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Invariante Grössen bei Datumstransformationen
KR. Koch

1. Datumsdefinition
Für eine geodätische Triangulation
muss in der Regel ein Datum definiert
werden. Dies war auch der Fall für die
weltweite geometrische Satelliten-Triangulation,

die unter der Leitung von Prof.
H.Schmid in den Jahren 1966 bis 1973
aufgebaut wurde [Schmid 1974a, b].
Mit einer solchen Triangulation werden
die geometrischen Beziehungen
zwischen den Punkten an der Erdoberfläche

hergestellt, um dann als Ergebnis
die Koordinaten der Triangulationspunkte

in einem vorgegebenen Koordinatensystem

auszudrücken In der Regel
bedarf es aber zusätzlicher Information,
um die Lage des Triangulationsnetzes in
bezug auf das Koordinatensystem
anzugeben. Beispielsweise muss bei einem
dreidimensionalen Netz über drei
Translationen und drei Rotationen und eventuell

noch über den Massstab verfügt
werden, um das dreidimensionale Netz
in dem vorgegebenen Koordinatensystem

festzulegen. Eine solche Verfügung

bezeichnet man als Datumsdefinition.

Für die weltweite geometrische
Satelliten-Triangulation war die Translation
und eine Rotation einzuführen [Schmid
1974 a. S. 79], Die Datumsdefinition
beeinflusst die Varianzen und Kovarianzen

der Schätzwerte der Koordinaten,
und die Diskussionen über dieses
Problem von Prof. H. Schmid mit den
Mitarbeitern des von ihm geleiteten
Geodetic Research and Development
Laboratory des National Geodetic Survey

sind dem Autor dieses Beitrages
noch in bester Erinnerung, der sich
glücklich schätzt, von 1968 bis 1974
zunächst in einer Dauerstelle und dann

in Teilzeitbeschäftigungen Mitglied dieses

Geodetic Research and Development

Laboratory gewesen zu sein.
Im folgenden soll untersucht werden,
welche Grössen in einer geodätischen
Triangulation invariant gegenüber den
Datumsdefinitionen sind. Dies ist
besonders dann von Interesse, wenn
Hypothesen getestet werden, beispielsweise

in den Triangulationsnetzen für
die Deformationsanalyse. Zunächst
aber soll auf die Transformationen
eingegangen werden, die den Übergang

von einer Datumsdefinition zu
einer anderen ermöglichen.

2. Datumstransformation
Für Triangulationsnetze, in denen ein
Datum zu definieren ist und die
bekanntlich als freie Netze bezeichnet
werden, führt die Schätzung der
unbekannten Parameter auf ein Gauss-Mar-
koff-Modell mit nicht vollem Rang

XJ E(y)=y + e

„2|
(2.1)

mit rg X q < u und D(y) o I

in dem X die n x u Koeffizientenmatrix, 13

der ux1 Vektor unbekannter Parameter,

y der nx1 Vektor der Beobachtungen, e

der nx1 Vektor der Fehler, q der Rang
der Matrix X, o2 die Varianz der
Gewichtseinheit und E(y) und D(y) der
Erwartungswertvektor und die
Kovarianzmatrix von y bedeuten. Das
spezielle Modell (2.1) mit unkorrelierten
Beobachtungen gleicher Varianzen
ergibt sich durch Homogenisierung aus
einem allgemeinen Modell mit korrelierten

Beobachtungen ungleicher Varianzen.

In dem Modell (2.1) sind die unbekannten

Parameter j3 nicht erwartungstreu
schätzbar. Um schätzbare Grössen zu
erhalten, werden anstelle von § die
projizierten Parameter J3_p eingeführt mit
[Koch 1980. S. 171]

|3p (X'X) X'XJ (2.2)

worin (X'X) eine generalisierte Inverse
der Normalgleichungsmatrix X'X
bedeutet. Mit einer symmetrischen reflexiven

generalisierten Inversen (X'X)rs von
X'X mit

(X'X)rs (X'X) X'X[(X'X)" (2.3)

lässt sich wegen X' X'X[(X'X) ] X die
Projektion (2.2) umschreiben in die
Projektion

j3p (X'X);X'Xj3 (2.4)

mit der im folgenden gearbeitet wird.
Die beste_ lineare erwartungstreue
Schätzung j3p von j3p ergibt sich zu

