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7. Ergänzende Bemerkungen
Aus der obenstehenden Beschreibung
könnte der Eindruck entstehen, dass
das angewandte Verfahren kompliziert
sei. Das ist jedoch nicht der Fall Erstens
rechtfertigen die beseitigten und für
den Betrachter in ihrer Grössenordnung
ansonsten als unverträglich erschienenen

Verzerrungen einen solchen Pro-
zess. Zum anderen ist die Problemlösung

für jeden Photogrammeter einfach
durchschaubar und dank verbreitet
vorhandener Rechenprogramme leicht
und rasch realisierbar. Das Bild auf der
Umschlagseite eines Firmenprospektes
wird als gelungener Versuch gewertet.

Für die Reproduktion in dieser
Zeitschrift musste wegen der Kopfleiste
allerdings ein Beschnitt in Kauf genommen

werden.
Für das Verfahren sind auch verschiedene

terrestrische Anwendungen denkbar.

Zum Beispiel die photographische
(Transplantation) eines regionaltypischen

Schweizer Hauses vor seinem
Abbruch am gegenwärtigen Standort
an den im Freilichtmuseum Ballen-
berg/BE vorgesehenen Ort. Die Lösung
ist in diesem Fall etwas aufwendiger,
denn der neue Standort ist dann
vorgegeben. Dies bedingt, dass sowohl am
alten Ort wie im Freilichtmuseum der

relative Aufnahmestandort zum Gebäude

eingehalten werden muss. Die
Aufnahmerichtung und die Kammerkonstante

können jedoch (in Grenzen) nach
wie vor verschieden sein.
Ein solches Projekt war zur Verfahrensillustration

vorgesehen, konnte aber
noch nicht ausgeführt werden.

Literatur:

[1] G.E. Bormann und E. Vozikis: (Photographische

Kartenumbildungen mit dem Wild
Avioplan 0R1>, Kartographische Nachrichten
Heft 6. Dez. 1982

Adresse des Verfassers:
G. E. Bormann
Wild Heerbrugg AG, CH-9435 Heerbrugg

Grundlagen, Gebrauchsformeln und Anwendungsbeispiele
der Schätzung von Varianz- und Kovarianzkomponenten*
W. Welsch

Die Theorie der Varianz-Kovarianz-Komponenten (VKK)-Schätzung dient der
besseren Ausschöpfung des Informationsgehalts geodätischer Messungen. Sie
mag auf den ersten Blick kompliziert und praxisfremd erscheinen, erweist sich
aber gerade bei alltäglichen Problemen der geodätischen Praxis als hilfreich und
genauigkeitssteigernd.
Die Arbeit gibt einen gerafften Überblick über Theorie und Anwendungen der
VKK-Schätzung. In einem ersten Abschnitt werden die grundsätzlichen
Modellvorstellungen dargelegt. Schwerpunkt ist die Analyse der linearen Dispersionsstruktur

der Beobachtungen und das darauf aufbauende VKK-Modell. Der
zweite Abschnitt ist der Ableitung des Schätzers gewidmet, der - um wirksam
zu sein - bestimmte optimale Eigenschaften besitzen soll. Als optimal wird ein
invarianter, erwartungstreuer Schätzer minimaler Varianz angesehen. Es wird
gezeigt, welche Voraussetzungen für die Konstruktion eines solchen Schätzers
erfüllt sein müssen. Der dritte Abschnitt beschäftigt sich mit Formeln für die
praktische Durchführung der VKK-Schätzung. Nach Ableitung des gewöhnlichen

Schätzers für die Einheitsvarianz werden die Schätzer für Varianz- sowie
für Kovarianzkomponenten entwickelt. Der letzte Abschnitt schliesslich analysiert

einige Anwendungen aus der Vermessungspraxis.

La théorie de l'estimation des composantes de la matrice des variances-cova-
riances (CMVC) sert à mieux exploiter le contenu en informations des observations

géodésiques. Initialement ce concept peut apparaître compliqué et
inapplicable, mais une approche plus détaillée montre qu'il offre une précision
supérieure lors des problèmes géodésiques journaliers de la pratique.
Cet exposé présente un aperçu de la théorie de l'estimation des CMVC et de
son application. Le premier paragraphe décrit les modèles fondamentaux, le
centre de gravité en étant l'analyse de la structure linéaire de dispersion des
observations, ainsi que le modèle CMVC qui en découle. Le second paragraphe
est consacré à la dérivation des estimateurs, qui, pour être efficaces, doivent
posséder certaines propriétés optimales. Est considéré comme optimal un
estimateur invariant, sans biais et possédant une variance minimale. Les conditions
requises pour la réalisation de l'estimateur sont également formulées. Le
troisième paragraphe traite des formules pour l'emploi des CMVC. Après la dérivation

de l'estimateur pour la variance unitaire, on y développe les estimateurs des
composantes de la matrice des variances et variances-covariances. Enfin le
dernier paragraphe analyse quelques utilisations pour la pratique.

