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Multivariate Statistik und Zuverlässigkeit
A. Carosio

Die Geodäten haben sich seit jeher mit zwei wichtigen Problemen befasst: Der
Planung und Gestaltung von zuverlässigen Messanordnungen mit den dazugehörigen

Berechnungsverfahren sowie der Feststellung und Lokalisierung von groben

Fehlern nach durchgeführten Messungen.
Der vorliegende Bericht, eine Kurzfassung einer umfassenden Studie, die vor
kurzem als Promotionsarbeit an der ETHZ angenommen worden ist, befasst sich
mit beiden Problemen und zeigt die Zusammenhänge zwischen statistischen
Tests und Zuverlässigkeit sowie zwischen den intuitiven Verfahren aus der Praxis
und den modernen Methoden der multivariaten Statistik. Unter anderem wird ein
neuer Test für die Beurteilung der Triangulationsresultate (der NMAX-Test)
beschrieben und seine Wirkung auf die Zuverlässigkeit der Messsysteme gezeigt.

Les géodésiens se sont toujours occupés de deux problèmes très importants: la
conception de réseaux géodésiques et de procédés de calcul fiables, ainsi que
l'identification des erreurs grossières après les campagnes de mesures.
Le présent travail, résumé d'une récente thèse de doctorat de l'EPFZ, traite les
deux problèmes et décrit, d'une part, les relations entre tests statistiques et fiabilité
et, d'autre part, entre les procédés intuitifs des praticiens et les méthodes modernes
de la statistique multivariée. Un nouveau test (NMAX) pour l'évaluation des résultats

est présenté plus en détail avec les conséquences relatives sur la fiabilité des
systèmes de mesure.

Einführung

1. Problemstellung und
Zielsetzungen
Seit mehr als einem Jahrhundert wird
über die statistischen Eigenschaften der
geodätischen Beobachtungen gesprochen

und über die Tatsache, dass die
für die Auswertung bereitgestellten
Messwerte nicht immer als Realisierungen

von normalverteilten Zufallsvariablen

betrachtet werden können. In der
klassischen Ausgleichungsrechnung
wurden die Konsequenzen dieser
Feststellung nur am Rande behandelt. In
den meisten Werken spricht man von
drei Arten von Fehlern für die Beobachtungen

in einem Messprozess: Zufällige,
systematische und grobe Fehler. Während

die Bedeutung der zufälligen
Fehler immer mit grosser Aufmerksamkeit

beobachtet wurde, beschäftigten
sich die Vermessungsingenieure nur
empirisch mit der Problematik der
groben Fehler.
Erst Ende der sechziger Jahre veröffentlichte

W. Baarda seine bekannte Arbeit
(A testing procedure for use in geodetic
networks), wodurch erstmals die
theoretischen Grundlagen für die Fehlersuche

und für die Überprüfung der
Zuverlässigkeit der geodätischen Messsyste-
me formuliert waren. Die vorliegende
Arbeit befasst sich hauptsächlich mit
den Verfahren für die Entdeckung und
Beseitigung allfälliger grober Fehler und
versucht zu zeigen, dass die intuitiven
Methoden der Praktiker und die
mathematischen Verfahren der Statistiker viel
ähnlicher sind, als man üblicherweise
annimmt.

Die Hauptkomponentenanalyse und die
darauf aufgebaute Zuverlässigkeitstheorie

werden etwas ausführlicher
beschrieben, dies nicht, weil sie wichtiger

wären als andere Methoden,
sondern weil sie in der letzten Zeit vom
Verfasser erstmals für die Lösung
geodätischer Probleme eingesetzt worden
sind.

2. Die Ausgleichung geodätischer
Netze in der Praxis
2.1 Die schweizerische Triangulation
Die Arbeiten für die jetzt gültige
schweizerische Triangulation höherer Ordnung
begannen in der zweiten Hälfte des
letzten Jahrhunderts. Die Koordinaten
der Punkte wurden durch Ausgleichung
nach der Methode der kleinsten
Quadrate meistens in kleinen Teilnetzen
bestimmt. Die grösste Anzahl der
Berechnungen sind Einzel- oder
Doppelpunkteinschaltungen; nur das Netz
erster Ordnung wurde in grösseren
Abschnitten ausgeglichen.
Vor der Computerzeit war der Aufwand
für eine strenge Ausgleichung grosser
Netze so erheblich, dass man schon für
drei Neupunkte etlichen Respekt empfand.

Es ist deshalb nicht überraschend,
dass sich damals niemand besonders
bemühte, Methoden zu entwickeln, um
grobe Fehler aus den Ergebnissen einer
Ausgleichung zu erkennen. Man
versuchte, die Fehler um jeden Preis schon
vor aufwendigen Berechnungen zu
entdecken und zu eliminieren. Nach der
Ausgleichung zeigte man sich gegenüber

den eventuell übriggebliebenen
Modellfehlern eher toleranter: der
Aufwand für die Korrekturen war unangenehmer

als die Fehler selbst.

Zwei Ereignisse haben in den letzten 15

Jahren den praktischen Einsatz der
Ausgleichungsrechnung wesentlich
verändert:
- die Entwicklung kostengünstiger

elektronischer Distanzmessgeräte
mit grosser Reichweite und

- die elektronische Datenverarbeitung.
Die elektronische Distanzmessung hat
seit ihrer Einführung die Struktur der
geodätischen Netze bestimmt. Die
übersichtliche Dreiecksvermaschung
war plötzlich nicht mehr notwendig. Der
Netzentwurf und die Rekognoszierung
wurden einfacher und die geodätische
Arbeit wirtschaftlicher. Komplexer und
immer schwieriger jedoch wurde es,
die Qualität der Messanordnung zu
beurteilen.
In der selben Zeit fand der Durchbruch
der elektronischen Datenverarbeitung in
der geodätischen Praxis statt. Der
Traum der Geodäten, Systeme mit
(beliebig vielen) Unbekannten
auszugleichen, verwirklichte sich. Was im
Feld die elektronische Distanzmessung
ermöglicht hatte, konnte in entsprechend

flexibler Art auch ausgeglichen
werden. Die Netze wurden grösser,
komplexer und die Exzentren zahlreicher,

so dass auch die Interpretation
der Resultate wesentlich höhere
Ansprüche stellte.

2.2 Aktuelle Beurteilungsverfahren für
die Triangulationsresultate
Im Zeitalter der Computer ist das
Rechnen leicht geworden, sehr leicht
sogar. Mit kleineren oder grösseren
Rechenanlagen können in wenigen
Sekunden grosse Datenmengen preiswert

verarbeitet und die Resultate
ausgedruckt werden.
In der Praxis ist die Gefahr gross, dass
die mühelos vom Computer erhaltenen
Resultate in ihrer Wichtigkeit
unterschätzt und daher etwas flüchtig überprüft

werden. Gerade die kritische
Interpretation der Ergebnisse ist jedoch
eine der wichtigsten Aufgaben des
Ingenieurs.
Um gegen diese unerwünschte Erscheinung

vorzugehen, wurden in der letzten
Zeit verschiedene Verfahren entwickelt
und zum Teil in der Praxis eingesetzt,
welche die Interpretation der
Triangulationsergebnisse in systematischer Art
ermöglichen sollen. Man kann sie in
zwei Gruppen unterteilen:
a) Analyse der Modelleigenschaften

und der Messanordnung (a priori)
b) Prüfung der Modellannahmen

aufgrund der durchgeführten Beobachtungen

(a posteriori).
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In der Analyse der Modelleigenschaften
werden die Folgen der Modellannahmen

unter der Voraussetzung, dass das
Modell zutrifft, untersucht. Die Analyse
ist unabhängig von den durchgeführten
Beobachtungen und kann deshalb
vorsorglich auch vor den Feldarbeiten
stattfinden. Dazu gehören die Berechnung

der Fehlerellipsen a priori für die
Neupunkte, die Zuverlässigkeitsbetrachtungen

usw. Zweck der Analyse
ist der Nachweis, dass die Resultate
unter den getroffenen Annahmen die
übergeordneten Randbedingungen
(Bedürfnisse des Auftraggebers) befriedigen

werden.
Nach Ausführung der Messarbeit,
jedoch vor Ablieferung der Resultate
muss man sich vergewissern, ob keine
Gründe für eine Verwerfung des
angenommenen Modells vorliegen, da nur
wenn die Modelleigenschaften zutreffen

der Nachweis vorliegt, dass die
Resultate den übergeordneten
Randbedingungen genügen. Zu diesem Zweck
werden statistische Tests eingesetzt, die
mit den ausgeführten Beobachtungen
oder mit Funktionen davon durchgeführt

werden können: z. B. Test des
Verhältnisses Mittlerer Fehler a poste-
riori-Mittlerer Fehler a priori, Berechnung

der Dreiecksschlüsse in
Triangulationsnetzen usw. Ziel der Modelltests ist
die Annahme oder Verwerfung des
mathematischen Modells: im Fall der
Annahme können die Resultate
veröffentlicht werden, andernfalls müssen
das Modell modifiziert (z.B. durch
Nachmessungen) und die neuen
Eigenschaften analysiert werden, um zu
prüfen, ob die übergeordneten
Randbedingungen auch nach den Änderungen
des Modells noch eingehalten sind.
Beide Gruppen von Verfahren werden
im folgenden beschrieben. Um die
Herleitungen zu erleichtern, werden
zuerst die Verfahren a posteriori behandelt

und erst später die Verfahren a

priori.