Ìp (X'X);sX'y mit D(ip) o2(X'X)~

(2.5)

Die Wahl der generalisierten Inversen in
(2.4) für die Projektion entspricht der
Definition des Datums für das
Triangulationsnetz. Dies kann man wie folgt
zeigen. Eine generalisierte Inverse
(X'X)rslässt sich ermitteln aus [Koch
1980, S. 59]

X'X B/

B O

(X'X)rs E'(BE')"

(EB'f'E O
(2.6)
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mit

(X'X)" (X'X + B'B)"' -E' (EB'BE')-'E

(2.7)

Die Zeilen der (u-q)xu Matrix E

enthalten eine Basis des Nullraums der
Koeffizienten X, also

XE' Q (2.8)

Die (u-q)xu Matrix B muss derart
beschaffen sein, dass die Matrix BE'
vollen Rang besitzt Die um die Matrizen
B und B' in (2.6) ergänzte
Normalgleichungsmatrix X'X lässt sich aber auch
aus einem Gauss-Markoff-Modell
erhalten, in das zur Beseitigung des
Rangdefektes, also zur Definition des
Datums, die Restriktionen

B|3 0 (2.9)

eingeführt werden, so dass sich die
Projektion der unbekannten Parameter
als Datumsdefinition interpretieren
lässt.
Die mit einer Matrix B berechnete
Inverse (X'X)rs sei nun mit [(X'X)rs]b
bezeichnet. Für die Projektion gilt dann
[Koch 1980, S. 59]

[(X'XybX'X I-E' (BE')"'B (2.10)

Weiter sei die (u-q)xu Matrix C

eingeführt, für die ebenfalls die Matrix
CE' vollen Rang besitze und mit der die
Inverse [(X'X)rs]c und eine (2.10)
entsprechende Projektion sich ergebe. Mit
diesen Projektionen erhält man

ßb [(X'X)rs]bX'Xj3

mit den Schätzwerten

êb=[(X'XQbX'y

undD(ib) o2[(X'XQb

und entsprechend

ßc [(X'XQcX'XÊ

sowie

ic [(x'xycx'y

undD(ic) a2[(X'Xyc

(2.11)

(2.12)

(2.13)

(2.14)

Wegen X'= X'X[(X'X)rs]b X' lässt sich
aber j3b und J3b direkt nach j3c und |c
transformieren

j3c [(X'XycX'Xj3b und

i [(x'xycx'Xj3b
(2.15)

Da (X'X)rs eine reflexive generalisierte
Inverse ist, gilt weiter

[<x'xyc

[(X'xycx'x[(x'x);s]bx'X[(X'X);
(2.16)

so dass man für die Transformation der
Kovarianzmatrix D(jfb) nach D(|c) erhält

D(JC) [(X'X_ycX'X D<|b)X'X[(X'Xyc

(2.17)

Die Gleichungen (2.15) und (2.17) geben
die Transformationen der Schätzwerte
und ihrer Kovarianzen zwischen
unterschiedlichen Datumsdefinitionen an. Sie

entsprechen den von Baarda [1973]
eingeführten S-Transformationen [Koch
1982]. Datumstransformationen für
ausgedehnte Netze werden bei [Koch,
1983 b] behandelt.

3. Invariante Grössen bei
Datumstransformationen

Bekanntlich ändern Datumstransformationen

die Gestalt eines ausgeglichenen
Netzes nicht, siehe zum Beispiel [Grafarend

und Schaffrin, 1976], Diese Gestalt
ist durch den Schätzwert y des
Erwartungswertvektors E(y) der Beobachtungen

gegeben, der mit Hilfe des Vektors
ê der Residuen aus (2.1) folgt

X| =y + ê ymitD(y)=XD(|)X' (3.1)

Die Kovarianzmatrix D(y) erhält man
mit dem Fehlerfortpflanzungsgesetz.
Mit (2_15) ergibt sich für die Schätzwerte

]3c des mit der Matrix C definierten

Datums

xßc x[(X'xycx'Xj3b

=XÌb=y+e=y
(3.2)

wegen X X[(X'X)rs]cX'X, so dass der
Vektor y der ausgeglichenen Beobachtungen

und der Vektor ê der Residuen
invariant gegenüber Datumstransformationen

sind. Das gleiche gilt auch für die
Kovarianzmatrix D(y) von y, denn mit
(2.17) und (3.1) folgt

