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Multivariate Statistik und Zuverlassigkeit

A. Carosio

Die Geodaten haben sich seit jeher mit zwei wichtigen Problemen befasst: Der
Planung und Gestaltung von zuverlassigen Messanordnungen mit den dazugeho-
rigen Berechnungsverfahren sowie der Feststellung und Lokalisierung von gro-
ben Fehlern nach durchgefiihrten Messungen.

Der vorliegende Bericht, eine Kurzfassung einer umfassenden Studie, die vor
kurzem als Promotionsarbeit an der ETHZ angenommen worden ist, befasst sich
mit beiden Problemen und zeigt die Zusammenhange zwischen statistischen
Tests und Zuverladssigkeit sowie zwischen den intuitiven Verfahren aus der Praxis
und den modernen Methoden der multivariaten Statistik. Unter anderem wird ein
neuer Test fur die Beurteilung der Triangulationsresultate (der NMAX-Test) be-
schrieben und seine Wirkung auf die Zuverlassigkeit der Messsysteme gezeigt.

Les géodésiens se sont toujours occupés de deux problémes trés importants: la
conception de réseaux géodésiques et de procédés de calcul fiables, ainsi que
l'identification des erreurs grossiéres aprés les campagnes de mesures.

Le présent travail, résumé d’une récente thése de doctorat de I'EPFZ, traite les
deux problémes et décrit, d’une part, les relations entre tests statistiques et fiabilité
et, d'autre part, entre les procédés intuitifs des praticiens et les méthodes modernes
de /a statistique multivariée. Un nouveau test (NMAX) pour I'évaluation des résul-
tats est présenté plus en détail avec les conséquences relatives sur la fiabilité des

systemes de mesure.

EinfGhrung

1. Problemstellung und Ziel-
setzungen

Seit mehr als einem Jahrhundert wird
Uber die statistischen Eigenschaften der
geodatischen Beobachtungen gespro-
chen und Uber die Tatsache, dass die
fur die Auswertung bereitgestellten
Messwerte nicht immer als Realisierun-
gen von normalverteilten Zufallsvaria-
blen betrachtet werden koénnen. In der
klassischen  Ausgleichungsrechnung
wurden die Konsequenzen dieser Fest-
stellung nur am Rande behandelt. In
den meisten Werken spricht man von
drei Arten von Fehlern fir die Beobach-
tungen in einem Messprozess: Zufallige,
systematische und grobe Fehler. Wah-
rend die Bedeutung der zufélligen
Fehler immer mit grosser Aufmerksam-
keit beobachtet wurde, beschéaftigten
sich die Vermessungsingenieure nur
empirisch mit der Problematik der
groben Fehler.

Erst Ende der sechziger Jahre verdéffent-
lichte W.Baarda seine bekannte Arbeit
(A testing procedure for use in geodetic
networks), wodurch erstmals die theo-
retischen Grundlagen fur die Fehlersu-
che und fir die Uberpriifung der Zuver-
lassigkeit der geodatischen Messsyste-
me formuliert waren. Die vorliegende
Arbeit befasst sich hauptsachlich mit
den Verfahren fur die Entdeckung und
Beseitigung allfélliger grober Fehler und
versucht zu zeigen, dass die intuitiven
Methoden der Praktiker und die mathe-
matischen Verfahren der Statistiker viel
ahnlicher sind, als man Ublicherweise
annimmt.

Die Hauptkomponentenanalyse und die
darauf aufgebaute Zuverlassigkeits-
theorie werden etwas ausfihrlicher
beschrieben, dies nicht, weil sie wichti-
ger waren als andere Methoden, son-
dern weil sie in der letzten Zeit vom
Verfasser erstmals fir die Losung geo-
datischer Probleme eingesetzt worden
sind.

2. Die Ausgleichung geodatischer
Netze in der Praxis

2.1 Die schweizerische Triangulation
Die Arbeiten fur die jetzt gultige schwei-
zerische Triangulation héherer Ordnung
begannen in der zweiten Halfte des
letzten Jahrhunderts. Die Koordinaten
der Punkte wurden durch Ausgleichung
nach der Methode der kleinsten Qua-
drate meistens in kleinen Teilnetzen
bestimmt. Die grésste Anzahl der Be-
rechnungen sind Einzel- oder Doppel-
punkteinschaltungen; nur das Netz er-
ster Ordnung wurde in grosseren Ab-
schnitten ausgeglichen.

Vor der Computerzeit war der Aufwand
fur eine strenge Ausgleichung grosser
Netze so erheblich, dass man schon fir
drei Neupunkte etlichen Respekt emp-
fand. Es ist deshalb nicht Uberraschend,
dass sich damals niemand besonders
bemuhte, Methoden zu entwickeln, um
grobe Fehler aus den Ergebnissen einer
Ausgleichung zu erkennen. Man ver-
suchte, die Fehler um jeden Preis schon
vor aufwendigen Berechnungen zu
entdecken und zu eliminieren. Nach der
Ausgleichung zeigte man sich gegen-
Uber den eventuell Ubriggebliebenen
Modellfehlern eher toleranter: der Auf-
wand fur die Korrekturen war unange-
nehmer als die Fehler selbst.
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Zwei Ereignisse haben in den letzten 15
Jahren den praktischen Einsatz der

Ausgleichungsrechnung wesentlich
verandert:
- die Entwicklung kostenglnstiger

elektronischer  Distanzmessgeréate

mit grosser Reichweite und
- die elektronische Datenverarbeitung.
Die elektronische Distanzmessung hat
seit ihrer EinfUhrung die Struktur der
geodéatischen Netze bestimmt. Die
Ubersichtliche  Dreiecksvermaschung
war plotzlich nicht mehr notwendig. Der
Netzentwurf und die Rekognoszierung
wurden einfacher und die geodétische
Arbeit wirtschaftlicher. Komplexer und
immer schwieriger jedoch wurde es,
die Qualitdt der Messanordnung zu
beurteilen.
In der selben Zeit fand der Durchbruch
der elektronischen Datenverarbeitung in
der geodatischen Praxis statt. Der
Traum der Geodéaten, Systeme mit
<beliebig vieleny Unbekannten auszu-
gleichen, verwirklichte sich. Was im
Feld die elektronische Distanzmessung
ermoglicht hatte, konnte in entspre-
chend flexibler Art auch ausgeglichen
werden. Die Netze wurden grosser,
komplexer und die Exzentren zahlrei-
cher, so dass auch die Interpretation
der Resultate wesentlich hohere An-
spriche stellte.