*Nach. einem Vortrag am Institut für Geodäsie und Photogrammetrie der ETH Zürich im
Rahmen des Geodätischen Kolloquiums am 17. Juni 1983.

Der Informationsgehalt geodätischer
Beobachtungen wird - insbesondere
bei heterogenem Material - häufig
durch (gewöhnliche) Ausgleichungsansätze

nicht ausgeschöpft, da im
allgemeinen neben den unbekannten
Parametern des funktionalen Modells
mit der Varianz der Gewichtseinheit
nur eine einzige globale Grösse des
stochastischen Modells geschätzt
wird. Liegen jedoch a priori Kenntnisse

der stochastischen Struktur der
Beobachtungen vor, so wird die
Schätzung von Varianz- und Kova-
rianzkomponenten (VKK) möglich,
die häufig zu einer Verbesserung der
Ausgleichungsergebnisse führt.
Einige Beispiele sollen diese Aussage
und Anwendungsmöglichkeiten
erhellen:

Bisweilen bereitet es Schwierigkeiten,
in einem kombinierten Richtungsund

Streckennetz die Gewichtsver-
häitnisse der heterogenen Beobachtungen

aufeinander abzustimmen.
Erfahrungswerte helfen, versagen meist
aber schon dann, wenn bei einem
räumlichen Netz die Genauigkeit der
Zenitdistanzen angegeben werden
soll, da gerade sie von zahlreichen,
nicht quantifizierbaren Faktoren
beeinflusst wird. Die Ermittlung der
Beobachtungsgenauigkeiten durch
Methoden der VKK-Schätzung führt hier
zu stichhaltigen Ergebnissen.
Die Untersuchung der Fehlerkomponenten

eines EDM-Geräts, die teils
konstant, teils streckenabhängig sind,
ist für die Beurteilung der Leistungsfähigkeit

und Einsatzmöglichkeit des
Geräts oder Gerätetyps von grosser
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Bedeutung. Aus den Beobachtungen,
die mit dem betreffenden Instrument
auf Teststrecken oder in Trilatera-
tionsnetzen gewonnen wurden, können

durch VKK-Schätzungen ohne
weiteres die gesuchten Komponenten
berechnet werden.
Die Zuverlässigkeitstheorie und die
daraus resultierenden Verfahren der
Grobfehlersuche lassen sich auf die
Theorie der VKK-Schätzung zurückführen.

Diese und andere Beispiele werden
im letzten Abschnitt der Arbeit näher
analysiert. Die folgenden Ausführungen

geben in geraffter Form einen
Überblick über die Theorie der VKK-
Schätzung.

1. Modellvorstellungen
1.1 Allgemeines Modell
Parameterschätzungen werden im
allgemeinen im linearen Modell (Gauss-
Markoff-Modell)
l Ax (1-1)
mit den Verteilungsaussagen

E{l}=Ax (1-2)
und

D{l} a2Q: C (1-3)

durchgeführt. Hierin ist I der n x 1

Zufallsvektor der linearen oder lineari-
sierten Beobachtungen, x der m*1
Vektor der unbekannten festen
Parameter, die durch die n * m Matrix A
mit dem Rang R{A} q<m<n mit
den Beobachtungen verknüpft sind; C
ist die positiv definite n * n Varianz-
Kovarianzmatrix der Beobachtungen,
die sich aus der vorgegebenen Kofak-
tormatrix Q und dem unbekannten
Varianzfaktor a2 zusammensetzt. Der
Erwartungswert E{} und die Dispersion

D{} beschreiben in diesem Modell

das statistische Verhalten der
Beobachtungen vollständig.

1.2 Dispersionsstruktur
Angelpunkt der gesamten Betrachtungen

zur Schätzung von VKK ist
eine lineare symmetrische
Dispersionsstruktur der Beobachtungen
(Schaffrin, 1983)

c=z i o,a
1=1 i-1
a11Q11+a12Q12 + + accQcc- (1-4)

Mit ctm ct2 stellen die VKK den
unbekannten Parametervektor ctt |ct2, ct12.

ct2| dar und Q, die entsprechend
vorgegebenen n * n Kofaktormatrizen.
Es können angesichts der Freiheitsgrade

des Gesamtsystems c<n-q
Komponenten geschätzt werden.
Grundsätzlich müssen die Unbekannten

x und a gemeinsam geschätzt
werden, da Optimalitätseigenschaften

der Schätzung von beiden
Unbekanntengruppen abhängen. Durch den
Nachweis der Translationsinvarianz
der Dispersion der Beobachtungen
D{I} D{I + Ax} für xeW71 lässt sich
das Problem jedoch in eine sukzessive
Berechnung auflösen.
Im folgenden sollen nur noch die
Unbekannten o betrachtet werden.

