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7. Ergédnzende Bemerkungen
Aus der obenstehenden Beschreibung
konnte der Eindruck entstehen, dass

Fir die Reproduktion in dieser Zeit-
schrift musste wegen der Kopfleiste
allerdings ein Beschnitt in Kauf genom-

men werden.

Fir das Verfahren sind auch verschie-
dene terrestrische Anwendungen denk-
bar. Zum Beispiel die photographische
(Transplantationy eines  regionaltypi-
schen Schweizer Hauses vor seinem
Abbruch am gegenwartigen Standort
an den im Freilichtmuseum Ballen-
berg/BE vorgesehenen Ort. Die Losung
ist in diesem Fall etwas aufwendiger,
denn der neue Standort ist dann vorge-
geben. Dies bedingt, dass sowohl am
alten Ort wie im Freilichtmuseum der

das angewandte Verfahren kompliziert
sei. Das ist jedoch nicht der Fall. Erstens
rechtfertigen die beseitigten und fur
den Betrachter in ihrer Gréssenordnung
ansonsten als unvertraglich erschiene-
nen Verzerrungen einen solchen Pro-
zess. Zum anderen ist die Problemlo-
sung fur jeden Photogrammeter einfach
durchschaubar und dank verbreitet
vorhandener Rechenprogramme leicht
und rasch realisierbar. Das Bild auf der
Umschlagseite eines Firmenprospektes
wird als gelungener Versuch gewertet.

relative Aufnahmestandort zum Gebau-
de eingehalten werden muss. Die Auf-
nahmerichtung und die Kammerkon-
stante konnen jedoch (in Grenzen) nach
wie vor verschieden sein.

Ein solches Projekt war zur Verfahrens-
illustration vorgesehen, konnte aber
noch nicht ausgefuhrt werden.

Literatur:

[1] G.E. Bormann und E. Vozikis: Photogra-
phische Kartenumbildungen mit dem Wild
Avioplan OR"y, Kartographische Nachrichten
Heft 6, Dez. 1982

Adresse des Verfassers:
G.E. Bormann
Wild Heerbrugg AG, CH-9435 Heerbrugg

Grundlagen, Gebrauchsformeln und Anwendungsbeispiele
der Schatzung von Varianz- und Kovarianzkomponenten®

W. Welsch

Die Theorie der Varianz-Kovarianz-Komponenten(VKK)-Schatzung dient der
besseren Ausschopfung des Informationsgehalts geodatischer Messungen. Sie
mag auf den ersten Blick kompliziert und praxisfremd erscheinen, erweist sich
aber gerade bei alltaglichen Problemen der geodatischen Praxis als hilfreich und
genauigkeitssteigernd.

Die Arbeit gibt einen gerafften Uberblick tiber Theorie und Anwendungen der
VKK-Schatzung. In einem ersten Abschnitt werden die grundséatzlichen Modell-
vorstellungen dargelegt. Schwerpunkt ist die Analyse der linearen Dispersions-
struktur der Beobachtungen und das darauf aufbauende VKK-Modell. Der
zweite Abschnitt ist der Ableitung des Schatzers gewidmet, der — um wirksam
zu sein — bestimmte optimale Eigenschaften besitzen soll. Als optimal wird ein
invarianter, erwartungstreuer Schatzer minimaler Varianz angesehen. Es wird
gezeigt, welche Voraussetzungen fir die Konstruktion eines solchen Schatzers
erfullt sein mussen. Der dritte Abschnitt beschaftigt sich mit Formeln fir die
praktische Durchfuhrung der VKK-Schatzung. Nach Ableitung des gewohnli-
chen Schatzers fur die Einheitsvarianz werden die Schatzer fir Varianz- sowie
fur Kovarianzkomponenten entwickelt. Der letzte Abschnitt schliesslich analy-
siert einige Anwendungen aus der Vermessungspraxis.

La théorie de I'estimation des composantes de la matrice des variances-cova-
riances (CMVC) sert a mieux exploiter le contenu en informations des observa-
tions géodésiques. Initialement ce concept peut apparaitre compliqué et inap-
plicable, mais une approche plus détaillée montre qu’il offre une précision supé-
rieure lors des problémes géodésiques journaliers de la pratique.

Cet exposé présente un apercu de la théorie de I'estimation des CMVC et de
son application. Le premier paragraphe décrit les modeéles fondamentaux, le
centre de gravité en étant l'analyse de la structure linéaire de dispersion des
observations, ainsi que le modéle CMVC qui en découle. Le second paragraphe
est consacré a la dérivation des estimateurs, qui, pour étre efficaces, doivent
posséder certaines propriétés optimales. Est considéré comme optimal un esti-
mateur invariant, sans biais et possédant une variance minimale. Les conditions
requises pour la réalisation de I'estimateur sont également formulées. Le troi-
sieme paragraphe traite des formules pour I'emploi des CMVC. Aprés la dériva-
tion de I'estimateur pour la variance unitaire, on y développe les estimateurs des
composantes de la matrice des variances et variances-covariances. Enfin le der-
nier paragraphe analyse quelques utilisations pour la pratique.