2.2 Aktuelle Beurteilungsverfahren fir
die Triangulationsresultate
Im Zeitalter der Computer ist das
Rechnen leicht geworden, sehr leicht
sogar. Mit kleineren oder grosseren
Rechenanlagen koénnen in  wenigen
Sekunden grosse Datenmengen preis-
wert verarbeitet und die Resultate
ausgedruckt werden.
In der Praxis ist die Gefahr gross, dass
die mihelos vom Computer erhaltenen
Resultate in ihrer Wichtigkeit unter-
schéatzt und daher etwas flichtig Uber-
prift werden. Gerade die kritische
Interpretation der Ergebnisse ist jedoch
eine der wichtigsten Aufgaben des
Ingenieurs.
Um gegen diese unerwiinschte Erschei-
nung vorzugehen, wurden in der letzten
Zeit verschiedene Verfahren entwickelt
und zum Teil in der Praxis eingesetzt,
welche die Interpretation der Triangula-
tionsergebnisse in systematischer Art
ermoglichen sollen. Man kann sie in
zwei Gruppen unterteilen:
a) Analyse der Modelleigenschaften
und der Messanordnung (a priori)
b) Prifung der Modellannahmen auf-
grund der durchgeflihrten Beobach-
tungen (a posteriori).
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In der Analyse der Modelleigenschaften
werden die Folgen der Modellannah-
men unter der Voraussetzung, dass das
Modell zutrifft, untersucht. Die Analyse
ist unabhédngig von den durchgefihrten
Beobachtungen und kann deshalb vor-
sorglich auch vor den Feldarbeiten
stattfinden. Dazu gehéren die Berech-
nung der Fehlerellipsen a priori fir die
Neupunkte, die Zuverlassigkeitsbe-
trachtungen usw. Zweck der Analyse
ist der Nachweis, dass die Resultate
unter den getroffenen Annahmen die
ubergeordneten Randbedingungen (Be-
darfnisse des Auftraggebers) befriedi-
gen werden.

Nach Ausfuhrung der Messarbeit, je-
doch vor Ablieferung der Resultate
muss man sich vergewissern, ob keine
Grinde fur eine Verwerfung des ange-
nommenen Modells vorliegen, da nur
wenn die Modelleigenschaften zutref-
fen der Nachweis vorliegt, dass die
Resultate den Ubergeordneten Randbe-
dingungen genlgen. Zu diesem Zweck
werden statistische Tests eingesetzt, die
mit den ausgefiihrten Beobachtungen
oder mit Funktionen davon durchge-
fihrt werden konnen: z.B. Test des
Verhéltnisses Mittlerer Fehler a poste-
riori-Mittlerer Fehler a priori, Berech-
nung der Dreiecksschlisse in Triangula-
tionsnetzen usw. Ziel der Modelltests ist
die Annahme oder Verwerfung des
mathematischen Modells: im Fall der
Annahme konnen die Resultate verof-
fentlicht werden, andernfalls missen
das Modell modifiziert (z.B. durch
Nachmessungen) und die neuen Eigen-
schaften analysiert werden, um zu
prufen, ob die Ubergeordneten Randbe-
dingungen auch nach den Anderungen
des Modells noch eingehalten sind.
Beide Gruppen von Verfahren werden
im folgenden beschrieben. Um die
Herleitungen zu erleichtern, werden
zuerst die Verfahren a posteriori behan-
delt und erst spéater die Verfahren a
priori.

Prifung der Modellannahmen
aufgrund der durchgefiihrten
Beobachtungen (Verfahren a
posteriori)

3. Einfache Verfahren aus der
Praxis

3.1 Der F-Test

Die Triangulationsprogramme liefern die
geschétzte Standardabweichung a po-
steriori der Gewichtseinheit, so dass die
Berechnung der Priifgrosse

62
F=_

02
keine Schwierigkeit bietet (wo & die
Standardabweichung der Gewichtsein-
heit a posteriori und o die gewahlte
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Standardabweichung der Gewichtsein-
heit a priori sind).

Die Verteilung der Teststatistik F ist die
bekannte Fisher- oder F-Verteilung. Der
Freiheitsgrad wird durch die Geometrie
des Netzes bestimmt, wahrend man fur
den mittleren Fehler a priori einen
Freiheitsgrad (meistens ©) annimmt.
Dann kann der Tabelle der F-Verteilung
sofort entnommen werden, ob die
vorausgesetzte Wahrscheinlichkeits-
schranke Uberschritten ist oder nicht.
Da nur eine Grosse getestet wird
(univariater Test), stellen sich keine
Korrelationsprobleme.

Der F-Test ist sehr wirksam bei der
Suche nach systematischen Modellfeh-
lern, die viele Beobachtungen verfal-
schen (z.B. ungenaue Fixpunkte, Lotab-
weichungseinflisse, falsche Schatzung
der Genauigkeit fir die Messungen
usw.). Weniger wirksam ist er fur die
Entdeckung von einzelnen groben Feh-

lern, wenn der Betrag des Fehlers,

relativ klein und das Netz gross ist, da
die Testempfindlichkeit mit zunehmen-
dem Freiheitsgrad stédndig abnimmt.

3.2 V-Test

Die heute noch am meisten angewand-
te Methode zur Beurteilung der Resulta-
te einer Ausgleichung ist der Test der
Verbesserungen in den definitiven Ab-
rissen. Getestet werden die Grossen

Ui = Vvi/0ji i=1,...n

wobei
v; die i-te Verbesserung,
g die angenommene Standardabwei-
chung a priori der i-ten Messung,
n die Anzahl Messungen der Ausglei-
chung sind.
Der Test wird durchgefihrt unter der
vereinfachenden Annahme, dass die u;
annahernd standardisiert normalverteilt
(mit Erwartungswert O und Varianz 1)
und die Korrelationen zwischen den u;
vernachlassigbar klein sind.
Da alle Computerprogramme fir die
Ausgleichung die einzelnen Verbesse-
rungen liefern, ist der Test leicht durch-
fuhrbar und deshalb trotz vielen
schlechten Eigenschaften so populér.
Die Nachteile des V-Tests sind offen-
sichtlich: die erwahnten vereinfachen-
den Annahmen sind eine recht schlech-
te Naherung, da die Standardabwei-
chung von v; (o) meist wesentlich
kleiner als ajj ist.
Zwischen den v; sind zudem Korrelatio-
nen vorhanden, die normalerweise
nicht berechnet werden. Es ist daher
nicht moglich, einen Gesamttest aller
Komponenten des U-Vektors durchzu-
fuhren, da die Annahmebereiche nicht
direkt bestimmbar sind.