1.3 Varianz-Kovarianzkomponenten-
Modell
Die lineare Dispersionsstruktur lässt
sich in Betrachtungen zum gemischten

Modell (Koch. 1980. S.194ff.,
205ff.) einbetten. Das Modell laute

I Ax + e. (1-5)

worin e als n x 1 Vektor von
stochastischen Fehlerparametern angesehen
werden kann, der aus der Linearkombination

von px1 Elementarfehlervektoren

e, entstanden sei:
c

e= I B(er (1-6)
i=i

Damit lautet Modell (1-5)

NAx + BiC, +B2e2 + + Bc€c. (1-7)
Dies bedeutet mit den Verteilungsaussagen

E{e,}=0und E{e,elT} CT„E (1-8)

(E Einheitsmatrix)

eine Erweiterung der Theorie der
gemischten Modelle (Schaffrin, 1983,
S.1 5) und stellt zugleich die Grundlage

für das Kovarianzkomponenten-
Modell von Rao (1972) dar (siehe
auch Grafarend u.a.. 1980). Mit (1-2)
ergibt sich nämlich aus (1-7) unter
Beachtung von (1-8) und ct^ct,, die
Kovarianzmatrix der Beobachtungen
zu

D{l} E{eeT}
ct2B1B{ + ct12(B,BJ+B2B{)
+ +ct2BB

:CT?Qii+CTi2Q,

(1-9)
+ CT2Q2L

(1-4)
Die Spezialisierung des
Kovarianzkomponenten- zum Varianzkomponenten-Modell

ergibt sich aus der
Modifizierung der Erwartungswerte
(1-8) durch

E{eJ=0undE{€l<}=HfEfur'=J
1 " 0 fur i #= j.

(1-10)

so dass in (1 -9) bzw. (1 -4) die
Kovarianzkomponenten a,, für i4=j entfallen.

Gleichung (1 -5) kann auch als erweitertes

Gauss-Markoff-Modell aufge-
fasst werden. Mit der durch (1-9)
bzw. (1-10) gegebenen Dispersionsmatrix

linearer Struktur wird die
Schätzung von VKK gewöhnlich in

diesem Modell durchgeführt. Infolge
der Bedingung c<n-q muss
allerdings die Anzahl der VKK beschränkt
werden, was im allgemeinen zur
Bildung von Beobachtungsgruppen
zwingt. Die Betrachtung der aus dem
erweiterten gemischten Modell (1 -7)
abgeleiteten linearen Dispersionsstruktur

(1 -9) gibt nicht nur wichtige
Hinweise auf die Zusammensetzung
der Dispersionsmatrix, wenn Kenntnisse

über Elementarfehler vorliegen,
sondern - umgekehrt - auch über deren

Zerlegung, die für die Schätzung
von VKK problemorientiert erfolgen
muss. Dies soll an zwei einfachen
Beispielen gezeigt werden.

1.4 Beispiele
Beide Beispiele (Persson, 1980)
beziehen sich auf das Varianzkompo-
nenten-Modell (1-5) in Verbindung
mit (1-10).
Ein Winkel x sei mit zwei verschieden
genauen Theodoliten gemessen. Von
den Messfehlern e, seien die
Erwartungswerte E{e,}=0 und E{e,€T} =ct2E

gegeben, wobei die noch unbekannten
Varianzen er2 als mittlere

Instrumentenfehler zu interpretieren sind.
Der allgemeine Ansatz werde
zunächst im gemischten Modell ausgeführt:

I Ax + e. (1-5)

was mit (1 -6) sofort zum erweiterten
gemischten Modell

l Ax + B1e, + B2e2

führt; explizit ist dies

l,=X + €,

l2 X + 62

oder

I

(1-7)

1 1 0
1

X +
0 e,+ 1

Hieraus kann mit (1-10) gemäss
(1-9) unmittelbar die Dispersionsmatrix

der Beobachtungen

C D{I}= Z ct2B,B:

o^
1 0
0 0

+ CT2.
0
0

0
1

CT2 0
0 CT2 (iii:

gebildet werden.

Die Dispersions- oder Kovarianzmatrix
der Beobachtungen kann hier

(reihend) zerlegt werden.
Nun sei der Winkel x mit einem
Theodoliten zweimal gemessen. Es werden
ein gleichbleibender Zentrierfehler e,
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M €22| angenommen;

E{e,} 0; E{e,<} CT2E.

In Analogie zum ersten Beispiel erhält
man:

Ii =x + €1 +e21
:X + €, +€,

oder''

1 1 1 0
1

x +
1 e,+ 0 1

Damit wird

C=D{I}= Z ct2B,B[

CT

1 1

1 1

O?