XD(J3C)X'

x[(x'xycx'XD(|b) x'X[(x'xycx'

XDw3b)X' D(y) (3.3)

Aber nicht nur die ausgeglichenen
Beobachtungen y mit ihrer Kovarianzmatrix

D(y) sind invariant gegenüber
Datumstransformationen, sondern auch
die ausgeglichenen Beobachtungen yp,
die mit Hilfe der Schätzwerte der
Parameter durch

xPüc yp (3.4)

vorhergesagt werden, also nicht
beobachtet wurden, wobei X die für die

Vorhersage benötigte Koeffizientenmatrix

angibt. Dies gilt unter der
Voraussetzung, dass

XpI' 0 (3.5)

ist. Die Invarianz gegenüber
Datumstransformationen folgt mit (2.10) und
(2.15) wegen (3.5) aus

Xplc Xp[(X'XycX'Xib Xpêb yp

(3.6)
und

XpD(ßc)Xp

xp[(x'xy cx'XD(j|b) x'x[(x'xycx'p

XpD(|b)X'p=D(yp) (3.7)

Die Invarianz ist also nicht für beliebige
prädizierte Beobachtungen gegeben,
sondern nur für die Beobachtungen, für
die (3.5) gilt, also beispielsweise für
Beobachtungen des Typs, mit dem das
Netz aufgebaut wurde.

4. Invariante Testgrössen
Wie im vorangegangenen Kapitel
bewiesen, sind ausgeglichene Beobachtungen

und, sofern (3.5) gilt, auch
prädizierte Beobachtungen invariant
gegenüber Datumstransformationen, so
dass die Hypothesentests für diese
Grössen invariant gegenüber den
Datumstransformationen sind. Leitet man
zum Beispiel aus einem Streckennetz
eine nicht gemessene Strecke ab und
unterwirft sie einem Hypothesentest, so
ist dieser Test invariant gegenüber der
Definition des Datums.
Von besonderem Interesse ist die Frage
nach der Abhängigkeit von der
Datumsdefinition bei den Hypothesentests für
die Deformationsanalyse Hierbei werden

sowohl im univariaten als auch im
multivariaten Modell Hypothesen von
der Art [Koch, 1985]

ßbfm-ebfn Q (4.1)

getestet, wobei (3bfm und ]3bfn projizierte
Koordinaten der Punkte bedeuten, die
sich laut Hypothese zwischen den
Epochen m und n nicht bewegt haben
Da die projizierten Koordinaten j3b nach
(2.12) abhängig sind von der
Datumsdefinition, ist im allgemeinen auch der
Test (4.1) abhängig vom gewählten
Datum.
Es lässt sich jedoch zeigen, dass gewisse

Tests unter den mit (4.1) definierten
Tests unabhängig von der Datumsdefinition

sind. Hierzu werden die Restriktionen

(2.9) zusammen mit den Restriktionen

(4.1) betrachtet, denn um diese
Restriktionen kann man die
Normalgleichungsmatrix X'X erweitern, um die für
die Testgrösse des Hypothesentests
erforderliche Residuenquadratsumme
zu berechnen.
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Im folgenden soll das Datum durch eine
Auffelderung bestimmt werden, wie
das zumindest bei Deformationsanalysen

üblich ist. Die Matrix B in (2.9) wird
also mit Hilfe der Matrix E derart aufgebaut,

dass für die Auffelderungspunkte
die Spalten der Matrix E übernommen
werden, die dann mit E2 bezeichnet
wird, während in alle übrigen Spalten
Nullen eingeführt werden [Koch
1983 a]. Stellt man die Koordinaten der
Auffelderungspunkte an den Anfang
des Vektors j3, folgt

B |E2.0| (4.2)

Für ein ebenes Streckennetz ergibt sich
dann anstelle von (2.9), falls mit Ax, und
Ay, für ie{1 k} die Koordinatendifferenzen

zwischen den Epochen m und
n der Punkte der Auffelderung bezeichnet

werden,

Ax, + + Ax, + + Axk 0 (4.3)

Ay, + + Ay, + + Axk 0 (4.4)