3.3 Test der geometrischen
Bedingungen

Eine klassische Methode zur Uberpri-
fung geodatischer Netze ist der Test der

Widerspriiche der geometrischen Be-
dingungen. Fir reine Triangulationsnet-
ze ist das Beispiel des Tests der Winkel-
summe in den Dreiecken bekannt und
braucht also keine besondere Erkla-
rung.

Der grosse Vorteil solcher Tests liegt in
der Moglichkeit, die Testgrosse vor der
Ausgleichung zu berechnen. Als man
noch von Hand rechnete, konnte man
Unstimmigkeiten sofort entdecken und
sich eine unnotige Ausgleichung erspa-
ren.

Nach der Einfuihrung der Distanzmes-
sung wurde die Struktur der Netze viel
komplizierter, so dass sich die Bildung
der geometrischen Bedingungsglei-
chungen nicht mehr so einfach gestal-
tete. Fur den Einsatz elektronischer
Rechenanlagen wurde fir die Ausglei-
chung die vermittelnde Methode vorge-
zogen, und die Bedingungen traten
nicht mehr explizit auf.

Zur Losung des Problems wurden in
der Schweiz Computerprogramme fur
die automatische Berechnung der Drei-
ecksschlusse entwickelt [Andris 1967].
Auch die Bildung der anderen Bedin-
gungsgleichungen stellt keine uniber-
windbare Schwierigkeit dar. In einer
Publikation zeigt R.Conzett, wie mit
dem Austauschverfahren aus der Ma-
trix der Verbesserungsgleichungen ei-
ner vermittelnden Ausgleichung die
Bedingungsgleichungen  automatisch
gebildet werden koénnen. Entwicklun-
gen in dieser Richtung sind deshalb
noch zu erwarten [Conzett 1978].

Vom statistischen Standpunkt aus gese-
hen, ist der Test der geometrischen
Bedingungen sehr gunstig, da die Er-
wartungswerte der Widerspriche Null
sind und die Varianzen ihrer Normalver-
teilungen leicht aus den linearisierten
Bedingungsgleichungen berechnet wer-
den konnen. Was hingegen nachteilig
wirkt, sind die Korrelationen zwischen
den einzelnen Widerspriichen, die im
allgemeinen vorhanden sind und einen
Gesamttest erschweren.

Mit Hilfe der Hauptkomponentenanaly-
se kann ein spezielles System von
Bedingungsgleichungen gebildet wer-
den. Der Verfasser hat diese Moglich-
keit eingehend untersucht. Die dabei
erzielten Resultate sind in Kapitel 4
beschrieben.

3.4 Der Test der standardisierten
Verbesserungen

Einen wesentlichen Fortschritt in der
Untersuchung a posteriori geodatischer
Messsysteme bildet der Test der stan-
dardisierten  Verbesserungen. Dazu
miissen in einer vermittelnden Ausglei-
chung neben den Ublichen Grossen
(Unbekannten, Verbesserungen usw.)
lediglich die Standardabweichungen
der einzelnen Verbesserungen berech-
net werden.
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Da die Verbesserungsvariablen fir nor-
malverteilte Messungen ebenfalls nor-
malverteilt sind und Erwartungswert
Null besitzen [E(V) = 0], wenn die Va-
rianz von v; bekannt ist, kann die Grosse

Wi = Vi/Oy;

mit der zentrischen standardisierten
Normalverteilung getestet werden. Der
Test wurde in [Baarda 1968] als (Data
snooping) bezeichnet und wird unter
diesem Namen oft eingesetzt. Eine
Anwendung fir die Untersuchung von
geometrischen Transformationen ist in
[Kraus 1975] beschrieben.

Wenn die i-te Beobachtung (und keine
andere) durch einen groben Fehler A
verfalscht und

|r=|j+Ai

wird, dann ist fur unkorrelierte Beob-
achtungen

V' =vi-(aW/all’) - A [Just1979].

Die Wahrscheinlichkeit, mit welcher
irrttmlicherweise die  Nullhypothese
angenommen wird, ist Funktion des Be-
trags von A, des Verhaltnisses gl/q
und des gewahlten Signifikanzniveaus o
fur die Verwerfung der Nullhypothese.
Da die einzelnen w; unter sich korreliert
sind, ist es nicht moglich, einen Test
aller Komponenten von W durchzufiih-
ren.

4. Verfahren aus der multivariaten
Statistik

4.1 Allgemeines

In der Beschreibung der mehrfachen
univariaten Tests in den friheren Kapi-
teln ist dem Leser sicher aufgefallen,
dass die gegenseitige Abhangigkeit der
betrachteten Zufallsvariablen nicht be-
ricksichtigt werden konnte. Die ge-
trennte Beurteilung der einzelnen Test-
grossen fuhrt zu einem Informationsver-
lust, der nicht unterschétzt werden darf.
Besonders bei kritischen Fallen konnten
gerade die verlorenen Informationen
wichtig sein.

Die multivariate Statistik behandelt alle
Verfahren, die sich mit mehrdimensio-
nalen stochastischen Variablen befas-
sen. Sie bietet u.a. auch Lésungen fir
den Test einer Reihe von unter sich
korrelierten stochastischen Variablen
[Flury, Riedwyl 1980], [Maurer 1979].
Anwendungen solcher Verfahren fiir die
Beurteilung der Triangulationsresultate
werden im folgenden beschrieben.