1 0
0 1

(jf + cj;
(1-12)

Die für die Problemstellung des zweiten

Beispiels erforderliche Zerlegung
der Dispersionsmatrix ist (überlappend).

In beiden Fällen besteht die Aufgabe
der VKK-Schätzung in der Ermittlung
der unbekannten Varianzfaktoren ct2

(auch im zweiten Beispiel treten trotz
korrelierter Beobachtungen I nur
Varianzkomponenten auf).
Das lineare Modell mit linearer
Dispersionsstruktur bildet auch das
Fundament für die Ausgleichung
unvollständiger, heterogener, korrelierter
Wiederholungsmessungen in multivariaten

Modellen. Es stellt damit eine
sehr allgemeine und wesentliche
Gundlage dar (Schaffrin, 1983).

2. Schätzungsprinzipien
Nachdem im vorigen Abschnitt die
lineare Struktur des stochastischen
Modells aufgezeigt wurde, werden im
folgenden die wesentlichen
Eigenschaften des Schätzers betrachtet, mit
dessen Hilfe die VKK-Berechnung
durchgeführt wird.

2.1 Quadratische Schätzer
Das Problem der VKK-Schätzung ist
ein quadratisches Schätzproblem, vgl.
z.B. (1-9). so dass die verwendeten
Schätzer in aller Regel quadratisch
sind. Eine beliebige Funktion x PTo
ist im linearen Modell genau dann
schätzbar, wenn eine symmetrische
Funktion M MT der Beobachtungen
so existiert, dass E{M(l)} x; sie ist
quadratisch schätzbar, wenn mit
M(I)=ITMI für E{lTMI}=x gilt. Damit
ist lTMI ein quadratischer Schätzer
von x Quadratische Schätzer sind
also quadratische Formen der
Beobachtungen.

Man schätzt zunächst nicht einzelne
Komponenten ct„. sondern eine lineare
Funktion pTo aller Komponenten.

Setzt man aber als Spezialfall pT

|0 r 0|, so ist auch die Schätzung

einzelner Komponenten ct,, möglich

(wegen der Bedeutung von r, vgl.
Abschnitt 4.3).

2.2 Unverzerrte quadratische Schätzer
-QUE
Die erste Eigenschaft, die man von
einem (guten) Schätzer verlangt, ist,
dass er unverzerrte Schätzungen
liefert (Quadratic Unbiased Estimator -
QUE).
Grundlage für die Konstruktion dieser
Eigenschaft des Schätzers PMI ist die
Verteilung dieser Form. Sie ist (Searle,
1971, p. 55) für normalverteilte
Beobachtungen x2-verteilt mit dem
Erwartungswert

E{ITMI} E{IT}M E{l} + sp{M D(l)}
(2-1)

(sp{} Spur-Operator).
Mit (1-2) und (1-3) folgt

E{ITMI} xWMAx + sp{M C} pTo.

(2-2)

Die Forderung nach Unverzerrtheit
des Schätzers lTMI verlangt nun
- Unabhängigkeit von den festen

Parametern x; dies führt zu der Bedingung

ATMA 0. (2-3)

x kann also im linearen Modell mit
einer beliebigen generalisierten In-
versen N" der Normalgleichungen
N gewonnen werden. Damit sind
auch Probleme der Festlegung des
geodätischen Datums bedeutungslos

- Unabhängigkeit von den
unbekannten, dennoch a priori im
Ausgleichungsansatz zu berücksichtigenden

VKK, die in C enthalten
sind. Dies führt zur zusätzlichen
Forderung

sp{M C} Z Z ct„ sp{MQ„} ptct

oder komponentenweise

sp{MQ„} p„ Z p, p (2-4)

Die quadratische Form lTMI ist dann
QUE für pTcj, wenn die Forderungen
(2-3) und (2-4) erfüllt sind.

2.3 Invariante, unverzerrte
quadratische Schätzer - IQUE
Invarianz ist als sog. Translationsinvarianz

zu verstehen, z.B. Invarianz
gegenüber einer (zulässigen) Änderung
der Näherungskoordinaten bei einer
geodätischen Netzausgleichung.
Invariante, unverzerrte quadratische
Schätzer heissen IQUE (Invariant
Quadratic Unbiased Estimator).

An die Stelle des Modells (1-1) tritt
dann das neue Modell (Persson,
1980. p.8)

l=A(x + dx)=Ax + Adx (2-5)
oder

l-Ax Adx (2-6)
mit

E{l-Ax}=Adx. D{l-Ax} C (2-7)

Der neue Schätzer

(l-Ax)TM(l-Ax)
soll vernünftigerweise die gleichen
Schätzergebnisse liefern wie der
Schätzer (2-2) in Verbindung mit
(2-3) und (2-4). Das ist dann der
Fall, wenn

(l-Ax)TM(l-Ax)=lTMI. (2-8)

Multiplikation der linken Seite fuhrt
zu der Bedingung
lTMI - 2lTMAx + xTATMAx lTMI.

die nur erfüllt wird, wenn
MA 0. (2-9)

Forderung (2-3) folgt damit ebenso
aus (2-9). Die Umkehrung gilt nur für
positiv définîtes M (Koch, 1980,
S.207), für das QUE und IQUE identisch

sind.