Prüfung der Modellannahmen
aufgrund der durchgeführten
Beobachtungen (Verfahren a

posteriori)

3. Einfache Verfahren aus der
Praxis
3.1 DerF-Test
Die Triangulationsprogramme liefern die
geschätzte Standardabweichung a
posteriori der Gewichtseinheit, so dass die
Berechnung der Prüfgrösse

F
Ô2

o2

keine Schwierigkeit bietet (wo ô die
Standardabweichung der Gewichtseinheit

a posteriori und o die gewählte

Standardabweichung der Gewichtseinheit

a priori sind).
Die Verteilung der Teststatistik F ist die
bekannte Fisher- oder F-Verteilung. Der
Freiheitsgrad wird durch die Geometrie
des Netzes bestimmt, während man für
den mittleren Fehler a priori einen
Freiheitsgrad (meistens °°) annimmt.
Dann kann der Tabelle der F-Verteilung
sofort entnommen werden, ob die
vorausgesetzte Wahrscheinlichkeitsschranke

überschritten ist oder nicht.
Da nur eine Grösse getestet wird
(univariater Test), stellen sich keine
Korrelationsprobleme.
Der F-Test ist sehr wirksam bei der
Suche nach systematischen Modellfehlern,

die viele Beobachtungen verfälschen

(z. B. ungenaue Fixpunkte,
Lotabweichungseinflüsse, falsche Schätzung
der Genauigkeit für die Messungen
usw.). Weniger wirksam ist er für die
Entdeckung von einzelnen groben Fehlern,

wenn der Betrag des Fehlers,
relativ klein und das Netz gross ist, da
die Testempfindlichkeit mit zunehmendem

Freiheitsgrad ständig abnimmt.

3.2 V-Test
Die heute noch am meisten angewandte

Methode zur Beurteilung der Resultate

einer Ausgleichung ist der Test der
Verbesserungen in den definitiven
Abrissen. Getestet werden die Grössen

U| Vi/ai, i 1 n

wobei
v, die i-te Verbesserung,
on die angenommene Standardabweichung

a priori der i-ten Messung,
n die Anzahl Messungen der Ausgleichung

sind.
Der Test wird durchgeführt unter der
vereinfachenden Annahme, dass die u,
annähernd standardisiert normalverteilt
(mit Erwartungswert 0 und Varianz 1)

und die Korrelationen zwischen den ui

vernachlässigbar klein sind.
Da alle Computerprogramme für die
Ausgleichung die einzelnen Verbesserungen

liefern, ist der Test leicht
durchführbar und deshalb trotz vielen
schlechten Eigenschaften so populär.
Die Nachteile des V-Tests sind
offensichtlich: die erwähnten vereinfachenden

Annahmen sind eine recht schlechte

Näherung, da die Standardabweichung

von vi (oVi) meist wesentlich
kleiner als an ist.
Zwischen den v, sind zudem Korrelationen

vorhanden, die normalerweise
nicht berechnet werden. Es ist daher
nicht möglich, einen Gesamttest aller
Komponenten des U-Vektors durchzuführen,

da die Annahmebereiche nicht
direkt bestimmbar sind.

3.3 Test der geometrischen
Bedingungen
Eine klassische Methode zur Überprüfung

geodätischer Netze ist der Test der

Widersprüche der geometrischen
Bedingungen. Für reine Triangulationsnetze

ist das Beispiel des Tests der Winkelsumme

in den Dreiecken bekannt und
braucht also keine besondere Erklärung.

Der grosse Vorteil solcher Tests liegt in

der Möglichkeit, die Testgrösse vor der
Ausgleichung zu berechnen. Als man
noch von Hand rechnete, konnte man
Unstimmigkeiten sofort entdecken und
sich eine unnötige Ausgleichung ersparen.

Nach der Einführung der Distanzmessung

wurde die Struktur der Netze viel
komplizierter, so dass sich die Bildung
der geometrischen Bedingungsgleichungen

nicht mehr so einfach gestaltete.

Für den Einsatz elektronischer
Rechenanlagen wurde für die Ausgleichung

die vermittelnde Methode vorgezogen,

und die Bedingungen traten
nicht mehr explizit auf.
Zur Lösung des Problems wurden in

der Schweiz Computerprogramme für
die automatische Berechnung der
Dreiecksschlüsse entwickelt [Andris 1967],
Auch die Bildung der anderen
Bedingungsgleichungen stellt keine unüber-
windbare Schwierigkeit dar. In einer
Publikation zeigt R. Conzett, wie mit
dem Austauschverfahren aus der Matrix

der Verbesserungsgleichungen
einer vermittelnden Ausgleichung die
Bedingungsgleichungen automatisch
gebildet werden können. Entwicklungen

in dieser Richtung sind deshalb
noch zu erwarten [Conzett 1978].
Vom statistischen Standpunkt aus gesehen,

ist der Test der geometrischen
Bedingungen sehr günstig, da die
Erwartungswerte der Widersprüche Null
sind und die Varianzen ihrer Normalverteilungen

leicht aus den linearisierten
Bedingungsgleichungen berechnet werden

können. Was hingegen nachteilig
wirkt, sind die Korrelationen zwischen
den einzelnen Widersprüchen, die im
allgemeinen vorhanden sind und einen
Gesamttest erschweren.
Mit Hilfe der Hauptkomponentenanalyse

kann ein spezielles System von
Bedingungsgleichungen gebildet werden.

Der Verfasser hat diese Möglichkeit

eingehend untersucht. Die dabei
erzielten Resultate sind in Kapitel 4
beschrieben.

3.4 Der Test der standardisierten
Verbesserungen
Einen wesentlichen Fortschritt in der
Untersuchung a posteriori geodätischer
Messsysteme bildet der Test der
standardisierten Verbesserungen. Dazu
müssen in einer vermittelnden Ausgleichung

neben den üblichen Grössen
(Unbekannten, Verbesserungen usw.)
lediglich die Standardabweichungen
der einzelnen Verbesserungen
berechnetwerden.

266 Mensuration, Photogrammetrie, Génie rural 8/83



Da die Verbesserungsvariablen für
normalverteilte Messungen ebenfalls nor-
malverteilt sind und Erwartungswert
Null besitzen [E(V) 0], wenn die
Varianz von v, bekannt ist, kann die Grösse

W, V|/Ovl

mit der zentrischen standardisierten
Normalverteilung getestet werden. Der
Test wurde in [Baarda 1968] als (Data
snooping) bezeichnet und wird unter
diesem Namen oft eingesetzt. Eine
Anwendung für die Untersuchung von
geometrischen Transformationen ist in
[Kraus 1975] beschrieben.
Wenn die i-te Beobachtung (und keine
andere) durch einen groben Fehler A,
verfälscht und

lf-li + A|

wird, dann ist für unkorrelierte
Beobachtungen

v- Vj - (q^/qVi0) * Ai [Just 1979].

Die Wahrscheinlichkeit, mit welcher
irrtümlicherweise die Nullhypothese
angenommen wird, ist Funktion des
Betrags von A,, des Verhältnisses q^/q^'1
und des gewählten Signifikanzniveaus a
für die Verwerfung der Nullhypothese.
Da die einzelnen w, unter sich korreliert
sind, ist es nicht möglich, einen Test
aller Komponenten von W durchzuführen.

4. Verfahren aus der multivariaten
Statistik
4.1 Allgemeines
In der Beschreibung der mehrfachen
univariaten Tests in den früheren Kapiteln

ist dem Leser sicher aufgefallen,
dass die gegenseitige Abhängigkeit der
betrachteten Zufallsvariablen nicht
berücksichtigt werden konnte. Die
getrennte Beurteilung der einzelnen Test-
grössen führt zu einem Informationsverlust,

der nicht unterschätzt werden darf.
Besonders bei kritischen Fällen könnten
gerade die verlorenen Informationen
wichtig sein.
Die multivariate Statistik behandelt alle
Verfahren, die sich mit mehrdimensionalen

stochastischen Variablen befassen.