4.2 Graphische Verfahren

In der angewandten Statistik wird,
wenn immer moglich, versucht, das
vorhandene  Zahlenmaterial ~ durch
Zeichnungen zu veranschaulichen. So
kann die Fahigkeit des Menschen ge-
nutzt werden, aufgrund einfacher Beob-
achtung intuitiv komplexe Beziehungen
zu erfassen. Fir geodatische Anwen-

dungen kann als Beispiel das Verfahren
von H.J.Oettli erwdhnt werden, das
besonders geeignet ist fir die multiva-
riate Beurteilung des Verbesserungs-
vektors [H. J. Oettli 1960-75] (Abb.1).

Abb.1 Graphische Darstellung der Verbes-
serungen

Im Netzplan werden die durchgefiihrten
Beobachtungen sowie die dazugehori-
gen Verbesserungen graphisch darge-
stellt. Ein erfahrener Beobachter kann
aus den Netzverbindungen intuitiv die
vorhandenen Korrelationen zwischen
den Verbesserungen abschatzen und
sie in Beziehung zu den Verbesserungs-
betrdgen setzen.

So werden Hinweise auf die Ursachen
von Abweichungen aus der Differenz
zwischen erwarteten Korrelationen (aus
der Netzgeometrie) und vorhandenen
Korrelationen (in der Stichprobe) ge-
wonnen.

Diese einfachen, seit langem bekannten
Hilfsmittel werden hier besonders er-
wahnt, um hervorzuheben, dass die
Berticksichtigung der Korrelationen un-
ter den Verbesserungen durch einen
multivariaten Test ein echtes Bedurfnis
der Praxis ist.

4.3 Die Hauptachsentransformation
Man betrachte als erstes den Verbesse-
rungsvektor als mehrdimensional nor-
malverteilte stochastische Variable V
mit

VT = (V], Vo, ..., Vn)

E(V)=0

und mit Varianz-Kovarianzmatrix Q.
(positiv definit oder semidefinit, aber
nicht notwendigerweise diagonal) und
dann den Vektor W mit

V\/T = (W], Wy, ..., Wn).

berechnet aus V durch die homogene
lineare Transformation

W=uTy,

wo U eine orthogonale Matrix ist.
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Die Varianz-Kovarianzmatrix von W ist
dann

Qe =UT Q)
und  E(W)=0.

Dem Hauptachsentheorem [Schwarz,
Rutishauser, Stiefel 1972] ist zu entneh-
men:

Zu jeder symmetrischen Matrix M

existiert eine orthogonale Matrix U, so

dass M vermittels U &hnlich auf Diago-
nalgestalt D = UTMU transformiert wird.

Dazu gilt:

- die Diagonalelemente von D sind
gleich den Eigenwerten von M
(A A2 oo An)

- die Zeilen von UT enthalten die
normierten Eigenvektoren zu den
Eigenwerten, welche entsprechend
geordnet sind wie die Eigenwerte
der Diagonalen von D

- wenn die Matrix M Rang r besitzt,
dann gibt es r Eigenwerte # 0.

Das Theorem kann jetzt bei der oben

definierten Matrix Q,, angewandt wer-

den:

Es existiert immer eine orthogonale

Matrix U, so dass

eine Diagonalmatrix wird. Die Diagonal-
elemente von Q. sind die Eigenwerte
von Q,, und gleichzeitig die Varianzen
der einzelnen Komponenten von W,
welche unter sich unkorreliert sind.
Wenn f der Freiheitsgrad und n die
Anzahl Beobachtungen des geodati-
schen Netzes sind, besitzt die Qu-Ma-
trix Rang f, und es gibt n-f Eigenwerte
von Qy, die Null sind, d. h. n-f Kompo-
nenten des Vektors W(V) haben Varianz
= 0. Die entsprechenden Eigenvektoren
stellen daher funktionale Beziehungen
des Modells dar. Die anderen f Kompo-
nenten von W sind hingegen echte
stochastische Variablen mit Varianz
gleich dem entsprechenden Eigenwert
(N), und die Komponenten der Eigen-
vektoren sind die Koeffizienten von f
orthogonalen und daher linear unab-
hangigen Bedingungsgleichungen des
geodatischen Netzes.

Die Erwartungswerte der Komponenten
des Vektors W sind alle Null, da

E(W) =E(UTV) =UTE(V) und
E(V) =0 sind.

Eine weitere Eigenschaft der Kompo-
nenten des Vektors W ist ihre Normal-
verteilung, da die Verbesserungen linea-
re Funktionen der normalverteilten Be-
obachtungen und die Komponenten
von W lineare Funktionen der Verbesse-
rungen sind. Die stochastischen Eigen-
schaften des Vektors W sind also
bestimmt, so dass die Komponenten
von W als Teststatistiken in einem
Modelltest verwendet werden kdnnen.
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4.4 Der Hauptkomponententest

Nach Ausfuhrung der Hauptachsen-
transformation z.B. mit dem Jacobi-
Verfahren [Schwarz, Rutishauser, Stiefel
1972] sind die linearen Funktionen
(kanonische Vektoren) bekannt, welche
in der Matrix U aufgezeigt werden, so
dass es moglich wird, die f Komponen-
ten (Hauptkomponenten) des Vektors
W, fur welche A # 0 ist, zu berechnen
und zu analysieren (Hauptkomponen-
tenanalyse). Insbesondere konnen die
Komponenten mit der Normalverteilung
auf signifikante Abweichungen von Null
geprift werden (Hauptkomponenten-
test).

Praktisch wird der Vektor S mit den
folgenden Komponenten gebildet:

Si==VV./V75

miti=1,2,...nwenn\ #0,

die eine zentrische und standardisierte
Normalverteilung besitzen und stocha-
stisch unabhéngig sind. lhr Wert wird
mit der vorgewahlten Wahrscheinlich-
keitsschranke der Normalverteilung
verglichen. Je nach Ergebnis kann die
Nullhypothese fiir einen Modellfehler
angenommen oder verworfen werden.