2.4 BESTe IQUE- BIQUE
BEST bedeutet minimale Varianz des
Schätzers.
Für normalverteilte Beobachtungen
ist (Searle, 1971, p. 57) die Varianz

V{} der quadratischen Form lTMI
gegeben durch

V{lTMI} 2sp{MCMC}
+ 4xTATMCMAx

und wegen (2-9)

V{lTMI} 2sp{MCMC}
«2sp{MQMQ}. (2-10)

Q wird hier als Näherungswert für
C ct2Q verwendet, da ct2 zunächst
nicht bekannt ist. BIQUE können
dann konstruiert werden, wenn (2-10)
- unter Beachtung von (2-3) bzw.
(2-9) und (2-4) - minimiert wird. Die
Lösung dieser Minimierungsaufgabe
mit Nebenbedingungen führt (Koch,
1980. S. 210) mit s2 als Schätzwert für
die Varianz der Gewichtseinheit ct2 auf
die Gleichung
S s2 q, (2-11)

woraus für s2 mit

S sp{MQMQ} sp{MQ} (2-12)
q lTMQMI lTMI (2-13)
M Q-1-Q-1ANATQ-1 (2-14)

folgt:

s2 -^ (2-15)
sp{MQ}

v '

Die Übereinstimmung mit der
üblichen, aus vTPv resultierenden Schät-

298 Mensuration, Photogrammetrie, Génie rural 9/84



zung wird in den nächsten Abschnitten

aufgezeigt.
Sollen VKK ct„ geschätzt werden, sind
sie mit Hilfe der Grössen

S (s„) sp{MQ„MQ„} (2-16)
q=(q,)=lTMQ,JMI (2-17)
i,j 1 c

zu gewinnen. Details werden weiter
unten erläutert.
Für normalverteilte Beobachtungen
ist BIQUE äquivalent mit MINQUE
(Minimum Norm Quadratic Unbiased
Estimation; Rao 1970; Persson
1980).

2.5 Heuristische Bestimmung von M
Betrachtet man (1 -5) als Gauss-Mar-
koff-Modell
l Ax + e. D{I} ct2Q,Q-1 P

(Gewichtsmatrix P), so werden die
Unbekannten x durch x (ATPA)~ATPI

N"ATPI und der Fehlervektor e
durch die Verbesserungen v
geschätzt. Dann sind die ausgeglichenen

Beobachtungen î Ax AN"ATPI
und die Verbesserungen

v I -Î (2-18)

Bildet man die quadratische Form
vTPv, so ergibt sich

vtpv=rpi - itpanatpi
IT(P-PANATP)I ITMI. (2-19)

Die Formmatrix ist die gesuchte Matrix

M (2-14).

2.6 Beispiel der Einheitsvarianz
Fasst man die bisherigen Ergebnisse
(2-15). (2-4), (2-19) und die allgemein

bekannte Formel zur Schätzung
der Einheitsvarianz zusammen, so
ergeben sich die Beziehungen

,_ imi _
nvn

_
vTPv

sp{MQ} p n-m'
die in Verbindung mit (2-14) beste
invariante quadratische unverzerrte
Schätzer der Einheitsvarianz sind. Die
folgenden Berechnungen bestätigen
dies:

a) M MT

b) ATMA 0: AT(P-PAN"ATP)A
ATPA-ATPAN"ATPA
N-NN"N=0

c) sp{MQ} p n-m:
sp{(P-PANATP)Q}
sp{E-PAN"AT}
sp{E}-sp{ATPAN~}
n-m
(ATPAN"=NN-,
idempotent)

s2 ist QUE für ct2.

d) MA 0: (P-PAN"ATP)A
PA-PAN"ATPA
PA-PAN N=0
(Koch, 1980, S.50)

s2 ist IQUE für ct2.

e) V{lTMI} V{vTPv} 2sp{MCMC}
2(cr2)2sp{MQMQ}
2((j2)2sp{MQ}
2((j2)2(n-m)

1

n-m
v'Pv

V{s2
n-m

V{vTPv]
n-m

1

(n-m)2

.2 (CT2)2

n-m

2((j2)2(n-m)

Der Schätzwert der Varianz beträgt
damit - wie allgemein bekannt:

2(s2)2V(s2)=^^--
n-m

s2 ist BIQUE für ct2.