*Nach. einem Vortrag am Institut fir Geodasie und Photogrammetrie der ETH Zurich im
Rahmen des Geodatischen Kolloguiums am 17. Juni 1983.
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Der Informationsgehalt geodatischer
Beobachtungen wird — insbesondere
bei heterogenem Material — haufig
durch «gewohnlichey Ausgleichungs-
ansatze nicht ausgeschopft, da im all-
gemeinen neben den unbekannten
Parametern des funktionalen Modells
mit der Varianz der Gewichtseinheit
nur eine einzige globale Grosse des
stochastischen Modells geschatzt
wird. Liegen jedoch a priori Kennt-
nisse der stochastischen Struktur der
Beobachtungen vor, so wird die
Schatzung von Varianz- und Kova-
rianzkomponenten (VKK) moglich,
die haufig zu einer Verbesserung der
Ausgleichungsergebnisse fuhrt.
Einige Beispiele sollen diese Aussage
und Anwendungsmoglichkeiten er-
hellen:

Bisweilen bereitet es Schwierigkeiten,
in einem kombinierten Richtungs-
und Streckennetz die Gewichtsver-
haltnisse der heterogenen Beobach-
tungen aufeinander abzustimmen. Er-
fahrungswerte helfen, versagen meist
aber schon dann, wenn bei einem
raumlichen Netz die Genauigkeit der
Zenitdistanzen angegeben werden
soll, da gerade sie von zahlreichen,
nicht quantifizierbaren Faktoren be-
einflusst wird. Die Ermittlung der Be-
obachtungsgenauigkeiten durch Me-
thoden der VKK-Schatzung fahrt hier
zu stichhaltigen Ergebnissen.

Die Untersuchung der Fehlerkompo-
nenten eines EDM-Gerats, die teils
konstant, teils streckenabhangig sind,
ist fur die Beurteilung der Leistungs-
fahigkeit und Einsatzmoglichkeit des
Gerats oder Geratetyps von grosser
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Bedeutung. Aus den Beobachtungen,
die mit dem betreffenden Instrument
auf Teststrecken oder in Trilatera-
tionsnetzen gewonnen wurden, kon-
nen durch VKK-Schatzungen ohne
weiteres die gesuchten Komponenten
berechnet werden.

Die Zuverlassigkeitstheorie und die
daraus resultierenden Verfahren der
Grobfehlersuche lassen sich auf die
Theorie der VKK-Schatzung zurlck-
fuhren.

Diese und andere Beispiele werden
im letzten Abschnitt der Arbeit naher
analysiert. Die folgenden Ausflhrun-
gen geben in geraffter Form einen
Uberblick Uber die Theorie der VKK-
Schatzung.

1. Modellvorstellungen

1.1 Allgemeines Modell
Parameterschatzungen werden im all-
gemeinen im linearen Modell (Gauss-
Markoff-Modell)

I=Ax

mit den Verteilungsaussagen
E{l} = Ax

und

D{l}=0’Q:=C (1-3)

durchgefihrt. Hierin ist I der n x 1 Zu-
fallsvektor der linearen oder lineari-
sierten Beobachtungen, x der mx1
Vektor der unbekannten festen Para-
meter, die durch die nxm Matrix A
mit dem Rang R{A}=g<m<n mit
den Beobachtungen verknipft sind; C
ist die positiv definite nxn Varianz-
Kovarianzmatrix der Beobachtungen,
die sich aus der vorgegebenen Kofak-
tormatrix Q und dem unbekannten
Varianzfaktor o zusammensetzt. Der
Erwartungswert E{-} und die Disper-
sion D{-} beschreiben in diesem Mo-
dell das statistische Verhalten der Be-
obachtungen vollstandig.

(1-1)

(1-2)

1.2 Dispersionsstruktur

Angelpunkt der gesamten Betrach-
tungen zur Schatzung von VKK ist
eine lineare symmetrische Disper-
sionsstruktur  der  Beobachtungen
(Schaffrin, 1983)

C=2 % 0)Q
i=1 j=1

=0,,Q,,+0,,Q,,+...+0.Q.. (1-4)

Mit o, = o? stellen die VKK den unbe-
kannten Parametervektor o' =|o?, o,,,
.... 0| dar und Q; die entsprechend
vorgegebenen n x n Kofaktormatrizen.
Es konnen angesichts der Freiheits-
grade des Gesamtsystems c<n-—q
Komponenten  geschatzt  werden.
Grundsatzlich missen die Unbekann-
ten x und o gemeinsam geschatzt
werden, da Optimalitdtseigenschaften

der Schatzung von beiden Unbekann-
tengruppen abhangen. Durch den
Nachweis der Translationsinvarianz
der Dispersion der Beobachtungen
D{I} =D{l+Ax} fur xeR" lasst sich
das Problem jedoch in eine sukzessive
Berechnung auflosen.