Sie bietet u.a. auch Lösungen für
den Test einer Reihe von unter sich
korrelierten stochastischen Variablen
[Flury, Riedwyl 1980], [Maurer 1979].
Anwendungen solcher Verfahren für die
Beurteilung der Triangulationsresultate
werden im folgenden beschrieben.

4.2 Graphische Verfahren
In der angewandten Statistik wird,
wenn immer möglich, versucht, das
vorhandene Zahlenmaterial durch
Zeichnungen zu veranschaulichen. So
kann die Fähigkeit des Menschen
genutzt werden, aufgrund einfacher
Beobachtung intuitiv komplexe Beziehungen
zu erfassen. Für geodätische Anwen¬

dungen kann als Beispiel das Verfahren
von HJ.Oettli erwähnt werden, das
besonders geeignet ist für die multivariate

Beurteilung des Verbesserungsvektors

[H.J. Oettli 1960-75] (Abb.1).

®
Tritt

Alptha 1177

11 ,*< I80
1182//

/Q' /

Abb. 1 Graphische Darstellung der
Verbesserungen

Im Netzplan werden die durchgeführten
Beobachtungen sowie die dazugehörigen

Verbesserungen graphisch dargestellt.

Ein erfahrener Beobachter kann
aus den Netzverbindungen intuitiv die
vorhandenen Korrelationen zwischen
den Verbesserungen abschätzen und
sie in Beziehung zu den Verbesserungsbeträgen

setzen
So werden Hinweise auf die Ursachen
von Abweichungen aus der Differenz
zwischen erwarteten Korrelationen (aus
der Netzgeometrie) und vorhandenen
Korrelationen (in der Stichprobe)
gewonnen.

Diese einfachen, seit langem bekannten
Hilfsmittel werden hier besonders
erwähnt, um hervorzuheben, dass die
Berücksichtigung der Korrelationen unter

den Verbesserungen durch einen
multivariaten Test ein echtes Bedürfnis
der Praxis ist.

4.3 Die Hauptachsentransformation
Man betrachte als erstes den
Verbesserungsvektor als mehrdimensional
normalverteilte stochastische Variable V
mit

VT (V,,V2 Vn)

E(V) 0

und mit Varianz-Kovarianzmatrix Qw
(positiv définit oder semidefinit, aber
nicht notwendigerweise diagonal) und
dann den Vektor W mit

WT= (w,, w2,..., wn),

berechnet aus V durch die homogene
lineare Transformation

W UT V

wo U eine orthogonale Matrix ist.

Die Varianz-Kovarianzmatrix von W ist
dann

und E(W) 0.
QwU

Dem Hauptachsentheorem [Schwarz,
Rutishauser, Stiefel 1972] ist zu entnehmen:

Zu jeder symmetrischen Matrix M
existiert eine orthogonale Matrix U, so
dass M vermittels U ähnlich auf
Diagonalgestalt D UTMU transformiert wird.
Dazu gilt:
- die Diagonalelemente von D sind

gleich den Eigenwerten von M
(^t, ^2 ^n)

- die Zeilen von UT enthalten die
normierten Eigenvektoren zu den
Eigenwerten, welche entsprechend
geordnet sind wie die Eigenwerte
der Diagonalen von D

- wenn die Matrix M Rang r besitzt,
dann gibt es r Eigenwerte f 0.

Das Theorem kann jetzt bei der oben
definierten Matrix Qw angewandt werden:

Es existiert immer eine orthogonale
Matrix U, so dass

Q,. UT Qw U

eine Diagonalmatrix wird. Die Diagonalelemente

von Qww sind die Eigenwerte
von Qw und gleichzeitig die Varianzen
der einzelnen Komponenten von W,
welche unter sich unkorreliert sind.
Wenn f der Freiheitsgrad und n die
Anzahl Beobachtungen des geodätischen

Netzes sind, besitzt die Qw-Ma-
trix Rang f, und es gibt n-f Eigenwerte
von Qw, die Null sind, d. h. n-f Komponenten

des Vektors W(V) haben Varianz
0. Die entsprechenden Eigenvektoren

stellen daher funktionale Beziehungen
des Modells dar. Die anderen f Komponenten

von W sind hingegen echte
stochastische Variablen mit Varianz
gleich dem entsprechenden Eigenwert
(X,), und die Komponenten der
Eigenvektoren sind die Koeffizienten von f
orthogonalen und daher linear
unabhängigen Bedingungsgleichungen des
geodätischen Netzes
Die Erwartungswerte der Komponenten
des Vektors W sind alle Null, da

E(W) E(UTV) UTE(V) und

E(V) =0sind.

Eine weitere Eigenschaft der Komponenten

des Vektors W ist ihre
Normalverteilung, da die Verbesserungen lineare

Funktionen der normalverteilten
Beobachtungen und die Komponenten
von W lineare Funktionen der Verbesserungen

sind. Die stochastischen
Eigenschaften des Vektors W sind also
bestimmt, so dass die Komponenten
von W als Teststatistiken in einem
Modelltest verwendet werden können.
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4.4 Der Hauptkomponententest
Nach Ausführung der
Hauptachsentransformation z. B. mit dem Jacobi-
Verfahren [Schwarz, Rutishauser, Stiefel
1972] sind die linearen Funktionen
(kanonische Vektoren) bekannt, welche
in der Matrix U aufgezeigt werden, so
dass es möglich wird, die f Komponenten

(Hauptkomponenten) des Vektors
W, für welche X, f 0 ist, zu berechnen
und zu analysieren (Hauptkomponentenanalyse).

Insbesondere können die
Komponenten mit der Normalverteilung
auf signifikante Abweichungen von Null
geprüft werden (Hauptkomponententest).

Praktisch wird der Vektor S mit den
folgenden Komponenten gebildet:

s, w, /Y\
miti 1.2,. n wenn A, ^ 0,

die eine zentrische und standardisierte
Normalverteilung besitzen und stocha-
stisch unabhängig sind. Ihr Wert wird
mit der vorgewählten Wahrscheinlichkeitsschranke

der Normalverteilung
verglichen. Je nach Ergebnis kann die
Nullhypothese für einen Modellfehler
angenommen oder verworfen werden.

4.5 Anwendungen in der Geodäsie
Die Hauptkomponentenanalyse als
bewährte Methode der analytischen Statistik

ist sicher den meisten Geodäten
bekannt. Die mathematischen Grundlagen

dazu findet man praktisch in jedem
Lehrbuch der linearen Algebra, und sie
bieten sicher keine Schwierigkeiten.
Trotzdem wird die Hauptkomponentenanalyse

zur Lösung praktischer Aufgaben

in der Geodäsie wenig eingesetzt.
Eine bemerkenswerte Ausnahme ist
das Verfahren von H. Pelzer zur Untersuchung

der Ergebnisse von
Deformationsmessungen. Die Differenzen
zwischen den u Koordinaten, die in zwei
verschiedenen Zeiträumen bestimmt
wurden, bilden einen n-dimensionalen
Vektor, der für die Nullhypothese den
Erwartungswert Null besitzt. Seme
Varianz-Kovarianzmatrix ist in der Regel
vollbesetzt, so dass die
Hauptkomponentenanalyse sich ausgezeichnet für
die Durchführung eines Tests zur
Überprüfung der Nullhypothese für die
Deformation eignet [Pelzer 1976], [Dupraz,

Niemeier 1979].

4.6 Die Nichteindeutigkeit der Lösung
Jede symmetrische Matrix M der
Ordnung n besitzt n reelle Eigenwerte. Sie
sind als Nullstellen des charakteristischen

Polynoms (vom echten Grad n)
der Matrix M eindeutig bestimmt.
Die Eindeutigkeit gilt nicht für die
Eigenvektoren der Matrix M, welche
ebenfalls für den Hauptkomponententest

interessieren. Die Nichteindeutigkeit
der Eigenvektoren ist aber kein

Hindernis bei der Durchführung des
Tests. Da das vorgeschlagene Jacobi-
Verfahren immer eine Lösung liefert, in
welcher die Eigenvektoren ein ortho-
normiertes System bilden, sind alle
Voraussetzungen für die Anwendung
gegeben, und ein Testvektor S mit
standardisierten und statistisch
unabhängigen Komponenten kann somit
immer hergeleitet werden.
Für weitere Einzelheiten wird auf die
Literatur verwiesen, z. B. [Schwarz,
Rutishauser, Stiefel, 1972].