2.7 Lokale, iterierte, gleichmässige
Schätzer
Die Bedingung sp{MQ} p n - m r

(Redundanz) lässt sich - gleich welcher

Näherungswert in (2-10)
gewählt wurde - für die Schätzung der
Einheitsvarianz immer erfüllen. Diese
ist tatsächlich unabhängig von der a

priori gewählten Varianz. Unter
Einhaltung der übrigen Bedingungen ist
die Schätzung s2 deshalb immer
BIQUE ((gleichmässig) beste Schätzung).

Beim Schätzer von VKK wird die
Bedingung sp{MQ,} p, nicht auf
Anhieb für alle i zu erfüllen sein. Die
Schätzungen sind vielmehr zunächst
von der gewählten Trennung der

Varianz-Kovarianzmatrix C= Z Z °.A

in ihre Bestandteile ct,, und Q„ abhängig.

Diese Abhängigkeit führt dann zu
(lokal) erwartungstreuen und in der
Folge zu (lokal) besten Schätzern. Die
lokal besten Schätzer können aber zur
Verbesserung der Näherungswerte
und zu einer iterativen Erreichung der
gleichmässigen besten Schätzung
verwendet werden (Koch. 1980,
S.209ff). Wenn das Modell richtig
formuliert ist, und die Näherungswerte

nicht zu schlecht sind, werden
die iterativen Schätzer nach wenigen
Iterationen konvergieren. Damit sind
die iterativ verbesserten lokalen
Schätzer nach Erreichen des
Konvergenzzieles gleichmässig erwartungstreue,

invariante und beste Schätzer.

3. Praktische Durchführung der
VKK-Schätzung
3.1 Übergang vom lTMI- zum
vTPv- Schätzer
Gewöhnlich werden
Varianzkomponenten-Schätzungen nicht mit der

quadratischen Form lTMI, sondern mit
der Form vTPv durchgeführt. Der
Übergang vom einen zum anderen
Schätzer wird im folgenden
veranschaulicht.

Mit (2-14)

M P - PAN"ATP
P(E-AN"ATP) PD (3-1)

folgt aus (2-18)

v l-f=l-Ax=(E-AN-ATP)l DI

(3-2)
und

Q™=DQDT (3-3)

Damit wird aus (2-1 2)

S sp{MQMQ} sp{PDQPDQ}
sp{PDQDT} sp{PQw}. (3-4)

Aus (2-13) wird

q TMQMI TPDQPDI lTPDI
lTMI=vTPv. (3-5)

Damit lautet (2-11 bzw. (2-1 5)
nunmehr

vTPv

^SlPcrT (3-6»

Zu diesem Ergebnis gelangt man
sofort, wenn man für die Verbesserungen

mit der Verteilung

v~N{0,Cvv} (3-7)
den Erwartungswert ihrer quadratischen

Form betrachtet:

E{vTPv} sp{PCw} CT2sp{PQw}. (3-8)

Wird der Nenner in (3-6) weiterentwickelt,

so ergibt sich

sp{PQm}=sp{PDQDT}
sp{(E-PAN"AT)
(E-PAN-A1)}
sp{E-PAN"AT}
sp{E}-sp{ATPAN"}
n - m r

(Redundanz r), woraus die bekannte
Beziehung für die Schätzung der
Einheitsvarianz

vTPv
s2 -— (3-9)

r

folgt.

3.2 Varianzkomponenten-Schätzung
Die Aufgabe besteht in der Schätzung
einzelner Varianzkomponenten ct2, die
bei der Zerlegung der Dispersionsmatrix

D{l} gemäss (1-4) auftreten und
unbekannt sind. Für die praktische
Durchführung der Schätzung
(Welsch, 1980a) wird von (3-2)
ausgegangen, indem die Beobachtungen
und ihre Verbesserungen der erforderlichen

Zerlegung der Dispersionsmatrix
entsprechend aufgeteilt werden,

z.B. in (Beobachtungsgruppen)
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D{l}= Z C„ (3-10)

v, l,-A,x=(E,-A(N-ATP)l D,l

(3-11)
wobei

c c c

Z v, v, Z I, l. Z D,= D.
i=i i=i .-i
In D, sind auch Anteile der anderen
Beobachtungsgruppen j 4= i enthalten,
so dass

D,= Z (E,-A,N-(ATP),)= Z D„.
i=i i=i

Der Erwartungswert der quadratischen

Form der Verbesserungen v,

(vgl. (3-7)) wird damit zu

E{v[Pl,v,} sp{P„D,CDT}
c

sp{P„D, Z C„DT}
i-i

sp{Z PHD,CIID„}. (3-12)
i=i

Die Struktur (3-12) lässt es zunächst
nicht zu, die Varianzkomponenten
getrennt zu schätzen. Die Beziehung
(3-12) wird schon von Helmert
(1907) als Schätzer verwendet
(Welsch, 1977).
Erst nach Übergang vom Erwartungswert

zur Schätzung und nach Erreichen

des Konvergenzzieles

s2->1 1 1 i. c (3-13)

gelingt es, die Summation auszuführen

(Förstner, 1979) und zu setzen

v|P„v, s2 sp{P„DQD|}
s2 sp{P„Q7}

(3-14)

oder durch Ausnützung des Spur-
Operators

v:P„v, s2 Z (pBBq™), (3-15)
g 1

worin c, die Anzahl der Beobachtungen,

für die s2 geschätzt wird,
bezeichnet.