Im folgenden sollen nur noch die Un-
bekannten o betrachtet werden.

1.3 Varianz-Kovarianzkomponenten-
Modell

Die lineare Dispersionsstruktur lasst
sich in Betrachtungen zum gemisch-
ten Modell (Koch, 1980, S.194ff,
205ff.) einbetten. Das Modell laute

I=Ax+e, (1-5)

worin e als nx1 Vektor von stocha-
stischen Fehlerparametern angesehen
werden kann, der aus der Linearkom-
bination von px1 Elementarfehler-
vektoren € entstanden sei:

e=3 Be. (1-6)
i=1

Damit lautet Modell (1-5)

I=Ax+B,e +B,e,+...+Be. (1-7)

Dies bedeutet mit den Verteilungs-
aussagen

E{e}=0und E{e€} =0 E
(E Einheitsmatrix)

(1-8)

eine Erweiterung der Theorie der ge-
mischten Modelle (Schaffrin, 1983,
S.15) und stellt zugleich die Grund-
lage fur das Kovarianzkomponenten-
Modell von Rao (1972) dar (siehe
auch Grafarend u.a., 1980). Mit (1-2)
ergibt sich namlich aus (1-7) unter
Beachtung von (1-8) und o,=0, die
Kovarianzmatrix der Beobachtungen
zu

D{l} = E{ee"}
=0}B,B] + 0,,(B,B]+ B,B])
+...+0’B,B!

=0iQ,, +0,,Q,; +... +0lQ...
(1-4)

Die Spezialisierung des Kovarianz-
komponenten- zum Varianzkompo-
nenten-Modell ergibt sich aus der
Modifizierung der Erwartungswerte
(1-8) durch

Y ERPT
E{e}=0 und E{e€} = { ngqulr*lj_J

(1-10)

so dass in (1-9) bzw. (1-4) die Kova-
rianzkomponenten o fur i+ | entfal-
len.

Gleichung (1-5) kann auch als erwei-
tertes Gauss-Markoff-Modell aufge-
fasst werden. Mit der durch (1-9)
bzw. (1-10) gegebenen Dispersions-
matrix linearer Struktur wird die
Schatzung von VKK gewohnlich in

(1-9)
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diesem Modell durchgefuhrt. Infolge
der Bedingung ¢ <n-—qg muss aller-
dings die Anzahl der VKK beschrankt
werden, was im allgemeinen zur Bil-
dung von Beobachtungsgruppen
zwingt. Die Betrachtung der aus dem
erweiterten gemischten Modell (1-7)
abgeleiteten linearen  Dispersions-
struktur (1-9) gibt nicht nur wichtige
Hinweise auf die Zusammensetzung
der Dispersionsmatrix, wenn Kennt-
nisse Uber Elementarfehler vorliegen,
sondern — umgekehrt — auch Uber de-
ren Zerlegung, die fur die Schatzung
von VKK problemorientiert erfolgen
muss. Dies soll an zwei einfachen
Beispielen gezeigt werden.

1.4 Beispiele

Beide Beispiele (Persson, 1980) be-
ziehen sich auf das Varianzkompo-
nenten-Modell (1-5) in Verbindung
mit (1-10).

Ein Winkel x sei mit zwei verschieden
genauen Theodoliten gemessen. Von
den Messfehlern € seien die Erwar-
tungswerte E{e}=0 und E{eg€'} =0a’E
gegeben, wobei die noch unbekann-
ten Varianzen o? als mittlere Instru-
mentenfehler zu interpretieren sind.
Der allgemeine Ansatz werde zu-
nachst im gemischten Modell ausge-

fuhrt:
I=Ax+e, (1-5)

was mit (1-6) sofort zum erweiterten
gemischten Modell

I=Ax+B,€, + B, (1-7)
flhrt; explizit ist dies

I, =x+e¢

l,=x+¢,

oder

-;

Hieraus kann mit (1-10) gemass
(1-9) unmittelbar die Dispersionsma-
trix der Beobachtungen

0

1] &

ol e+

2
C=D{l}= 5 o?BBI
i=1
_ oo Lo o\
“%lo ol T% {0 1
2
| 0% (1-11)

gebildet werden.

Die Dispersions- oder Kovarianzma-
trix der Beobachtungen kann hier
<reihend> zerlegt werden.

Nun sei der Winkel x mit einem Theo-
doliten zweimal gemessen. Es werden
ein gleichbleibender Zentrierfehler g,
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und Messfehler €, =€, , €,,] angenom-
men; E{e} =0, E{e€/} = a’E.

In Analogie zum ersten Beispiel erhalt
man:

h=xte€ +e,,

l,=x+e€+e,,

oder

_ 1 1

"’1 X*lel&*lo 1] €
Damit wird

2
C=D{l}= 3 o’BB/
i=1

1
1

1
0

L 0
=0y 1

+ 03
oi+o; o}

o oi+o}

A (1-12)

Die far die Problemstellung des zwei-
ten Beispiels erforderliche Zerlegung
der Dispersionsmatrix ist «<Uberlap-
pend>.