- y,0Ax, + x10Ay, - - y10Ax, + x,0Ay, -
-...-ykoAxk + xkoAyk 0 (4.5)

wobei x,o und y,0 die für alle Messepochen

identischen Näherungskoordinaten
der k Punkte bedeuten. Es soll nun

die Hypothese (4.1) getestet werden,
dass die k Punkte der Datumsdefinition
feste Punkte sind. Um eine lineare
Abhängigkeit zwischen den Restriktionen

zu vermeiden [Koch 1980, S. 178],
werden nur die 2k-3 Hypothesen eingeführt

Axi 0 AX|-2 0, Ax, + 1 0
Axk 0 (4.6)

Ay, 0 Ay,-i 0, Ay, + i 0
Ayk - 0 (4.7)

Wird (4.7) in (4.4) eingesetzt, folgt

Ay, 0 für beliebiges i (4.8)

Aus (4.6) und (4.3) erhält man

Ax, - 1 + Ax, 0 oder Ax, - i Ax, (4.9)

und aus (4.5) mit (4.6) bis (4.9)

-Vj-i.oAxj-1 -y,0Ax,=

(yi-i.o-y.o)Ax, o

oder, da y, - i 0 f y,o vorausgesetzt werden

kann,

Ax, - 1 0 und Ax, 0 für beliebiges i

(4.10)

Aus (4.3) bis (4.7) folgt also

Ax, 0 und Ay, 0 für ie{1 k} (4.11)

Ein mit (4.11) identisches Ergebnis wird
auch dann erzielt, wenn nicht sämtliche
k Punkte zur Datumsdefinition herangezogen

werden, sondern nur eine
Teilmenge dieser Punkte, wobei vorausgesetzt

wird, dass die Punkte mit den
Indizes i und i-1 in (4.6) und (4.7)
Datumspunkte sind. Ausserdem sind
diese Überlegungen nicht auf
zweidimensionale Streckennetze beschränkt,
sondern gelten auch für beliebige
dreidimensionale Netze, sofern das Datum
(4.2) entsprechend definiert wird. Man
kann daher allgemein formulieren:
Der Test (4.1) der Identität der Koordinaten

verschiedener Messepochen einer
Menge von Punkten ist unabhängig
vom Datum eines Netzes, falls die
Menge selbst oder eine ihrer Teilmengen

für die Datumsdefinition nach (4.2)
herangezogen wird
Es ist jetzt noch der umgekehrte Fall zu
untersuchen, dass die Testpunkte eine
Teilmenge der Datumspunkte bilden.
Die Restriktionen (4.6) und (4.7)
eliminieren dann die Testpunkte aus den
Restriktionen (4.3) bis (4.5). Doch es
verbleiben Restriktionen, die je nach der
Wahl der Datumspunkte unterschiedlich

wirken, so dass diese Tests abhän¬

gig sind von der Datumsdefinition.
Schliesslich ist noch der Fall zu betrachten,

dass die Menge der Testpunkte und
der Datumspunkte eine Schnittmenge
bilden, die die leere Menge sein kann,
die aber weder identisch mit der
Menge der Testpunkte noch mit der der
Datumspunkte sein darf. Wieder
verbleiben Restriktion (4.3) bis (4.5), die je
nach Wahl der Datumspunkte
unterschiedlich wirken, so dass auch diese
Tests abhängig von der Datumsdefinition

sind.
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Vergleichende Analyse von Aufnahmekammern
0 Kolbl

1. Problemstellung
In den vergangenen Jahren konnten
beträchtliche Verbesserungen im
Kammerbau und in der Entwicklung von
photographischen Filmen erzielt werden.

Zudem ist seit einem Jahr der
Kodak Panatomic-X-Film auch in Europa

auf einer dicken Polyester-Basis
erhältlich (Panatomic-X 2412). Auflö¬

sungsvermögen und Bildwiedergabe
dieses Filmes scheinen erheblich besser

zu sein als das Auflösungsvermögen
der gängigen Aufnahmeobjektive

von Luftbildkammern. Es sollte daher
möglich sein, die Bildgüte von
photogrammetnschen Aufnahmeobjektiven
mit diesem Film zu analysieren.
Vom Standpunkt der Bildwiedergabe

scheint der Panatomic-X-Film neue
Perspektiven für die Luftbildphotogra-
phie zu eröffnen; zur gleichen Zeit
machen sich aber neue Beschränkungen

bemerkbar. So ist die Empfindlichkeit
dieses Filmes etwa viermal geringer

als von üblichen Luftbildfilmen.
Kammern mit Einrichtungen zur
Kompensation der Bildwanderung kommt
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