4.7 Rechenbeispiele
Einfaches Dreieck (Abb. 2)

Winkel Messwert
(Gon)

Verb,
(oc)

1

2

3

61.6305
90.3665
48.0040

-3.3
-3-3
-3-3

mittlere Fehler a
der Beobachtungen

jriori
5oc

/>
Abb 2 Em einfaches Dreiecksnetz

Für die Ausgleichung wird o 1 in allen
Beispielen gesetzt, so dass die Kofakto-
renmatrix der Verbesserungen Qw auch
die Varianz-Kovarianzmatrix der
Verbesserungen ist.
Die Matrix Qw ist:

8.3333 8.3333 8.3333
8.3333 8.3333 8.3333
8.3333 8.3333 8.3333

Mit dem Jacobi-Verfahren können
Eigenwerte und Eigenvektoren berechnet
werden.
Die transponierte Matrix UT der
Eigenvektoren lautet:

0.7071
0.5774

•0.4082

¦0.7071
0.5774
0.4082

0.0000
0.5774
0.8165

und die dazugehörigen Eigenwerte sind
O 25.0 0. Da der erste und

der letzte Eigenwert gleich Null sind,
stellen die entsprechenden Eigenvektoren

funktionale Beziehungen zwischen
den Verbesserungen im Modell dar und
ergeben daher keine Zufallsvariablen.
Der zweite Eigenvektor führt hingegen
zur zentrischen normalverteilten
Zufallsvariablen w2 U2 V -5.77, welche
die Standardabweichung ow=v/Al=5
besitzt. Daraus kann der einzige S-Wert
berechnet werden:

s,= -1.15

Ein eindimensionaler Test der
normalverteilten und standardisierten Grösse
s2 mit a =5% führt zur Annahme des
mathematischen Modells.
Dem Leser ist sicher nicht entgangen,
dass die Testfunktion nichts anderes ist
als die Winkelbedingungsgleichung des
Dreiecks.

Das kombinierte Netz
Während die erste Berechnung gezeigt
hat, dass einfache Resultate auch durch
komplizierte Methoden erreicht werden
können, beschreibt das folgende
Beispiel (Abb. 3) eine Anwendung, die mit
einfacheren Mitteln nicht ohne weiteres
möglich wäre.

ST ZIEL BE OB

0
MPE

CC

D HEB
M

MFD
MM

B A

P

C

256.3460
200.0015
150.0010

5
5
5

1421.260
1000.035
1272.790

10
10
10

P B

C

A

0.0000
92.9560

305.7720

5

5
5

A B

P

56.3450
105.7710

5

5

C P
B

292.9550
350.0005

5
5

B

"H/ \^

1/ \»
Atf- 4 ______--ÖC^T é 9

Abb. 3 Ein kombiniertes Netz

Aufgrund der Beobachtungen können
die Ausgleichung und die folgenden
signifikanten S-Werte berechnet werden.

UTV S-Werte
1) - 4.36430 -0.87286
2) - 1.69706 -0.33941
3) - 2.05144 -0.41029
4) - 7.66923 -1.53385
5) 2.39527 0.28337
6) - 28.69758 - 2.86976
7) - 9.08785 -1.19956

Der eindimensionale Test der Grösse
s6 -2.87, welche standardisiert und
zentrisch normalverteilt sein sollte, führt
für a 5% zur Verwerfung des
mathematischen Modells, da der Annahmebereich

zwischen -1.96 und 1.96 liegt.
Das Verwerfen des Modells ist in

diesem Spezialfall bestimmt berechtigt,
da die zwölfte Beobachtung (Distanz
B-P) absichtlich vor der Berechnung
um 25 mm verfälscht wurde.
Nach der Verwerfung des Modells wird
man versuchen, den groben Fehler
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möglichst genau zu lokalisieren. Zwei
denkbare Verfahren diesbezüglich sind
in den folgenden Kapiteln beschrieben.

5. Der NMAX-Test
5.1 Die Teststatistik
In den bisherigen Beispielen wurden die
einzelnen Komponenten s, des Testvektors,

die aus der Hauptachsentransformation

stammten, nur in eindimensionalen

Tests verwendet, was auch mit
beliebigen geometrischen Bedingungsgleichungen

möglich wäre.
Man hat bis anhin die statistische
Unabhängigkeit der Testvariablen s,
noch nicht ausgenützt. Gerade diese
Eigenschaft erlaubt aber das Durchführen

eines globalen Tests.
Es ist in der Tat leicht, eine Wahrscheinlichkeit

w für das Ereignis zu berechnen,

dass die Absolutbeträge aller
Komponenten s, einer Realisierung des
Testvektors S kleiner als eine festgelegte

Schranke k sind. Das heisst

w P(allels,|r£k) 1,2,

Da die Komponenten s, stochastisch
unabhängig sind, ist dann

w P(ls, ISk)-P(ls2ISk)
...P(ISnlSSk).

Die einzelnen Wahrscheinlichkeiten sind
der eindimensionalen Normalverteilungsfunktion

zu entnehmen. Die inverse

Berechnung ist ebenfalls leicht
durchführbar: ist eine
Irrtumswahrscheinlichkeit gegeben, kann die
Schranke k(a) berechnet werden, für
welche
P (alle I s, I S k (et) )=1-a i 1,2 n

ist. Aufgrund des so berechneten
Signifikanzintervalls kann ein mehrdimensionaler

Test unter gleichzeitiger
Berücksichtigung aller Komponenten der
Testvariablen durchgeführt werden.
Wenn man unter den Komponenten des
Testvektors S die betragsgrösste
Komponente Smax betrachtet, ist sofort
ersichtlich, dass die Wahrscheinlichkeit

w P(allels,lSk) P(lsn !k)

ist. Daher kann man die vorherigen
Ausführungen vereinfachen, indem
man die neue Testvariable smax verwendet

mit dem Vorteil, dass der
mehrdimensionale Test auf einen eindimensionalen

zurückgeführt wird. Zur Beurteilung

der statistischen Eigenschaften der
Zufallsvariablen smax steht die Theorie
der Ordnungsstatistiken zur Verfügung.
Man konsultiere dazu etwa das ausführliche

Werk [David 1980] oder als
Einführung [Bachmann 1973].

5.2 Die NMAX-Verteilung
Die Testvariable smax stammt also aus
einer Reihe stochastisch unabhängiger,
normalverteilter Zufallsvariablen (die
Komponenten des S-Vektors) mit be-

1

0.40 -

f - 2 ><<Xfa k^NMAXCz

\\ ^^M\
l

M

i
*

i i *

Abb. 4 Die Wahrscheinlichkeitsdichte der NMAX-Verteilung für f 2

kanntem Erwartungswert (Null) und
bekannter Varianz (1); sie ist als die
betragsgrösste unter den Komponenten
definiert. Ihre Verteilungsfunktion
(Abb. 4) wird NMAX-Verteilung genannt
und ist in [Carosio 1983] berechnet und
tabelliert. In der gleichen Veröffentlichung

ist ein möglicher Rechenablauf
mit dem entsprechenden FORTRAN-
Programm für die numerische Lösung
beschrieben.

5.3 Rechenbeispiele
Die folgenden Berechnungen zeigen,
wie der NMAX-Test durchgeführt werden

kann. Besonders wichtig ist dabei
der Vergleich mit dem bekannten F-Test,

wobei die verschiedenen
Empfindlichkeitseigenschaften ersichtlich werden.
Das mehrfache Dreiecksnetz
Ein Netz mit drei Dreiecken (Abb. 5)

kann untersucht werden. Die Berechnung

ergibt:

Smax (=Si) - 1.15.

Winkel Messwert Verb.
(Gon) (cc)

1 61.6305 -3.3
2 90.3665 -3-3
3 48.0040 -3-3
4 70.5015 1.7
5 80.3065 1.7
6 49.1915 1.7
7 65.2015 -1.7
8 55.2050 -1 .7
9 79.5940 -1.7

mittlere Fehler a oriori
der Beobachtungen 5oc

^-^"4 s\

<£>

/ ^"~"~^5 i^y/ }V^

b-^^

Abb. 5 Ein mehrfaches Dreiecksnetz

Da die Verteilung der dazugehörigen
Testvariablen smax bekannt ist, kann die
erhaltene Realisierung als Prüfgrösse
eingesetzt werden. Der Test mit der
NMAX-Verteilung für die
Wahrscheinlichkeitsschranke a =5% führt zur
Annahme des Modells im globalen Test.

Der Annahmebereich ist (- 2.4, + 2.4).
Der F-Test führt mit F 0.67 ebenfalls
zur Annahme des Modells, da aus der
F-Verteilung die Annahmeschranke für
F3, oo für a 5% bei Fqr 2.6 liegt.
Falls im Netz eine Beobachtung des
ersten Dreiecks um 25cc verfälscht
wird, erhält man v, v2 v3 11.66 und
ô= 2.38, dao 1 ist, sind

F =ô2/o2 5.66 und
smax 4.04.