In beiden Fallen besteht die Aufgabe
der VKK-Schatzung in der Ermittlung
der unbekannten Varianzfaktoren o?
(auch im zweiten Beispiel treten trotz
korrelierter Beobachtungen | nur Va-
rianzkomponenten auf).

Das lineare Modell mit linearer Dis-
persionsstruktur bildet auch das Fun-
dament fur die Ausgleichung unvoll-
standiger, heterogener, korrelierter
Wiederholungsmessungen in multiva-
riaten Modellen. Es stellt damit eine
sehr allgemeine und wesentliche
Gundlage dar (Schaffrin, 1983).

2. Schatzungsprinzipien

Nachdem im vorigen Abschnitt die li-
neare Struktur des stochastischen
Modells aufgezeigt wurde, werden im
folgenden die wesentlichen Eigen-
schaften des Schatzers betrachtet, mit
dessen Hilfe die VKK-Berechnung
durchgeftuhrt wird.

2.1 Quadratische Schatzer

Das Problem der VKK-Schatzung ist
ein quadratisches Schatzproblem, vgl.
z.B. (1-9), so dass die verwendeten
Schatzer in aller Regel quadratisch
sind. Eine beliebige Funktion x=p'o
ist im linearen Modell genau dann
schatzbar, wenn eine symmetrische
Funktion M= M" der Beobachtungen
so existiert, dass E{M(l)}=x: sie ist
quadratisch  schatzbar, wenn mit
M) =1"MI far E{I'MI} =x gilt. Damit
ist I'MI ein quadratischer Schatzer
von x. Quadratische Schatzer sind
also quadratische Formen der Beob-
achtungen.

Man schatzt zunachst nicht einzelne
Komponenten g;, sondern eine lineare
Funktion p'c aller Komponenten.
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Setzt man aber als Spezialfall p'=
[0, ....r, ..., 0], so ist auch die Schat-
zung einzelner Komponenten o, mog-
lich (wegen der Bedeutung von r, vgl.
Abschnitt 4.3).

2.2 Unverzerrte quadratische Schatzer
- QUE

Die erste Eigenschaft, die man von ei-
nem «<guteny Schatzer verlangt, ist,
dass er unverzerrte Schatzungen lie-
fert (Quadratic Unbiased Estimator —
QUE).

Grundlage fur die Konstruktion dieser
Eigenschaft des Schatzers I'MI ist die
Verteilung dieser Form. Sie ist (Searle,
1971, p.5b) fur normalverteilte Beob-
achtungen x?-verteilt mit dem Erwar-
tungswert

E{I'MI} = E{I"}M E{I} + sp{M D(I)}
(2-1)

(sp{ "} Spur-Operator).
Mit (1-2) und (1-3) folgt

E{I'MI} =x'ATMAx +sp{M-C} =p'o.
(2-2)

Die Forderung nach Unverzerrtheit

des Schatzers I"'MI verlangt nun

— Unabhéngigkeit von den festen Pa-
rametern x; dies fuhrt zu der Bedin-
gung
A'TMA=0. (2-3)

x kann also im linearen Modell mit
einer beliebigen generalisierten In-
versen N~ der Normalgleichungen
N gewonnen werden. Damit sind
auch Probleme der Festlegung des
geodatischen Datums bedeutungs-
los.

— Unabhangigkeit von den unbe-
kannten, dennoch a priori im Aus-
gleichungsansatz zu berlcksichti-
genden VKK, die in C enthalten
sind. Dies fahrt zur zusatzlichen
Forderung

sp{M-C}=Z2 % o,sp{MQ;}=p'c

= =
oder komponentenweise

sp{MQ;} =p. Z p,=p (2-4)

i=1
Die quadratische Form I'MI ist dann
QUE fur p'o, wenn die Forderungen
(2-3) und (2-4) erfullt sind.

2.3 Invariante, unverzerrte
quadratische Schatzer — IQUE
Invarianz ist als sog. Translationsinva-
rianz zu verstehen, z.B. Invarianz ge-
genuber einer (zulassigen) Anderung
der Naherungskoordinaten bei einer
geodatischen Netzausgleichung. In-
variante, unverzerrte quadratische
Schatzer heissen IQUE (Invariant
Quadratic Unbiased Estimator).

An die Stelle des Modells (1-1) tritt

dann das neue Modell (Persson,
1980, p.8)

I=A(x+dx) = Ax + Adx (2-5)
oder

I = Ax = Adx (2-6)
mit

E{l - Ax} =Adx, D{l-Ax}=C.
Der neue Schatzer
(1= Ax)"M (I — Ax)

soll vernunftigerweise die gleichen
Schatzergebnisse liefern wie der
Schatzer (2-2) in Verbindung mit
(2-3) und (2-4). Das ist dann der
Fall, wenn

(1= Ax) "M (I = Ax) =I"Ml. (2-8)

Multiplikation der linken Seite fuhrt
zu der Bedingung

I"'MI = 2I"'MAXx + x'ATMAXx = I"'MI,

die nur erfullt wird, wenn

MA=0. (2-9)

Forderung (2-3) folgt damit ebenso
aus (2-9). Die Umkehrung gilt nur far
positiv definites M (Koch, 1980,
S.207), far das QUE und IQUE iden-
tisch sind.

