algorithmen, der Fall sein konnte.
Unter den frühen Pionieren, die für das
neue Werkzeug (Computer) effiziente
Methoden und Algorithmen entwickelten,

ist vor allem H. Schmid zu nennen,
der bereits vor einem Vierteljahrhundert
die grundsätzliche Richtung wies (vgl.
z.B. [2]).

Auf der Eingabeseite einer
Ausgleichungsaufgabe finden wir normalerweise

nicht nur die der (inneren) Lösung
dienenden Messungen, sondern zusätzlich

Stützinformation, welche die Zuordnung

zu einem übergeordneten Bezugssystem

schafft. Diese Information muss
sich nicht notwendigerweise nur auf
bekannte Punkte (Passpunkte)
beschränken, sondern kann durchaus
auch andere Angaben, die sich auf das
Bezugssystem beziehen, miteinschlies-
sen, wie z. B. Drehwinkel, Höhendifferenzen

oder Strecken.
Es hat sich eingebürgert, die Stützinformation,

seien es nun bekannte Punkte
oder zusätzliche Angaben, in Form von
Bedingungsgleichungen zu berücksichtigen.

In diesem Zusammenhang stellt
sich die Frage nach der Gewichtung der
Bedingungsgleichungen oder allgemein
nach der Varianz-Kovarianz-Matrix, die
den Bedingungen zuzuordnen ist.

Auch der zunehmende Einsatz von
interaktiv grafischen Systemen zur
computerunterstützten Aufbereitung
von Manuskripten zu Reinzeichnungen
kann zu allgemeinen Ausgleichungsaufgaben

führen, bei welchen die verschiedenen

Normvorschriften oder Konventionen

zweckmässigerweise als zusätzliche

Bedingungen behandelt werden.
So lassen sich z. B. die Forderungen,
Gebäude rechtwinklig, Strassen und
Wege parallel darzustellen, als geometrische

Bedingungen der unbekannten
Punkte formulieren, wobei es auch hier
die Frage nach der Gewichtung solcher
Bedingungen zu beantworten gilt. In [1]
wurde dieses Problem im Zusammenhang

mit Rechtwinkelzügen eingehend
untersucht.
Der eben geschilderten Problematik
wird man dadurch gerecht, dass das
mathematische Modell zwei verschiedene

Messanordnungen berücksichtigt:
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