Beide Testgrössen führen richtigerweise
zur Verwerfung des Modells.
Wenn das Netz noch einmal erweitert
wird, bis es 30 unabhängige Dreiecke
umfasst (einfachheitshalber werden
hier die gleichen Beobachtungen zehnmal

wiederholt), ergibt diese Variante
ohne grobe Fehler:

F 0.82
Smax - 1 1 b.

Falls eine Beobachtung im ersten Dreieck

um 25cc verfälscht wird, ist

F* 0.86.

Das Modell wird hier mit einem F-Test

trotzdem angenommen. Hingegen führt
der Test der standardisierten Bedingungen

zu

Smax 4.04.

Das Modell wird eindeutig verworfen
(Annahmebereich zwischen -3.15 und
+ 3.15).

Das kombinierte Netz
Das kombinierte Netz in 4.7 kann
ebenfalls untersucht werden. In diesem
Beispiel ist

Smax =-2.87.

Das Modell wird mit dem NMAX-Test
(Irrtumswahrscheinlichkeit 5%) ver¬
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worfen, da der Annahmebereich
(- 2.68, + 2.68) ist. Der F-Test hingegen
hätte mit
F 1.87

zur Annahme des Modells geführt, da
die Verwerfungsschranke für die gleiche

Wahrscheinlichkeit ot= 5% bei 2.01

liegt. In diesem Spezialfall ist eine
Verwerfung erwünscht, da eine Messung

absichtlich verfälscht wurde.

5.4 Wichtige Eigenschaften des Tests
Die Beispiele zeigen deutlich, dass mit
zunehmender Netzgrösse die Empfindlichkeit

des NMAX-Tests gegenüber
derjenigen des F-Tests immer grösser
wird. Der Grund dafür liegt in der
Eigenart der Hauptkomponentenanalyse,

die die lokalen geometrischen
Eigenschaften besser berücksichtigen
kann. Die einzelnen Komponenten des
Testvektors sind in der Regel nur von
wenigen Beobachtungen abhängig. Das
bedeutet, dass sie sich auf bestimmte
Netzteile beziehen und daher empfindlich

reagieren, wenn im eigenen Bereich
ein grober Fehler vorkommt.

5.5 Geometrische Bedeutung des
NMAX-Tests
Für den Test wird der f-dimensionale
Vektor S gebildet mit stochastisch
unabhängigen Komponenten, die nor
malverteilt sind und alle Erwartungswert

=0 und Varianz 1 aufweisen.
Nach der Wahl der Irrtumswahrscheinlichkeit

wird die Signifikanzgrenze sgr
des Tests der Tabelle der NMAX-Verteilung

entnommen.
Wenn

s,Ssgr für i 1, 2 f

ist, wird das mathematische Modell
angenommen. Wenn hingegen eine
einzige Komponente

Sj>SGR

ist, dann wird das Modell verworfen.
Für den Fall eines Systems mit
Freiheitsgrad 2 (f 2) ist der Testvektor S

zweidimensional und kann daher in

einer Ebene dargestellt werden.
Der Annahmebereich ist dann ein Quadrat

mit Seitenlängen 2 • sqr (Abb. 6).

s2"

-^—l—C
-2 -

Eine ähnliche Überlegung kann ebenfalls

für höhere Freiheitsgrade angestellt
werden. Für f 3 wird der Annahmebereich

ein Würfel. Für noch grössere f
spricht man von Hyperwürfeln im f-
dimensionalen Raum.
Selbstverständlich kann mit dem
Testvektor S ebenfalls ein Chi-Quadrat-Test
(oder ein gleichwertiger F-Test)
durchgeführt werden, indem die Grösse

x2 s i + s2 + + sjf

gebildet wird. Aus der Chi-Quadrat-
Verteilung wird xqr für die Irrtumswahr-
scheinlichkeit berechnet, und wenn

s2 + s2 + ¦SfSXQR

ist, wird das Modell angenommen.
Der Fall mit f=2 kann in der Ebene
graphisch dargestellt werden. Der
Annahmebereich ist ein Kreis mit Radius

xqr. Im dreidimensionalen Fall ist der
Bereich eine Kugel, während man für
höhere Freiheitsgrade dann von Hyper-
kugeln spricht.
Man kann als Beispiel die Annahmebereiche

des NMAX-Tests (Hyperwürfel)
und des Chi-Quadrat-Tests (Hyperkugel)
bei einem Freiheitsgrad f 100 und für
a =5% vergleichen. Aus den Tabellen
der NMAX- bzw. der Chi-Quadrat-Ver-
teilung erhält man darauf für f 100
und a 5% die folgenden Werte:

sGr= 3.50
XQR 11.15

(halbe Quadratseite)
(Kreisradius).

Abb 6 Annahmebereich für den NMAX-
Test

Daraus folgt, dass Modellfehler, die
sich nur auf wenige Komponenten von
S auswirken, besser mit dem NMAX-
Test festgestellt werden können als mit
dem Chi-Quadrat-Test.
Die groben Fehler haben in guten
Netzen eine lokal begrenzte Wirkung
und beeinflussen in der Regel nur einen
kleinen Teil der Komponenten von S, so
dass sich die Hauptkomponentenanalyse

für ihre Aufdeckung besser eignet.

5.6 Die Lokalisierung der groben
Fehler
Die bisherigen Ausführungen befassten
sich ausschliesslich mit der Frage: <lst
ein grober Fehler vorhanden?) Absichtlich

wurde die für die Praxis ebenso
wichtige Fragestellung: (Welche
Beobachtung ist falsch?) nicht gleichzeitig
behandelt.
Diese Trennung der beiden Probleme
hat sich in der Geodäsie allgemein
durchgesetzt, da mit Hilfe der
mathematischen Statistik nur eine Antwort
auf die erste Frage gegeben werden
kann. Die zur Verfügung stehenden
statistischen Tests bieten nur zwei
mögliche Antworten: Modell angenommen

oder verworfen, grober Fehler
vorhanden oder nicht (selbstverständlich

mit einer Irrtumswahrscheinlichkeit).

Die Hauptkomponentenanalyse führt zu
einem Test für das gesamte Modell,
liefert aber ebenfalls Angaben zur
Lokalisierung der tatsächlich falschen
Beobachtungen. Wenn der Test zu einer
Modellverwerfung geführt hat, kann
man den linearen Testfunktionen
(Eigenvektoren) einige Angaben zur Abgrenzung

der Netzteile entnehmen, in
welchen ein grober Fehler vermutet werden

kann.
Die einzelnen Komponenten des f-di-
mensionalen Testvektors S sind lineare
Funktionen der Verbesserungen, das
heisst:

Si Zi, • V,+Zl2-V2+... + Z,n-Vn,

wobei die zn die Komponenten des i-ten
Eigenvektors nach Teilung durch -/Xj
(Wurzel des dazugehörigen Eigenwerts)
sind.
In Matrizenform kann das Gleichungssystem

folgendermassen geschrieben
werden:

S ZT V.

Die Verbesserungen der Ausgleichung
sind ihrerseits lineare Funktionen der
Beobachtungen, nämlich

V -QWPL.

(Qw ist die Varianz-Kovarianzmatrix der
Verbesserungen, P die Inverse der
Varianz-Kovarianzmatrix der Beobachtungen

und L der Beobachtungsvektor),
so dass auch S eine lineare Funktion
der Beobachtungen ist:

S GT L, wenn GT - ZT Qw P ist.