3.3 Kovarianzkomponenten-
Schätzung
Ist es erforderlich und nach Zerlegung
(1-4) der Dispersionsmatrix möglich,
auch Kovarianzkomponenten zu
schätzen, so wird ganz analog zur
Varianzkomponenten-Schätzung
vorgegangen. Dies sei in Kürze dargestellt.
Zerlegung des mathematischen
Modells

D{I}=Z C„+ Z C,
i i i.j i

'»]

v, D,!, D,= Z D„
i i

v, D,l. D,= Z Dik

(3-16)

(3-17)

Bildung der Erwartungswerte

E{v:P„v,} sp{P,lDlCD,}. (3-18)

In (3-18) sind in C sämtliche VKK a«

enthalten, die nach Übergang zur
Schätzung erst nach Erreichen des
Konvergenzzieles

slk->s„->1 l,k=1 i. j c(3-19)

getrennt werden können:

v:P„v, s„sP{P„Q7}. (3-20)

Infolge des Spur-Operators ist
wiederum eine elementenweise Summation

möglich

vTP„v, s„ Z Z (phgqvg
h=1 g=1

(3-21

3.4 Varianz der Schätzer
Auf die Varianz der VKK soll hier nicht
eingegangen, vielmehr auf die
Abschnitte 2.4 und 2.6 oder z. B Koch
(1980, S. 21 Off.) verwiesen werden.

4. Anwendungen
Anwendungen, über die bisher
berichtet worden ist, beziehen sich fast
ausschliesslich auf die Schätzung von
Varianzkomponenten. Dies ist
verständlich, wenn man bedenkt, wie
schwierig es ist, Vorinformationen
über Korrelationen bzw. Kovarianzma-
trizen zu bekommen.

Die Darstellung der folgenden
Anwendungsbeispiele beschränkt sich
im wesentlichen auf die Erläuterung
des stochastischen Modells und die
Zerlegung der Dispersionsmatrix.

4.1 Geodätische Netzausgleichungen
mit heterogenem Beobachtungsmaterial

Die Aufgabe besteht in der Schätzung
der Varianzen einzelner
Beobachtungsgruppen, z.B. der Richtungsund

Streckenbeobachtungen in einem
kombinierten Triangulations-Trilatera-
tionsnetz. Von der Modell-Technik
her gesehen spricht man von univa-
riaten Gauss-Markoff-Modellen.
Mit den Symbolen a für
Richtungsmessungen und d für Streckenmessungen

wird das mathematische Modell

wie folgt aufgebaut:

l-v Ax mit r |aTdT|.

vt |vX|,At |A;AJ| (3-11)

Die Dispersionsmatrix wird (reihend)
zerlegt

0
' +

0

c„ + cd (3-11 ;

oder

D{I} C
2

z c„

ct2 diag{Qa} 0
0 ct2 diag{Qd}

(3-10)
Die Gewichte 1/qa, 1/qd werden a

priori angenommen, die Verbesserungen

va, vd und ihre Kofaktoren q™ und
qdd sind Ergebnisse einer ersten
Ausgleichung. Mit (3-1 5) werden Varianzen

s2 und sd berechnet, eine zweite
Ausgleichung durchgeführt, erneute
Werte für s2 und sd berechnet solange,
bis mit s2 sd 1 das Konvergenzziel
erreicht ist.

Ein numerisches Beispiel findet sich
bei Welsch (1980b). Veröffentlichungen

mit numerischen Beispielen der
Schätzung von Kovarianzkomponenten

im unvollständigen multivariaten
Gauss-Markoff-Modell (Schaffrin,
1983) liegen derzeit noch nicht vor.

4.2 Schätzung der
Fehlerkomponenten eines
EDM-Gerätes
Die Aufgabe besteht in der Schätzung
der Fehlerkomponenten a und b für
den Ansatz

s2EDM a2 + b2-s2.

der die Fehlerformel für EDM-Geräte
darstellt (Koch, 1978).

Für die Konstruktion der Dispersionsmatrix

wird vom gemischten Modell

I Ax + e

ausgegangen.