4.5 Anwendungen in der Geodéasie
Die Hauptkomponentenanalyse als be-
wahrte Methode der analytischen Stati-
stik ist sicher den meisten Geodaten
bekannt. Die mathematischen Grundla-
gen dazu findet man praktisch in jedem
Lehrbuch der linearen Algebra, und sie
bieten sicher keine Schwierigkeiten.
Trotzdem wird die Hauptkomponenten-
analyse zur Losung praktischer Aufga-
ben in der Geodasie wenig eingesetzt.
Eine bemerkenswerte Ausnahme ist
das Verfahren von H. Pelzer zur Untersu-
chung der Ergebnisse von Deforma-
tionsmessungen. Die Differenzen zwi-
schen den u Koordinaten, die in zwei
verschiedenen Zeitrdumen bestimmt
wurden, bilden einen n-dimensionalen
Vektor, der fir die Nullhypothese den
Erwartungswert Null besitzt. Seine Va-
rianz-Kovarianzmatrix ist in der Regel
vollbesetzt, so dass die Hauptkompo-
nentenanalyse sich ausgezeichnet fir
die Durchfiihrung eines Tests zur Uber-
prifung der Nullhypothese fur die
Deformation eignet [Pelzer 1976], [Dup-
raz, Niemeier 1979].

4.6 Die Nichteindeutigkeit der Lésung
Jede symmetrische Matrix M der Ord-
nung n besitzt n reelle Eigenwerte. Sie
sind als Nullstellen des charakteristi-
schen Polynoms (vom echten Grad n)
der Matrix M eindeutig bestimmt.

Die Eindeutigkeit gilt nicht fir die
Eigenvektoren der Matrix M, welche
ebenfalls fur den Hauptkomponenten-
test interessieren. Die Nichteindeutig-
keit der Eigenvektoren ist aber kein
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Hindernis bei der Durchfihrung des
Tests. Da das vorgeschlagene Jacobi-
Verfahren immer eine Losung liefert, in
welcher die Eigenvektoren ein ortho-
normiertes System bilden, sind alle
Voraussetzungen fur die Anwendung
gegeben, und ein Testvektor S mit
standardisierten und statistisch unab-
hangigen Komponenten kann somit
immer hergeleitet werden.

Fur weitere Einzelheiten wird auf die
Literatur verwiesen, z.B. [Schwarz, Ru-
tishauser, Stiefel, 1972].

4.7 Rechenbeispiele
Einfaches Dreieck (Abb. 2)

Ein eindimensionaler Test der normal-
verteilten und standardisierten Grosse
s, mit a=5% fuhrt zur Annahme des
mathematischen Modells.

Dem Leser ist sicher nicht entgangen,
dass die Testfunktion nichts anderes ist
als die Winkelbedingungsgleichung des
Dreiecks.

Das kombinierte Netz

Waihrend die erste Berechnung gezeigt
hat, dass einfache Resultate auch durch
komplizierte Methoden erreicht werden
konnen, beschreibt das folgende Bei-
spiel (Abb. 3) eine Anwendung, die mit
einfacheren Mitteln nicht ohne weiteres
moglich ware.

Winkel Messwert Verb.
(Gon) (ce)

1 61.6305 -3.3

2 90.3665 -3.3

B 48.0040 -3.3

mittlere Fehler a priori
der Beobachtungen = 5cc

Abb.2 Ein einfaches Dreiecksnetz

Fur die Ausgleichung wird a=1 in allen
Beispielen gesetzt, so dass die Kofakto-
renmatrix der Verbesserungen Q. auch
die Varianz-Kovarianzmatrix der Verbes-
serungen ist.

Die Matrix Qyy ist:

8.3333 8.3333 8.3333
8.3333 8.3333 8.3333
8.3333 8.3333 8.3333

Mit dem Jacobi-Verfahren koénnen Ei-
genwerte und Eigenvektoren berechnet
werden.

Die transponierte Matrix UT der Eigen-
vektoren lautet:

0.7071 -0.7071 0.0000
05774 05774 0.56774
-0.4082 -0.4082 0.8165

und die dazugehorigen Eigenwerte sind
(0. , 260, 0. ). Da der erste und
der letzte Eigenwert gleich Null sind,
stellen die entsprechenden Eigenvekto-
ren funktionale Beziehungen zwischen
den Verbesserungen im Modell dar und
ergeben daher keine Zufallsvariablen.
Der zweite Eigenvektor fiihrt hingegen
zur zentrischen normalverteilten Zufalls-
variablen w,=U, V=-577, welche
die Standardabweichung oy =vA,=5
besitzt. Daraus kann der einzige S-\Wert
berechnet werden:

s,=-1.15

ST | ZIEL BEOB | MFR D RED | MFD
G cc M MM
B A 256.3460 | 5 1421.260 | 10
P 200.0015 [ 5 1000.035 | 10
[ 150.0010 | 5 1272.790 | 10
B B 0.0000 | 5
[ 92.9560 | 5
A 305.7720 | 5
A B 56.3450 | 5
B 105.7710 | 5
C P 292.9550 | 5
B 350.0005 | 5

Abb.3 Ein kombiniertes Netz

Aufgrund der Beobachtungen kodnnen
die Ausgleichung und die folgenden
signifikanten S-Werte berechnet wer-
den.

uTv S-Werte
1) - 4.36430 -0.87286
2) - 1.69706 -0.33941
3) - 205144 -0.41029
4) - 766923 -1.563385
5) 2.39527 0.28337
6) -2869758 -2.86976
7) - 9.08785 -1.19956

Der eindimensionale Test der Grosse
se= - 2.87, welche standardisiert und
zentrisch normalverteilt sein sollte, fuhrt
fur a=5% zur Verwerfung des mathe-
matischen Modells, da der Annahme-
bereich zwischen -1.96 und 1.96 liegt.

Das Verwerfen des Modells ist in
diesem Spezialfall bestimmt berechtigt,
da die zwolfte Beobachtung (Distanz
B-P) absichtlich vor der Berechnung
um 25 mm verfalscht wurde.

Nach der Verwerfung des Modells wird
man versuchen, den groben Fehler
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moglichst genau zu lokalisieren. Zwei
denkbare Verfahren diesbeztglich sind
in den folgenden Kapiteln beschrieben.

5. Der NMAX-Test

5.1 Die Teststatistik

In den bisherigen Beispielen wurden die
einzelnen Komponenten s; des Testvek-
tors, die aus der Hauptachsentransfor-
mation stammten, nur in eindimensio-
nalen Tests verwendet, was auch mit
beliebigen geometrischen Bedingungs-
gleichungen moglich ware.