Falls der NMAX-Test zur Verwerfung
des mathematischen Modells geführt
hat, kann die i-te Zeile von GT betrachtet

werden, die die betragsgrösste
Komponente s, des Testvektors gebildet
hat:
Smax Si Qi, Ii + gi2 I2 + • • • + 9in 'n

Da ausschliesslich die Beobachtungen,
für welche der Koeffizient gij \+ 0 ist,
einen Beitrag zur Bildung von s, geliefert
haben, ist der grobe Fehler vor allem
unter diesen Beobachtungen zu suchen.
Der Betrag des Koeffizienten gn ist auch
von Bedeutung, da er den Einfluss der
einzelnen Beobachtungen und daher
des groben Fehlers auf die entsprechende

Komponente von S bestimmt.
Es ist deshalb zu vermuten, dass sich
ein allfälliger grober Fehler der j-ten
Beobachtung in der Komponente s, des
Testvektors auswirkt, für welchen g,,
einen grossen Absolutbetrag aufweist.
Als Beispiel dafür kann das kombinierte
Netz dienen. Das mathematische Modell

wird mit dem NMAX-Test verworfen,

da die 6. Komponente von S im

Betrag grösser ist als die Verwerfungsschranke.

s6 =-2.86
sGR= 2.68
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In der Matrix GT, die die lineare Beziehung

zwischen den Beobachtungen L
und dem Testvektor S darstellt, kann
man in der sechsten Zeile die
Koeffizienten der linearen Funktion erkennen,
die zur stark abweichenden Komponente

s6 und daher zur Verwerfung des
Modells geführt haben.

s6 - 0.049 l„ + 0.069 l12 - 0.054 l,3

s6 ist nur Funktion der drei gemessenen
Distanzen (Beobachtungen 11, 12, 13)
und dabei weist die zweite Distanz (l,2)
den betragsgrössten Koeffizienten auf
und sollte daher als erste untersucht
werden. Die beiden anderen Distanzen
haben Koeffizienten, die nicht wesentlich

kleiner sind, so dass sie ebenfalls
als mögliche Fehlerursache in Frage
kommen.
Im erwähnten Beispiel erweist sich
gerade diese Überlegung als richtig, da
die zweite Distanz absichtlich um
25 mm verfälscht wurde.
Ein weiteres Verfahren, die Methode
der extremen S-Komponente, kann mit
Hilfe von einer Folge von Orthogonalrotationen

der Matrix GT aufgebaut werden

und erlaubt möglicherweise eine
noch bessere Lokalisierung der groben
Fehler. Es wird hier auf die Literatur
hingewiesen [Carosio 1983].

Die Zuverlässigkeit
geodätischer Messsysteme
(Verfahren a priori)

6. Allgemeines
Im vorherigen Kapitel wurden die
Verfahren behandelt, die nach Ausführung
der Messungen eine Interpretation der
Ergebnisse erlauben. Die Planung der
Messanordnung und die vorgängige
Beurteilung der zu erwartenden
Eigenschaften der Resultate sind ebenfalls
sehr wichtig und bilden das Thema der
folgenden Abschnitte.
Die erste Phase der geodätischen
Arbeit in der Praxis befasst sich mit der
Festlegung der Anforderungen an das
Vermessungswerk. Diese Anforderungen

bilden die übergeordneten
Randbedingungen, die in jedem Fall erfüllt
werden müssen. Diese Phase bildet die
Voraussetzung für die Planung der
Messanordnung, für die Festlegung der
Irrtumswahrscheinlichkeiten der statistischen

Tests sowie für die Wahl der
Messinstrumente und der
Berechnungsmethoden.

In einer zweiten Phase wird versucht,
eine geodätische Messanordnung zu
entwerfen und die geeigneten
Berechnungsmethoden zu wählen, welche die
festgesetzten Randbedingungen erfüllen

und mit dem kleinstmöglichen
Aufwand und den verfügbaren Mitteln

realisiert werden können. In der Praxis
geht man heute noch nach dem klassischen

Verfahren vor:
- Nach allgemeinen Grundregeln und

vor allem aufgrund von Intuition und
Erfahrung des Vermessungsingenieurs

werden verschiedene geodätische

Netze entworfen
- Die Varianten werden verglichen, der

Aufwand wird geschätzt und die
Einhaltung der übergeordneten
Randbedingungen kontrolliert.

Das Vorgehen kann iterativ wiederholt
werden, bis man eine befriedigende
Lösung für die gestellte Aufgabe gefunden

hat. Erst dann kann mit den
Messungen begonnen werden.
Die erste Eigenschaft der entworfenen
Messanordnungen, die überprüft werden

muss, ist die Realisierbarkeit, d. h.

die vorgesehenen Beobachtungen sollen

im Feld gemessen werden können;
ebenfalls müssen die Genauigkeitsanforderungen

eingehalten werden. Dies
kann mit der Berechnung der
Fehlerellipsen a priori und eventuell der relativen

Fehlerellipsen überprüft werden.
In der letzten Zeit wird dem Einfluss von
möglichen Modellfehlern, z.B. von groben

Fehlern, auf die Resultate immer
mehr Beachtung geschenkt. Gerade
diesem Problem sind die folgenden
Kapitel gewidmet. Die Zusammenhänge
zwischen statistischen Tests und
Zuverlässigkeit werden eingehend untersucht
und dargestellt.
Unter den unzähligen denkbaren
Modellfehlern gilt der Einfluss von groben
Messfehlern bei der Realisierung der
Beobachtungen als Grundlage aller
folgenden Betrachtungen. Die meisten
Verfahren eignen sich jedoch ebenfalls
zur Untersuchung der Wirkung und der
Entdeckung anderer Modellfehler. Die
entsprechenden Herleitungen mussten
unter Berücksichtigung der
entsprechenden Fehlerhypothese (Alternativhypothese)

wiederholt werden.

7. Der Begriff (Zuverlässigkeit)
7.1 Grundgedanken
Es ist allgemein bekannt, dass in einem
geodätischen Netz Massnahmen
getroffen werden müssen, um zu vermeiden,

dass grobe Messfehler unbemerkt
bleiben und die gesuchten Resultate
verfälschen. Daher wird in der klassischen

Vermessung nach dem Motto:
(Eine Messung ist keine Messung)
vorgeschrieben, immer ein redundantes
Messsystem vorzusehen, um eine
genügende Kontrolle zu ermöglichen.
Erst Ende der sechziger Jahre wurde in
der Geodäsie das Problem der
Zuverlässigkeit mit Hilfe der mathematischen
Statistik streng formuliert und quantitativ

gelöst [Baarda 1968].
Der Begriff <zuverlässig> ist in der
Umgangssprache üblich und kann für
qualitative Betrachtungen auch in der

Geodäsie mit der Bedeutung
(glaubwürdig), (erprobt), (vertrauenswürdig)
verwendet werden.
Die Entwicklung von quantitativen
statistischen Verfahren erforderte eine
Präzisierung der Definition. Leider hat sich
bisher international keine einheitliche
Begriffserklärung für die geodätischen
Anwendungen durchgesetzt [Grafarend
u.a. 1979].
Für die korrekte Entwicklung und das
Verstehen der Theorie ist jedoch eine
klare und eindeutige Festlegung der
Begriffe unerlässlich, und daher kann
auf eine Definition hier nicht verzichtet
werden.

7.2 Definition der Zuverlässigkeit im
Hinblick auf grobe Fehler
Gegeben seien:

- das geodätische Netz mit dem
funktionalen und dem stochastischen
Modell

- der grösste Fehler Aimax jeder
Beobachtung (bzw. Unbekannten),
welcher die Anforderungen an das
Vermessungswerk noch nicht in Frage

stellt, und die Wahrscheinlichkeit
ß, die man als noch zumutbares
Risiko betrachtet, falls ein grober
Fehler Aimax nicht entdeckt wird

- das gewählte statistische Testverfahren

T(a), mit welchem man das
Modell nach den Messungen prüfen
wird, und die entsprechende
Wahrscheinlichkeit a für die irrtümliche
Verwerfung des Modells.

Daraufhin nennt man das Messsystem
im Hinblick auf allfällige grobe Fehler
zuverlässig, wenn für i 1, 2 n ein
verborgener Fehler Aimax der i-ten
Beobachtung (bzw. Unbekannte) bei
der Durchführung des Tests T(ot) mit
Wahrscheinlichkeit (1 - ß) entdeckt
wird.
Falls der Fehler Aimax sich auf die
unbekannten Parameter der Ausgleichung

(z. B. Koordinaten) bezieht,
spricht man von äusserer Zuverlässigkeit.

Falls Aimax als Fehler einer
Beobachtung betrachtet wird, wird hingegen
von innerer Zuverlässigkeit gesprochen
[Baarda 1968].
Gleichwertig ist die Definition, welche
die Zuverlässigkeit in Beziehung mit
den Grenzfehlern Vi setzt, die gerade
noch mit Wahrscheinlichkeit (1 - ß)

entdeckt werden können. Die
Zuverlässigkeitsbedingung ist dann:

V.SAimax.

Mit der Definition der Zuverlässigkeit
des Messsystems stellt sich sofort die
Frage nach der Systemabgrenzung.
Was gehört zum Messsystem? Das
heisst, was ist Objekt der Zuverlässigkeit?

Die Antwort ist leicht der Definition

zu entnehmen:
- das geodätische Netz mit den

Modelleigenschaften
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- die Fehlerhypothese (Alternativhypothese)

mit den Anforderungen an
das Vermessungswerk und

- das gewählte statistische Testverfahren.