(1-5)

Der Fehlervektor e ist Linearkombination
des konstanten Fehlereinflusses a

und des streckenabhängigen Einflusses

b

e= Z B,€,= B1€1 + B262
i i

mit

(1-6)

B,= E, B,

0

0

und den Verteilungsaussagen

E{e} E{€,} 0. E{eeT} Eje^} ofE.

(1-10)

Damit kann die Dispersionsmatrix
aufgebaut werden

C= Z ct2B,B^= Z ct2Q,
i i i=i
CT2Q11 + CT2Q22.
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(1-9) ist ein Beispiel für eine
(überlappende) Zerlegung gemäss (1-12)

11 0 SVs2
0

-oi + rt
0 ¦1 0 's2

C Ca + Cb (3-10)

Für die Schätzung s2 und s2, der
Varianzkomponenten ct2 und ct2, benötigt
man die Gewichte P Q1 (p,=1,

1

P2, ^). die Verbesserungen v, und
s,

ihre Kofaktoren q™ Damit kann
(3-15) solange angewendet werden,
bis das Iterationsziel erreicht ist. In
Koch (1981) wurde auch die Kova-
rianzkomponente cjab geschätzt.

4.3 Varianzkomponenten-Schätzung
und Zuverlässigkeit
Die Beobachtungen werden in zwei
Gruppen eingeteilt. Die erste Gruppe
besteht aus einer einzigen Beobachtung,

derjenigen, deren Zuverlässigkeit
bzw. Fehlerhaftigkeit untersucht

werden soll. Die zweite Gruppe enthält

alle übrigen Beobachtungen.
Dem Beispiel in Abschnitt 4.1 folgend
wird die Dispersionsmatrix zerlegt
und der Anteil der ersten Gruppe
betrachtet.

c z CM

C„ =CTfQ„ =CT2qn

aus

vfov^sfoq^

,?_vÎPi

s
Vl

1 Töii

v.
Qii

Das Zuverlässigkeitsmass der
normierten Verbesserung

w - Vl_
sVq^

^1
s„

hat somit nur die Qualität eines (lokal
besten) Masses, wenn nicht - was
theoretisch geschehen musste - der
Iterationsprozess bis zur Konvergenz
fortgesetzt wird (Li, 1983).
Die Grösse p,q" r1 gibt den
Redundanzteil der Beobachtung an, der im
Rahmen der Zuverlässigkeitstheorie
eine wesentliche Rolle spielt.

4.4 Genauigkeitssteigerung in der
klassischen Ausgleichung
Bisweilen bestehen Vorausinformationen

über die zu schätzenden
Unbekannten x einer Ausgleichung (z.B.

Einstellfehler bei der Messung
photogrammetrischer Punktkoordinaten.
Zentrierfehler o.a.). Diese Information
kann in einem Varianzkomponenten-
Modell verarbeitet werden. Dazu wird
das gewöhnliche Gauss-Markoff-Mo-
dell erweitert

1,+v^Ax, P1 Q711 aus D{I1} ct2Q11

l2 + v2=Ex, P2 Q^ aus D{l2} o2Q22.

Die Einstell- oder Zentrierfehler der
Punktkoordinaten x werden als
zusätzliche Beobachtungen l2 0
angesehen. Verwendet man die vermutete
Einstell- oder Zentriergenauigkeit als
Gewicht P2 dieser Beobachtungen, so
kann die vollständige Dispersionsmatrix

C CT2Qn +ct2Q22

angesetzt und die Genauigkeit ct2 der
Vorinformation mit (3-15) geschätzt
werden. Das Verfahren wurde von
Ebner (1978) angegeben. Es lässt
viele Anwendungen zu, z.B. die
Berücksichtigung von Punktunruhen bei
Stabilitäts- und Sensitivitätsuntersu-
chungen und Deformationsanalysen,
Einbeziehung nicht-modellierbarer
systematischer Restfehler (Schwintzer,
1984) u.a.

4.5 Weitere Anwendungen
Über weitere Anwendungen wird z. B.

von Grafarend und Kleusberg (1980)
bei der Schätzung von Instrumenten-
und Beobachtungsfehlern bei
Kreiselmessungen berichtet, Schaffrin
(1983, S.101 ff.) analysiert weitere
Beispiele, insbesondere auch die
Schätzung von Kovarianzmatrizen für
photogrammetrische Bildkoordinaten.
Aus Platzgründen kann jedoch auf
diese und andere Beispiele nicht
näher eingegangen werden.

Für die eingehendere Darstellung
wurden bewusst einfache
Anwendungsbeispiele ausgewählt, um zu
demonstrieren, dass eine recht
komplizierte Theorie so aufbereitet werden
kann, dass sie auch dem Praktiker bei
alltäglichen Problemen zu einem
Gewinn verhelfen kann. Darüber hinaus
steht die Ausschöpfung der theoretischen

Möglichkeiten für viele Gebiete
erst am Anfang.
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