Man hat bis anhin die statistische
Unabhangigkeit der Testvariablen s;
noch nicht ausgenitzt. Gerade diese
Eigenschaft erlaubt aber das Durchfih-
ren eines globalen Tests.

Es ist in der Tat leicht, eine Wahrschein-
lichkeit w fur das Ereignis zu berech-
nen, dass die Absolutbetrage aller
Komponenten s; einer Realisierung des
Testvektors S kleiner als eine festgeleg-
te Schranke k sind. Das heisst

w =P (alle sl =k) i=12:.a0

Da die Komponenten s; stochastisch
unabhangig sind, ist dann

w=P(Is;I=k)-P(ls,| =k)
P (lIsh =K.
Die einzelnen Wahrscheinlichkeiten sind

der eindimensionalen Normalvertei-
lungsfunktion zu entnehmen. Die inver-

se Berechnung ist ebenfalls leicht
durchfiihrbar: ist eine Irrtumswahr-
scheinlichkeit gegeben, kann die

Schranke k(o) berechnet werden, fir
welche

P(allelsil=k (o) )=1-ai=12,...n

ist. Aufgrund des so berechneten Signi-
fikanzintervalls kann ein mehrdimensio-
naler Test unter gleichzeitiger Beriick-
sichtigung aller Komponenten der Test-
variablen durchgeftihrt werden.

Wenn man unter den Komponenten des
Testvektors S die betragsgrosste Kom-
ponente Smax betrachtet, ist sofort
ersichtlich, dass die Wahrscheinlichkeit

w=P (allel sl =k) =P (| smax| =K)

ist. Daher kann man die vorherigen
Ausfihrungen vereinfachen, indem
man die neue Testvariable smax verwen-
det mit dem Vorteil, dass der mehrdi-
mensionale Test auf einen eindimensio-
nalen zurtickgefiihrt wird. Zur Beurtei-
lung der statistischen Eigenschaften der
Zufallsvariablen smax steht die Theorie
der Ordnungsstatistiken zur Verfigung.
Man konsultiere dazu etwa das ausfiihr-
liche Werk [David 1980] oder als Ein-
fiihrung [Bachmann 1973].

5.2 Die NMAX-Verteilung

Die Testvariable smax stammt also aus
einer Reihe stochastisch unabhéangiger,
normalverteilter Zufallsvariablen (die
Komponenten des S-Vektors) mit be-

0.40 -

4

NMAX(z )

A

v

T 1
- Z n

Abb.4 Die Wahrscheinlichkeitsdichte der NMAX-Verteilung fur f= 2

kanntem Erwartungswert (Null) und
bekannter Varianz (1); sie ist als die
betragsgrosste unter den Komponenten
definiert. lhre  Verteilungsfunktion
(Abb. 4) wird NMAX-Verteilung genannt
und ist in [Carosio 1983] berechnet und
tabelliert. In der gleichen Veroffentli-
chung ist ein moglicher Rechenablauf
mit dem entsprechenden FORTRAN-
Programm fir die numerische L&sung
beschrieben.

5.3 Rechenbeispiele

Die folgenden Berechnungen zeigen,
wie der NMAX-Test durchgeftihrt wer-
den kann. Besonders wichtig ist dabei
der Vergleich mit dem bekannten F-Test,
wobei die verschiedenen Empfindlich-
keitseigenschaften ersichtlich werden.
Das mehrfache Dreiecksnetz

Ein Netz mit drei Dreiecken (Abb.5)
kann untersucht werden. Die Berech-
nung ergibt:

Smax (= 81) = - 1.16.

Winkel Messwert Verb.
(Gon) (ce)

1 61.6305 -3.3

2 90.3665 =3.3

3 48.0040 -3.3

4 T70.5015 1.7

5 80.3065 1.7

6 49.1915 1.7

T 65.2015 -1.7

8 55.2050 -1.7

9 79.5940 -1.7

mittlere Fehler a priori
der Beobachtungen = 5cc

Abb.5 Ein mehrfaches Dreiecksnetz
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Da die Verteilung der dazugehorigen
Testvariablen smax bekannt ist, kann die
erhaltene Realisierung als Prufgrosse
eingesetzt werden. Der Test mit der
NMAX-Verteilung fur die Wahrschein-
lichkeitsschranke a= 5% fuhrt zur An-
nahme des Modells im globalen Test.
Der Annahmebereich ist (- 2.4, + 2.4).
Der F-Test fuhrt mit F=0.67 ebenfalls
zur Annahme des Modells, da aus der
F-Verteilung die Annahmeschranke fur
Fs oo fir a= 5% bei Fgr = 2.6 liegt.

Falls im Netz eine Beobachtung des
ersten Dreiecks um 25° verfélscht
wird, erhalt man v, = v, = v3=11.66 und
6=2.38,dac="1ist, sind

F =&%°/0°=5.66und
Smax = 4.04.

Beide Testgrossen fuhren richtigerweise
zur Verwerfung des Modells.

Wenn das Netz noch einmal erweitert
wird, bis es 30 unabhangige Dreiecke
umfasst  (einfachheitshalber werden
hier die gleichen Beobachtungen zehn-
mal wiederholt), ergibt diese Variante
ohne grobe Fehler:

F = 082
Smax = — 115

Falls eine Beobachtung im ersten Drei-
eck um 25¢¢ verfalscht wird, ist

F*=0.86.

Das Modell wird hier mit einem F-Test
trotzdem angenommen. Hingegen fiihrt
der Test der standardisierten Bedingun-
genzu

Smax = 404

Das Modell wird eindeutig verworfen
(Annahmebereich zwischen - 3.15 und
+3.15).

Das kombinierte Netz

Das kombinierte Netz in 4.7 kann
ebenfalls untersucht werden. In diesem
Beispiel ist

Smax = — 2.87.

Das Modell wird mit dem NMAX-Test
(Irrtumswahrscheinlichkeit = 5%) ver-
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worfen, da der Annahmebereich
(-2.68, + 2.68) ist. Der F-Test hingegen
hatte mit

F=187

zur Annahme des Modells gefihrt, da
die Verwerfungsschranke fur die glei-
che Wahrscheinlichkeit a= 5% bei 2.01
liegt. In diesem Spezialfall ist eine
Verwerfung erwinscht, da eine Mes-
sung absichtlich verfalscht wurde.