Beim praktischen Gebrauch wird meist
lediglich von der Zuverlässigkeit des
geodätischen Netzes gesprochen, und
es ist daher nicht verwunderlich, dass
man oft glaubt, es handle sich dabei um
eine Eigenschaft der reinen Netzgeometrie.

Nur selten wird die direkte Abhängigkeit
der Zuverlässigkeit vom gewählten

statistischen Testverfahren erwähnt.
Bemerkungen diesbezüglich finden sich
z. B. etwas implizit im Vorwort von
[Baarda 1968] und deutlicher in [Heck
1980].
Wichtig für die folgenden Betrachtungen

ist die Bemerkung, dass eine
positivere Bewertung der Zuverlässigkeit

eines Messsystems erzielt werden
kann:

- durch Verbesserung der Netzgeometrie
oder

- durch bescheidenere Anforderungen
an das Vermessungswerk oder

- durch die Wahl eines empfindlicheren
statistischen Testverfahrens.

Die dritte Feststellung ist hier von
besonderer Bedeutung, wenn man sie
in Zusammenhang mit dem vorgeschlagenen

NMAX-Test betrachtet. Der
NMAX-Test weist gegenüber den
herkömmlichen Verfahren eine grössere
Empfindlichkeit in der Entdeckung der
lokalen Modellfehler auf, so dass er
einen Beitrag zur Verbesserung der
Zuverlässigkeit der Messsysteme
leisten kann.

8. Einfache Verfahren aus der
Praxis
Die moderne Theorie der Zuverlässigkeit,

die sich auf statistische Methoden
stützt, ist etwas mehr als zehn Jahre alt
Sie ist nicht immer sehr einfach
anzuwenden und wird daher noch selten in
der schweizerischen Praxis eingesetzt
Die Notwendigkeit, zuverlässige
Messsysteme zu entwerfen, ist hingegen
keineswegs neu und bildet seit langem
eine Voraussetzung des Vermessungswesens.

Die Lösungen, die in der Vergangenheit
gewählt wurden, sind nicht grundsätzlich

anders als die modernen. Anstatt
die genaue Wahrscheinlichkeit zu
berechnen, mit welcher kleine Fehler
durch statistische Methoden entdeckt
werden können, wurden
Mustermessanordnungen als Vergleich herangezogen,

die erfahrungsgemäss als zuverlässig

galten. (Beispiel: Die Instruktion für
die Triangulation 4. Ordnung vom 10.

Juni 1919.)
Um der Tatsache Rechnung zu tragen,
dass die Zuverlässigkeit eines Messsystems

nicht unabhängig von der Art

des Testverfahrens und der gestellten
Anforderungen ist, wurden immer auch
Toleranzformeln oder -tabellen angegeben,

welche die Zuverlässigkeit des
Systems sicherten. Ein Beispiel dafür
sind die Fehlergrenzen der bereits
genannten Instruktion. Es ist vermutlich
unnötig zu bemerken, dass in diesen
alten Methoden die drei Systemelemente

der modernen Definition deutlich
zu erkennen sind.

9. F-Test und Zuverlässigkeit
(nach W. Baarda)
Der eigentliche Durchbruch der
Zuverlässigkeitsbetrachtungen in der Geodäsie

ist W. Baarda zu verdanken. Seine
sehr bekannte Publikation [Baarda
1968] über die Zuverlässigkeit geodätischer

Netze gilt heute noch als Grundlage

für alle Entwicklungen auf diesem
Gebiet. Die Arbeiten von W. Baarda
zeigten einen Weg auf, um das Problem
der Zuverlässigkeit eines Messsystems
nach den strengen Methoden der
mathematischen Statistik zu lösen. Als
Testverfahren wird der F-Test mit einer
Wahrscheinlichkeitsschranke a für die
Annahme oder die Verwerfung des
Modells gewählt. Nach der Ausgleichung

nach der Methode der kleinsten
Quadrate wird die Testvariable F cF/o2
gebildet, welche für normalverteilte
Beobachtungen F-verteilt ist. Der
Freiheitsgrad f (=n-u) von ô wird der
Ausgleichung entnommen, während für
o der Freiheitsgrad °° angenommen
wird.
Falls die i-te Beobachtung durch einen
groben Fehler A, verfälscht ist, werden
ô und F ebenfalls verfälscht und ihre
Erwartungswerte verändert.

E(F* E(F) + 1 +

Für unkorrelierte
dann

4 _
A? qi«>

QU" q||

X

f
Beobachtungen ist

[Conzett 1981].

Die Verteilung der Testgrösse F (ohne
grobe Fehler) ist die bekannte F- oder
Fisher-Verteilung. Die Verteilung von F*

ist hingegen die nichtzentrale F-Verteilung

mit X als Nichtzentralitätsparame-
ter.
Für jeden eventuellen groben Fehler ist
es möglich, im voraus zu berechnen,
mit welcher Wahrscheinlichkeit er
entdeckt werden kann, wenn die Grösse
F ô2/o2 auf die zentrale F-Verteilung
mit Annahmeschranke Fqr getestet
wird (Abb. 7).
Oder was gleichwertig ist: man kann
berechnen, wie gross ein grober Fehler
V, sein muss, damit er durch den
obengenannten Test mit einer vorgegebenen

Wahrscheinlichkeit (1 - ß)
entdeckt wird. Diese Schwellenwerte für
die groben Fehler in den einzelnen
Beobachtungen werden innere Zuver-
lässigkeitsgrössen der Beobachtungen
im Messsystem genannt [Baarda 1968],
[Just 1979].
Die Wahl des F-Tests als Prüfmethode
im Messsystem hat den Nachteil, dass
nur recht beträchtliche A, entdeckt
werden können, wenn der Freiheitsgrad
des Netzes gross wird.

10. Zuverlässigkeit und einfache
Tests aus der Praxis
Im vorhergehenden Kapitel wurden
Vorteile und Nachteile der Wahl des F-
Tests als Prüfverfahren im Messsystem
beschrieben. Ebenfalls erwähnt wurde,
dass für grosse Netze die Empfindlichkeit

des F-Tests auf grobe Fehler
wesentlich kleiner ist als diejenige der
einfachen Testverfahren aus der Praxis
(V-Test, geometrische Bedingungen
usw.). Darüber wurde im ersten Teil
dieser Arbeit bei der Schilderung der
Testverfahren a posteriori ausführlich
berichtet.
Da in der Praxis oft grosse Netze
bearbeitet werden (Hunderte von
Unbekannten mit Tausenden von Messun-

A

F

/ '\
1 \ / Fläche P

\Jr ~^£*

_f*-<V\\

l "***^^

i

!"• f *

Abb. 7 Wahrscheinlichkeitsdichten der Teststatistik F bei zutreffendem und bei unzutreffendem
Modell
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gen), stellt sich sofort die Frage, ob es
nicht möglich wäre, die Zuverlässigkeit
eines Messsystems zu bestimmen, in
welchem einer der erwähnten Einzeltests

als Prüfverfahren eingesetzt wird.
Dies würde zu praxisbezogeneren
Zuverlässigkeitskriterien führen. Dank der
guten Empfindlichkeit besonders geeignet

wäre der Test der standardisierten
Verbesserungen, welcher in 3.4
beschrieben ist.
Für eine einzelne Beobachtung der
Ausgleichung ist es möglich zu prüfen,
ob sie im Messsystem zuverlässig
kontrolliert ist. Da aber die standardisierten

Verbesserungen w, unter sich
korreliert sind, ist es sehr schwierig, die
Wahrscheinlichkeit ß zu bestimmen,
dass bei Vorhandensein eines groben
Fehlers A, für alle Beobachtungen die
Ungleichung

w,Swgr i 1, 2 n

erfüllt ist.
Mit anderen Worten: Wenn als Prüfverfahren

der Test der standardisierten
Verbesserungen gewählt wird, kann
keine vollständige statistische
Zuverlässigkeitsanalyse des Messsystems
durchgeführt werden.

11. NMAX-Test und Zuverlässigkeit
11.1 Einführung
In der Beschreibung der Beurteilungsverfahren

aufgrund der durchgeführten
Messungen wurde darauf verwiesen,
dass die Hauptkomponentenanalyse
und der NMAX-Test sehr geeignete
Prüfverfahren sind, da sie einerseits die
lokale Wirkung von eventuellen groben
Fehlern berücksichtigen und anderseits
auch einen Gesamttest ermöglichen.
Selbstverständlich kann man sich jetzt
fragen, ob die Zuverlässigkeit des
Messsystems streng berechnet werden
kann, wenn die zum System gehörenden

Testverfahren die Hauptkomponentenanalyse

oder der gleichwertige
NMAX-Test sind.