(2-7)

2.4 BESTe IQUE - BIQUE
BEST bedeutet minimale Varianz des
Schatzers.
Fur normalverteilte Beobachtungen
ist (Searle, 1971, p.57) die Varianz
V{-} der quadratischen Form I'MI ge-
geben durch
V{I'MI} = 2sp{MCMC}

+ 4x"ATMCMAX

und wegen (2-9)

V{I'MI} = 2sp{MCMC}
~2sp{MQMQ}.  (2-10)

Q wird hier als Naherungswert fur
C=0%Q verwendet, da o? zunachst
nicht bekannt ist. BIQUE konnen
dann konstruiert werden, wenn (2-10)
— unter Beachtung von (2-3) bzw.
(2-9) und (2-4) — minimiert wird. Die
Losung dieser Minimierungsaufgabe
mit Nebenbedingungen fahrt (Koch,
1980, S.210) mit s? als Schatzwert fur
die Varianz der Gewichtseinheit o2 auf
die Gleichung

S-s?=q, (2-11)
woraus fur s? mit
S=sp{MQMQ}=sp{MQ}  (2-12)
g=I"MQMI=1"MI (2-13)
M=Q'-Q'AN"A'Q (2-14)
folgt:
I"'™MI

S 2-15
* " sp{Ma} I

Die Ubereinstimmung mit der Ubli-
chen, aus v'Pv resultierenden Schat-
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zung wird in den nachsten Abschnit-
ten aufgezeigt.

Sollen VKK o, geschatzt werden, sind
sie mit Hilfe der Grossen

= (s;) =sp{MQ,MQ,} (2-16)
a=(q) =1"MQ;MI (2-17)
iLj=1....c

zu gewinnen. Details werden weiter
unten erlautert.

Fur normalverteilte Beobachtungen
ist BIQUE aquivalent mit MINQUE
(Minimum Norm Quadratic Unbiased
Estimation; Rao 1970; Persson
1980).

2.5 Heuristische Bestimmung von M
Betrachtet man (1-5) als Gauss-Mar-
koff-Modell

I=Ax+e, D{l}=0?Q.Q'=P

(Gewichtsmatrix P), so werden die
Unbekannten x durch = (ATPA)-A'PI
=N-"A'Pl und der Fehlervektor e
durch die Verbesserungen v ge-
schatzt. Dann sind die ausgegliche-

nen Beobachtungen 1=Ax=AN-ATPI|
und die Verbesserungen
v=I-1. (2-18)

Bildet man die quadratische Form

V'Pv, so ergibt sich

VvVIPv=I"PI-I"PAN-ATPI
=1"(P-PAN-A'P)I=1"MI. (2-19)

Die Formmatrix ist die gesuchte Ma-
trix M (2-14).

2.6 Beispiel der Einheitsvarianz

Fasst man die bisherigen Ergebnisse
(2-15), (2-4), (2-19) und die allge-
mein bekannte Formel zur Schatzung
der Einheitsvarianz zusammen, so er-
geben sich die Beziehungen

I"'™MI ITMI v'Pv
sp{MQ}  p n-m’
die in Verbindung mit (2-14) beste
invariante quadratische unverzerrte
Schatzer der Einheitsvarianz sind. Die

folgenden Berechnungen bestatigen

dies:

a) M=M"

b) ATMA=0: AT(P-PAN-A'P)A
=A"PA-A"PAN-ATPA
=N-NN"N=0

c) sp{MQ}=p=n—m:

sp{(P - PAN-A'P)Q}
=sp{E—- PAN"A'}
=sp{E} — sp{ATPAN"}

2

=N=m
(ATPAN"=NN-,
idempotent)

s? ist QUE fir o2
d) MA=0: (P— PAN-ATP)A
=PA-PAN-APA
=PA-PAN-N=0
(Koch, 1980, S.50)

s? ist IQUE fur o?

e) V{I'MI} = V{v Pv} 2sp{MCMC}
2(a%)’sp{MQMQ}
2(0?)*sp{MQ}
2(0*)*(n—=m)

n—m

Der Schatzwert der Varianz betragt
damit — wie allgemein bekannt:
2(s?)*

n—m

s? ist BIQUE fur o2

V(s?) =

2.7 Lokale, iterierte, gleichmassige
Schatzer

Die Bedingung sp{MQ}=p=n-m=r
(Redundanz) lasst sich — gleich wel-
cher Naherungswert in (2-10) ge-
wahlt wurde — fur die Schatzung der
Einheitsvarianz immer erfullen. Diese
ist tatsachlich unabhangig von der a
priori gewahlten Varianz. Unter Ein-
haltung der Gbrigen Bedingungen ist
die Schatzung s? deshalb immer BI-
QUE («gleichmassig> beste Schat-
zung).