5.4 Wichtige Eigenschaften des Tests
Die Beispiele zeigen deutlich, dass mit
zunehmender Netzgrosse die Empfind-
lichkeit des NMAX-Tests gegeniiber
derjenigen des F-Tests immer grosser
wird. Der Grund dafur liegt in der
Eigenart der Hauptkomponentenanaly-
se, die die lokalen geometrischen Ei-
genschaften besser berlcksichtigen
kann. Die einzelnen Komponenten des
Testvektors sind in der Regel nur von
wenigen Beobachtungen abhangig. Das
bedeutet, dass sie sich auf bestimmte
Netzteile beziehen und daher empfind-
lich reagieren, wenn im eigenen Bereich
ein grober Fehler vorkommt.

5.5 Geometrische Bedeutung des
NMAX-Tests

Fur den Test wird der f-dimensionale
Vektor S gebildet mit stochastisch
unabhangigen Komponenten, die nor-
malverteilt sind und alle Erwartungs-
wert=0 und Varianz=1 aufweisen.
Nach der Wahl der Irrtumswahrschein-
lichkeit wird die Signifikanzgrenze sgr
des Tests der Tabelle der NMAX-\Vertei-
lung entnommen.

Wenn

Si=SGR furi=1,2,...,f

ist, wird das mathematische Modell
angenommen. Wenn hingegen eine
einzige Komponente

Sj=> SGR

ist, dann wird das Modell verworfen.
Fir den Fall eines Systems mit Frei-
heitsgrad 2 (f=2) ist der Testvektor S
zweidimensional und kann daher in
einer Ebene dargestellt werden.

Der Annahmebereich ist dann ein Qua-
drat mit Seitenlangen 2 - sgg (Abb. 6).

hY

z~

-2 -

Abb.6 Annahmebereich fir den NMAX-
Test
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Eine &dhnliche Uberlegung kann eben-
falls fur hohere Freiheitsgrade angestellt
werden. Fir f= 3 wird der Annahmebe-
reich ein Warfel. Fir noch grossere f
spricht man von Hyperwirfeln im f-
dimensionalen Raum.
Selbstverstandlich kann mit dem Test-
vektor S ebenfalls ein Chi-Quadrat-Test
(oder ein gleichwertiger F-Test) durch-
gefuihrt werden, indem die Grosse

=524+ .. +s?

gebildet wird. Aus der Chi-Quadrat-
Verteilung wird x&g fur die Irrtumswahr-
scheinlichkeit berechnet, und wenn

s?+ s+ ... ST=xqR

ist, wird das Modell angenommen.

Der Fall mit f=2 kann in der Ebene
graphisch dargestellt werden. Der An-
nahmebereich ist ein Kreis mit Radius
Xgr. Im dreidimensionalen Fall ist der
Bereich eine Kugel, wahrend man far
hohere Freiheitsgrade dann von Hyper-
kugeln spricht.

Man kann als Beispiel die Annahmebe-
reiche des NMAX-Tests (Hyperwirfel)
und des Chi-Quadrat-Tests (Hyperkugel)
bei einem Freiheitsgrad f=100 und fur
o=5% vergleichen. Aus den Tabellen
der NMAX- bzw. der Chi-Quadrat-Ver-
teilung erhalt man darauf fur f=100
und a = 5% die folgenden Werte:

SGR = 3.60
xgr=11.15

(halbe Quadratseite)
(Kreisradius).

Daraus folgt, dass Modellfehler, die
sich nur auf wenige Komponenten von
S auswirken, besser mit dem NMAX-
Test festgestellt werden kdénnen als mit
dem Chi-Quadrat-Test.

Die groben Fehler haben in guten
Netzen eine lokal begrenzte Wirkung
und beeinflussen in der Regel nur einen
kleinen Teil der Komponenten von S, so
dass sich die Hauptkomponentenanaly-
se fur ihre Aufdeckung besser eignet.

5.6 Die Lokalisierung der groben
Fehler

Die bisherigen Ausfiihrungen befassten
sich ausschliesslich mit der Frage: «st
ein grober Fehler vorhanden?) Absicht-
lich wurde die fir die Praxis ebenso
wichtige Fragestellung: (Welche Beob-
achtung ist falsch?) nicht gleichzeitig
behandelt.

Diese Trennung der beiden Probleme
hat sich in der Geodésie allgemein
durchgesetzt, da mit Hilfe der mathe-
matischen Statistik nur eine Antwort
auf die erste Frage gegeben werden
kann. Die zur Verfigung stehenden
statistischen Tests bieten nur zwei
maogliche Antworten: Modell angenom-
men oder verworfen, grober Fehler
vorhanden oder nicht (selbstverstand-
lich mit einer Irrtumswahrscheinlich-
keit).

Die Hauptkomponentenanalyse flihrt zu
einem Test fir das gesamte Modell,
liefert aber ebenfalls Angaben zur Loka-
lisierung der tatsachlich falschen Beob-
achtungen. Wenn der Test zu einer
Modellverwerfung gefiihrt hat, kann
man den linearen Testfunktionen (Eigen-
vektoren) einige Angaben zur Abgren-
zung der Netzteile entnehmen, in wel-
chen ein grober Fehler vermutet wer-
den kann.

Die einzelnen Komponenten des f-di-
mensionalen Testvektors S sind lineare
Funktionen der Verbesserungen, das
heisst:

Si=2Zj1 Vit 2Zio Vot ...+ Zin"Vp,

wobei die zj; die Komponenten des i-ten
Eigenvektors nach Teilung durch ¥\
(Wurzel des dazugehorigen Eigenwerts)
sind.

In Matrizenform kann das Gleichungs-
system folgendermassen geschrieben
werden:

S=7TV.
Die Verbesserungen der Ausgleichung

sind ihrerseits lineare Funktionen der
Beobachtungen, namlich

V=-QwPL.
(Qyy ist die Varianz-Kovarianzmatrix der
Verbesserungen, P die Inverse der

Varianz-Kovarianzmatrix der Beobach-
tungen und L der Beobachtungsvektor),
so dass auch S eine lineare Funktion
der Beobachtungen ist:

S=G'L, wenn Gl =-ZT Q. Pist.