11.2 Die Lösung
In 4.3 und 4.4 wurden die Hauptkomponenten

des Verbesserungsvektors
berechnet:

W UTV

(V ist der Verbesserungsvektor und U
die Eigenvektorenmatrix der Kofakto-
renmatrix Qvv.) Für die Durchführung
des Tests wurden dann die Hauptkomponenten

W standardisiert

w i/V^.Wa/V^,...),

wo die X, die Eigenwerte der Matrix Qw
sind. Die Komponenten von S, für
welchen X, 0 ist, werden gestrichen
(so dass S nur f-dimensional ist). Wenn
die Matrix

¦1/2.
J_

eingeführt ist, kann die folgende Beziehung

hergestellt werden:

S A"1/2UTV

Gemäss [Linkwitz 1960] ist für unkorre-
lierte Beobachtungen

V - QWP L,

so dass

S -A-1/2UTQWPL,

und

S GT L mit GT - A" 1/2 UTQWP.

Die standardisierten Hauptkomponenten
s, sind die linearen Funktionen der

Beobachtungen, welche durch die Matrix

GT (f, n) definiert sind.
Falls ein grober Fehler A, die i-te
Beobachtung verfälscht, verändern sich auch
die Komponenten S|< von S.

Nach diesen Vorbemerkungen ist es
möglich, in Anlehnung an die Herleitungen

von W. Baarda die Zuverlässigkeit
des Messsystems zu prüfen.
Folgendes wird vorausgesetzt:
Auf die einzelnen Testgrössen Sk wirkt
nur ein einziger eventueller grober
Fehler, d. h. die Häufigkeit der groben
Fehler ist so gering, dass im Einflussbereich

jeder Beobachtung höchstens
einer zu befürchten ist.
Falls die i-te Beobachtung durch einen
groben Fehler A, verfälscht ist, ist Sk

weiterhin normalverteilt, aber mit
Erwartungswert

xk gik Aj

anstatt Null (Xk Nichtzentralitätspara-
meter) (Abb. 8).

i

OÎ -
Fläche=|J /$

—c\\\\
/|\

SGH S*

• 1 t1\ ""(

Abb. 8 Wahrscheinlichkeitsdichte einer
Komponente des Testvektors S beim Auftreten

eines groben Fehlers

Von der Annahmeschranke sqr des
NMAX-Tests (siehe Testbeschreibung in

5) und von der Tabelle der Normalverteilung

kann die Wahrscheinlichkeit ßk

abgelesen werden, dass trotz dem

groben Fehler A, die k-te Komponente
von S* in den Annahmebereich fällt
(Fehler 2. Art).
Die angegebenen Beziehungen erlauben

es, für jede Komponente zu berechnen,

wie gut die Hauptkomponentenanalyse

mit der Annahmeschranke a
wirkt und wie gross die Wahrscheinlichkeit

(ßk) ist, dass trotz dem groben
Fehler die k-te Komponente von S in

den Annahmebereich fällt.
Ein Fehler zweiter Art (d. h. fälschlicherweise

Annahme der Nullhypothese)
entsteht, wenn trotz dem groben Fehler
alle Komponenten von S in den
Annahmebereich fallen. Seine Wahrscheinlichkeit

beträgt

ß JJ.../ f(S)ds,-ds2-ds3...
Annahmebereich

wo f die mehrdimensionale
Wahrscheinlichkeitsdichte der multivariaten
stochastischen Variablen S ist, welche
den Erwartungswert (g,,, g,2, g,3 • A,

aufweist.
Da die einzelnen Komponenten stochastisch

unabhängig sind, kann die oben
angegebene Gesamtwahrscheinlichkeit
aus dem Produkt der Wahrscheinlichkeiten

eines Fehlers 2. Art für jede
einzelne Komponente berechnet werden

ß= ßfß2...ßf
ß /f,(s,)ds, -Jf2

Annahmebereich

(1-dimensional)

(s2) ds2
Annahmebereich

(1-dimensional)

Die fk sind die eindimensionalen
Normalverteilungen der einzelnen Komponenten

von S. Sie haben Varianz 1 und
Erwartungswert

E(fk) Xk gik • A.

Die Werte der einzelnen Integrale sind
der Tabelle der Normalverteilung zu
entnehmen.
Nachdem für jede Beobachtung der
grösste noch unschädliche grobe Fehler

festgelegt worden ist, kann die
Wahrscheinlichkeit ß berechnet werden,

dass der Fehler nicht entdeckt
wird (erste Zuverlässigkeitsdefinition).
In ähnlicher Art kann man festlegen,
wie gross der Fehler V, ist, der mit einer
bestimmten vorgegebenen
Wahrscheinlichkeit (1 - ß0) aufgedeckt werden

kann (zweite Zuverlässigkeitsdefinition).

11.3 Anwendung
Mehrfaches Dreiecksnetz
(100 Dreiecke)
Ein reines Dreiecksnetz wie in 5.3, aber
mit 100 Dreiecken, kann ausgeglichen
werden. Man kann dann die folgenden
Zuverlässigkeitsgrössen für die einzelnen

Beobachtungen berechnen.
Zuverlässigkeit (nach dem NMAX-Test)
für a 5%. ß 20% und f 100
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Messung °ì Vi Vi/o,

1 5.0 37.4 7.5
2 5.0 37.4 7.5
3 5.0 37.4 7.5
4 5.0 37.4 7.5
5 5.0 37.4 7.5

Das gleiche Beispiel ergab bei der
Berechnung der Zuverlässigkeit nach
dem F-Test (siehe 9) V,/o, 11.0.

Schlussfolgerung

Die vorliegende Arbeit möchte die
Aufmerksamkeit der Leser auf eine
einfache Feststellung lenken: Für die
praktische Tätigkeit gilt selbstverständlich,

dass erfahrene, geübte oder
einfach bessere Vermesser die Resultate
einer geodätischen Arbeit kritischer und
wirksamer beurteilen und kleinere Fehler

entdecken können, mit anderen
Worten zuverlässigere Resultate erzielen.

Das gleiche muss aber auch für die
modernen statistischen Methoden gelten:

Empfindlichere oder einfach für die
Anwendung bessere statistische Tests
'führen zu einer wirksameren Beurteilung

der Resultate geodätischer Arbeiten

und erlauben die Entdeckung
kleinerer Modellfehler als weniger geeignete

Vergleichsmethoden.
Die Wahl des Testverfahrens beeinflusst
daher massgebend die Grösse der
feststellbaren Modellfehler, d.h. der
Zuverlässigkeit, die nicht nur eine
Eigenschaft der reinen Messanordnung
ist, sondern auch der Berechnungsverfahren

(Testverfahren) und der Anforderungen

an das Vermessungswerk. Die
Entwicklung von besseren Testmethoden

hat immer eine Konsequenz auf die

Zuverlässigkeitsbetrachtungen: Bessere
Tests erhöhen die Zuverlässigkeit ohne
jegliche Änderung der Messanordnung.
Die vorliegende Veröffentlichung zeigt
mit Hilfe der mathematischen Statistik
die Zusammenhänge zwischen Test und
Zuverlässigkeit einerseits und die Beziehung

zwischen den intuitiven Methoden
der Praktiker und den moderneren der
mathematischen Statistik anderseits.
Der neu vorgeschlagene NMAX-Test ist
eine mögliche Anwendung dieser
Erkenntnisse und soll als Anregung gelten
für vermehrte Anstrengungen im
Bereich der mathematischen Beurteilungsverfahren.
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Die Verwendung von Kunststoffgrenzzeichen in der
Parzellarvermessung
W. Ulrich

Die Kosten der Vermarkung bestimmen in grossem Masse die Gesamtkosten
einer Parzellarvermessung. Die Reduktion dieser Kosten kann mit günstigem
Material, mit geringem Zeitaufwand und mit der Einsparung von Grenzpunkten
erreicht werden. Die in den letzten 20 Jahren unternommenen Anstrengungen
zur Entwicklung <neuer Vermarkungen> orientierten sich vorwiegend an den
ersten beiden kostenwirksamen Elementen (Material und Zeit). Wieweit die
Gewichte damit richtig gesetzt wurden, steht nicht im Mittelpunkt des nachfolgenden

Berichtes, sondern er gibt Aufschluss über die Bewährung von
Kunststoffgrenzzeichen. Er wurde als Schlussbericht über die Verwendung von Kunst-

1. Einführung und Absicht
Aufgrund der Änderung der Eidg.
Instruktion für die Vermarkung und die
Parzellarvermessung vom 19. Dezember
1979 werden bestimmte
Kunststoffgrenzzeichen (im folgenden Marken
genannt) generell zugelassen. Für die
definitive Zulassung sind die einzelnen
Marken bei der EMPA prüfen zu lassen.
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