Beim Schatzer von VKK wird die Be-
dingung sp{MQ}=p, nicht auf An-
hieb fur alle i zu erfillen sein. Die
Schatzungen sind vielmehr zunachst
von der gewahlten Trennung der Va-

c
rianz-Kovarianzmatrix C=2 X 0,Q;
=l jei

in ihre Bestandteile o; und Q; abhan-
gig. Diese Abhangigkeit fuhrt dann zu
<lokaly erwartungstreuen und in der
Folge zu <lokal> besten Schatzern. Die
lokal besten Schatzer konnen aber zur
Verbesserung der Naherungswerte
und zu einer iterativen Erreichung der
gleichmassigen besten  Schatzung
verwendet werden (Koch, 1980,
S.209ff.). Wenn das Modell richtig
formuliert ist, und die Naherungs-
werte nicht zu schlecht sind, werden
die iterativen Schatzer nach wenigen
Iterationen konvergieren. Damit sind
die iterativ verbesserten lokalen
Schatzer nach Erreichen des Konver-
genzzieles gleichmassig erwartungs-
treue, invariante und beste Schatzer.

3. Praktische Durchfiihrung der
VKK-Schéatzung

3.1 Ubergang vom I"MI- zum
v'Pv-Schatzer

Gewohnlich werden Varianzkompo-
nenten-Schatzungen nicht mit der
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quadratischen Form I'MI, sondern mit
der Form v'Pv durchgefiihrt. Der
Ubergang vom einen zum anderen
Schatzer wird im folgenden veran-
schaulicht.

Mit (2-14)

M=P - PAN-A'P
=P(E-AN-A'P) =PD

folgt aus (2-18)

(3-1)

v=I-1=1-A%x=(E—AN-A'P)I=DI
(3-2)

und

Q~=DQD". (3-3)

Damit wird aus (2-12)
S=sp{MQMQ} =sp{PDQPDQ}

=sp{PDQD"} =sp{PQ"}. (3-4)
Aus (2-13) wird

=1"MQMI=I1"PDQPDI=I"PDI

=|"MI=Vv'Pv. (3-5)

Damit lautet (2-11) bzw. (2-15) nun-
mehr
V'Pv

= 3-6

sp{PQ"} (3-6)
Zu diesem Ergebnis gelangt man so-
fort, wenn man fur die Verbesserun-
gen mit der Verteilung

v~ N{O,C"} (3-7)

den Erwartungswert ihrer quadrati-
schen Form betrachtet:

E{v'Pv} =sp{PC"} =a’sp{PQ"}. (3-8)

Wird der Nenner in (3-6) weiterent-
wickelt, so ergibt sich

sp{PQ"} =sp{PDQD"}

=sp{(E—PAN-A")

(E-PAN-A")}

=sp{E- PAN"A"}

=sp{E} —sp{ATPAN"}

=R =M=
(Redundanz r), woraus die bekannte
Beziehung fur die Schatzung der Ein-
heitsvarianz

T

=2 r" (3-9)

folgt.

3.2 Varianzkomponenten-Schatzung
Die Aufgabe besteht in der Schatzung
einzelner Varianzkomponenten o?, die
bei der Zerlegung der Dispersionsma-
trix D{I} gemass (1-4) auftreten und
unbekannt sind. Fur die praktische
Durchfihrung der Schatzung
(Welsch, 1980a) wird von (3-2) aus-
gegangen, indem die Beobachtungen
und ihre Verbesserungen der erforder-
lichen Zerlegung der Dispersionsma-
trix entsprechend aufgeteilt werden,
z.B. in <Beobachtungsgruppen>
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D{l}=% C, (3-10)
i=1
v,=l—Ax=(E,~-~ANAP)I=D|
(3-11)
wobei
2 v=v, 2 I|=I % D=D.

i=1 i=1 i=1

In D, sind auch Anteile der anderen
Beobachtungsgruppen j # i enthalten,
so dass

Mo

D= E (EE-AN(AP),) =

=1 |

D,.

1

Der Erwartungswert der quadrati-
schen Form der Verbesserungen v,
(vgl. (3-7)) wird damit zu

E{v/P,v;} =sp{P,D,.CD/}

i~

=sp{P,.D, Z C,D}
1

=sp{Z P
=1

Die Struktur (3-12) lasst es zunachst
nicht zu, die Varianzkomponenten ge-
trennt zu schatzen. Die Beziehung
(3-12) wird schon von Helmert
(1907) als Schatzer verwendet
(Welsch, 1977).
Erst nach Ubergang vom Erwartungs-
wert zur Schatzung und nach Errei-
chen des Konvergenzzieles

DHCHDH}‘ (3_1 2)

=1 I1=1,....0.j....c (3-13)

gelingt es, die Summation auszufiih-
ren (Forstner, 1979) und zu setzen

v/P,v,=s? sp{P,D,QD}
=s? sp{P,Q""}

oder durch Ausnitzung des Spur-
Operators

(3-14)

VIPv,=s! I (Pgdye):.
g=1

worin ¢, die Anzahl der Beobachtun-

gen, fir die s? geschatzt wird, be-

zeichnet.

(3-15)

3.3 Kovarianzkomponenten-
Schatzung

Ist es erforderlich und nach Zerlegung
(1-4) der Dispersionsmatrix maoglich,
auch Kovarianzkomponenten zZu
schatzen, so wird ganz analog zur Va-
rianzkomponenten-Schatzung vorge-
gangen. Dies sei in Kurze dargestellt.
Zerlegung des mathematischen Mo-
dells

c-t

D{I}: Z C:ui+ z C|j

(3-16)
i=1 ij=1
i%]
v,=DJ, D,= X D,
- (3-17)
v=DIl D=5 D,
k=1
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Bildung der Erwartungswerte

E{v/P,v,} =sp{P,D.CD;}. (3-18)

In (3-18) sind in C samtliche VKK g;
enthalten, die nach Ubergang zur
Schatzung erst nach Erreichen des
Konvergenzzieles

Sk—>$;—1
getrennt werden konnen:
vIP.v,=s, sp{P,Q}'}.

ijvj ij ji (3_20)
Infolge des Spur-Operators ist wie-
derum eine elementenweise Summa-
tion moglich

< cj
VTP'V=S|| Z Z (thQ;\)u'

U]
h=1 g=1

(3-21)

3.4 Varianz der Schatzer

Auf die Varianz der VKK soll hier nicht
eingegangen, vielmehr auf die Ab-
schnitte 2.4 und 2.6 oder z.B Koch
(1980, S.210ff.) verwiesen werden.

4. Anwendungen

Anwendungen, uber die bisher be-
richtet worden ist, beziehen sich fast
ausschliesslich auf die Schatzung von
Varianzkomponenten. Dies ist ver-
standlich, wenn man bedenkt, wie
schwierig es ist, Vorinformationen
uber Korrelationen bzw. Kovarianzma-
trizen zu bekommen.

Die Darstellung der folgenden An-
wendungsbeispiele beschrankt sich
im wesentlichen auf die Erlauterung
des stochastischen Modells und die
Zerlegung der Dispersionsmatrix.

4.1 Geodatische Netzausgleichungen
mit heterogenem Beobachtungsmate-
rial

Die Aufgabe besteht in der Schatzung
der Varianzen einzelner Beobach-
tungsgruppen, z.B. der Richtungs-
und Streckenbeobachtungen in einem
kombinierten Triangulations-Trilatera-
tionsnetz. Von der Modell-Technik
her gesehen spricht man von univa-
riaten Gauss-Markoff-Modellen.

Mit den Symbolen a fur Richtungs-
messungen und d fur Streckenmes-
sungen wird das mathematische Mo-
dell wie folgt aufgebaut:

I-v=Ax mit I"'=|a'd|,

vI=vavyl, AT=1AAG (3-11)

Die Dispersionsmatrix wird <reihend>

zerlegt
Lo
o | [

(3-11)

oder

D{l}=C= 5 C

i=1

_ |02 diag{Q,} 0
0 o’ diag{Q} |.

(3-10)

Die Gewichte 1/q, 1/q, werden a
priori angenommen, die Verbesserun-
gen v, v4 und ihre Kofaktoren g% und
q¥ sind Ergebnisse einer ersten Aus-
gleichung. Mit (3-15) werden Varian-
zen s und s? berechnet, eine zweite
Ausgleichung durchgefihrt, erneute
Werte flir s2 und s? berechnet solange,
bis mit s2=s%=1 das Konvergenzziel
erreicht ist.

Ein numerisches Beispiel findet sich
bei Welsch (1980b). Veroffentlichun-
gen mit numerischen Beispielen der
Schéatzung von Kovarianzkomponen-
ten im unvollstandigen multivariaten
Gauss-Markoff-Modell (Schaffrin,
1983) liegen derzeit noch nicht vor.

4.2 Schatzung der
Fehlerkomponenten eines
EDM-Gerates

Die Aufgabe besteht in der Schatzung
der Fehlerkomponenten a und b fur
den Ansatz

Stow=a’+b?-s?,

der die Fehlerformel fir EDM-Gerate
darstellt (Koch, 1978).

Fur die Konstruktion der Dispersions-
matrix wird vom gemischten Modell

I=Ax+e (1-5)

ausgegangen.

Der Fehlervektor e ist Linearkombina-
tion des konstanten Fehlereinflusses a
und des streckenabhangigen Einflus-
ses b

e= % Bg=B,¢ +B.sg, (1-6)
i=1
mit
S
1Sz 0
B,=E, B,= ’
n.n O “ Sn

und den Verteilungsaussagen
E{e} =E{e}=0. E{ee’)=E{ec} =0lE.
(1-10)

Damit kann die Dispersionsmatrix
aufgebaut werden

2 2
C=3 o’BB/= % ¢’Q
i=1 i=1

=07Q,, +03Q,,.

Mensuration, Photogrammeétrie, Génie rural 9/84



(1-9) ist ein Beispiel fir eine <Uber-
lappende> Zerlegung gemaéss (1-12)

11 0 stg 0
=l . |+dt| .
0o 1 0 s
C = €, + C, (3-10)

Far die Schatzung s? und s? der Va-
rianzkomponenten a2 und o2 bendtigt
man die Gewichte P=Q"' (p, =1,

1
p2i:¥)'
ihre  Kofaktoren gy¥. Damit kann
(3-15) solange angewendet werden,
bis das lIterationsziel erreicht ist. In
Koch (1981) wurde auch die Kova-
rianzkomponente a,, geschétzt.

die Verbesserungen v, und

4.3 Varianzkomponenten-Schatzung
und Zuverlassigkeit

Die Beobachtungen werden in zwei
Gruppen eingeteilt. Die erste Gruppe
besteht aus einer einzigen Beobach-
tung, derjenigen, deren Zuverlassig-
keit bzw. Fehlerhaftigkeit untersucht
werden soll. Die zweite Gruppe ent-
halt alle Ubrigen Beobachtungen.
Dem Beispiel in Abschnitt 4.1 folgend
wird die Dispersionsmatrix zerlegt
und der Anteil der ersten Gruppe be-
trachtet.

M~

C=

C.

I

1

-
C,,=03Q,,=0lq,.

Der Varianzfaktor o? ist zu schéatzen
aus

T =2
ViPyVy = S1P a3

2 2
g Ve _ Vi
:
p,gy O
Vi
$ = wik
A

Das Zuverlassigkeitsmass der
mierten Verbesserung

nor-

IS v v

W_ = =
s sJ/an s,

hat somit nur die Qualitat eines <lokal
besteny Masses, wenn nicht — was
theoretisch geschehen musste — der
Iterationsprozess bis zur Konvergenz
fortgesetzt wird (Li, 1983).

Die Grosse p,gyy =r, gibt den Redun-
danzteil der Beobachtung an, der im
Rahmen der Zuverlassigkeitstheorie
eine wesentliche Rolle spielt.

4.4 Genauigkeitssteigerung in der
klassischen Ausgleichung

Bisweilen bestehen Vorausinformatio-
nen Uber die zu schatzenden Unbe-
kannten x einer Ausgleichung (z.B.

Einstellfehler bei der Messung photo-
grammetrischer Punktkoordinaten,
Zentrierfehler 0.4.). Diese Information
kann in einem Varianzkomponenten-
Modell verarbeitet werden. Dazu wird
das gewodhnliche Gauss-Markoff-Mo-
dell erweitert

l, +v,=Ax, P,=Q;] aus D{l,} =03Q,,
l,+v,=Ex, P,=Q; aus D{l,} =03Q,,

Die Einstell- oder Zentrierfehler der
Punktkoordinaten x werden als zu-
satzliche Beobachtungen I,=0 ange-
sehen. Verwendet man die vermutete
Einstell- oder Zentriergenauigkeit als
Gewicht P, dieser Beobachtungen, so
kann die vollstandige Dispersionsma-
trix

=2 2
C=07Q,, +03Q,,

angesetzt und die Genauigkeit o2 der
Vorinformation mit (3-15) geschatzt
werden. Das Verfahren wurde von
Ebner (1978) angegeben. Es lasst
viele Anwendungen zu, z.B. die Be-
rucksichtigung von Punktunruhen bei
Stabilitats- und Sensitivitatsuntersu-
chungen und Deformationsanalysen,
Einbeziehung nicht-modellierbarer sy-
stematischer Restfehler (Schwintzer,
1984) u.a.

4.5 Weitere Anwendungen

Uber weitere Anwendungen wird z. B.
von Grafarend und Kleusberg (1980)
bei der Schatzung von Instrumenten-
und Beobachtungsfehlern bei Kreisel-

messungen berichtet, Schaffrin
(1983, S.101ff.) analysiert weitere
Beispiele, insbesondere auch die

Schatzung von Kovarianzmatrizen fur
photogrammetrische Bildkoordinaten.
Aus Platzgrinden kann jedoch auf
diese und andere Beispiele nicht na-
her eingegangen werden.

Fur die eingehendere Darstellung
wurden bewusst einfache Anwen-
dungsbeispiele ausgewahlt, um zu
demonstrieren, dass eine recht kom-
plizierte Theorie so aufbereitet werden
kann, dass sie auch dem Praktiker bei
alltaglichen Problemen zu einem Ge-
winn verhelfen kann. Darlber hinaus
steht die Ausschopfung der theoreti-
schen Moglichkeiten fir viele Gebiete
erst am Anfang.
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