Falls der NMAX-Test zur Verwerfung
des mathematischen Modells gefihrt
hat, kann die i-te Zeile von GT betrach-
tet werden, die die betragsgrosste
Komponente s; des Testvektors gebildet
hat:

Smax=8i= i1 i+ Gizlat ...+ ginIn

Da ausschliesslich die Beobachtungen,
fur welche der Koeffizient gjj# 0 ist,
einen Beitrag zur Bildung von s; geliefert
haben, ist der grobe Fehler vor allem
unter diesen Beobachtungen zu suchen.
Der Betrag des Koeffizienten gjj ist auch
von Bedeutung, da er den Einfluss der
einzelnen Beobachtungen und daher
des groben Fehlers auf die entspre-
chende Komponente von S bestimmt.
Es ist deshalb zu vermuten, dass sich
ein allfalliger grober Fehler der j-ten
Beobachtung in der Komponente s; des
Testvektors auswirkt, fur welchen g
einen grossen Absolutbetrag aufweist.
Als Beispiel dafir kann das kombinierte
Netz dienen. Das mathematische Mo-
dell wird mit dem NMAX-Test verwor-
fen, da die 6. Komponente von S im
Betrag grosser ist als die Verwerfungs-
schranke.

S¢ = — 2.86
SGr= 2.68
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In der Matrix G, die die lineare Bezie-
hung zwischen den Beobachtungen L
und dem Testvektor S darstellt, kann
man in der sechsten Zeile die Koeffi-
zienten der linearen Funktion erkennen,
die zur stark abweichenden Komponen-
te se und daher zur Verwerfung des
Modells gefuhrt haben.

Se=-0.0491;;+0.069 I,,-0.054 |5

Se ist nur Funktion der drei gemessenen
Distanzen (Beobachtungen 11, 12, 13)
und dabei weist die zweite Distanz (o)
den betragsgrossten Koeffizienten auf
und sollte daher als erste untersucht
werden. Die beiden anderen Distanzen
haben Koeffizienten, die nicht wesent-
lich kleiner sind, so dass sie ebenfalls
als mogliche Fehlerursache in Frage
kommen.

Im erwéhnten Beispiel erweist sich
gerade diese Uberlegung als richtig, da
die zweite Distanz absichtlich um
25 mm verfélscht wurde.

Ein weiteres Verfahren, die Methode
der extremen S-Komponente, kann mit
Hilfe von einer Folge von Orthogonalro-
tationen der Matrix G aufgebaut wer-
den und erlaubt mdglicherweise eine
noch bessere Lokalisierung der groben
Fehler. Es wird hier auf die Literatur
hingewiesen [Carosio 1983].

Die Zuverlassigkeit
geodatischer Messsysteme
(Verfahren a priori)

6. Allgemeines

Im vorherigen Kapitel wurden die Ver-
fahren behandelt, die nach Ausfiihrung
der Messungen eine Interpretation der
Ergebnisse erlauben. Die Planung der
Messanordnung und die vorgéngige
Beurteilung der zu erwartenden Eigen-
schaften der Resultate sind ebenfalls
sehr wichtig und bilden das Thema der
folgenden Abschnitte.

Die erste Phase der geodatischen Ar-
beit in der Praxis befasst sich mit der
Festlegung der Anforderungen an das
Vermessungswerk. Diese Anforderun-
gen bilden die Ubergeordneten Randbe-
dingungen, die in jedem Fall erfillt
werden mussen. Diese Phase bildet die
Voraussetzung fur die Planung der
Messanordnung, fir die Festlegung der
Irrtumswahrscheinlichkeiten der statisti-
schen Tests sowie fur die Wahl der
Messinstrumente und der Berech-
nungsmethoden.

In einer zweiten Phase wird versucht,
eine geodétische Messanordnung zu
entwerfen und die geeigneten Berech-
nungsmethoden zu wahlen, welche die
festgesetzten Randbedingungen erfuil-
len und mit dem kleinstmdoglichen
Aufwand und den verfligbaren Mitteln

realisiert werden konnen. In der Praxis

geht man heute noch nach dem klassi-

schen Verfahren vor:

- Nach allgemeinen Grundregeln und
vor allem aufgrund von Intuition und
Erfahrung des Vermessungsinge-
nieurs werden verschiedene geodati-
sche Netze entworfen

- Die Varianten werden verglichen, der
Aufwand wird geschétzt und die
Einhaltung  der  Ubergeordneten
Randbedingungen kontrolliert.

Das Vorgehen kann iterativ wiederholt
werden, bis man eine befriedigende
Losung fir die gestellte Aufgabe gefun-
den hat. Erst dann kann mit den Mes-
sungen begonnen werden.
Die erste Eigenschaft der entworfenen
Messanordnungen, die Uberprift wer-
den muss, ist die Realisierbarkeit, d.h.
die vorgesehenen Beobachtungen sol-
len im Feld gemessen werden konnen;
ebenfalls missen die Genauigkeitsan-
forderungen eingehalten werden. Dies
kann mit der Berechnung der Fehler-
ellipsen a priori und eventuell der relati-
ven Fehlerellipsen tberprift werden.

In der letzten Zeit wird dem Einfluss von

moglichen Modellfehlern, z.B. von gro-

ben Fehlern, auf die Resultate immer
mehr Beachtung geschenkt. Gerade
diesem Problem sind die folgenden

Kapitel gewidmet. Die Zusammenhénge

zwischen statistischen Tests und Zuver-

|&ssigkeit werden eingehend untersucht
und dargestellt.

Unter den unzadhligen denkbaren Mo-

dellfehlern gilt der Einfluss von groben

Messfehlern bei der Realisierung der

Beobachtungen als Grundlage aller

folgenden Betrachtungen. Die meisten

Verfahren eignen sich jedoch ebenfalls

zur Untersuchung der Wirkung und der

Entdeckung anderer Modellfehler. Die

entsprechenden Herleitungen missten

unter Berucksichtigung der entspre-
chenden Fehlerhypothese (Alternativ-
hypothese) wiederholt werden.

7. Der Begriff Zuverlassigkeit

7.1 Grundgedanken

Es ist allgemein bekannt, dass in einem
geodéatischen Netz Massnahmen ge-
troffen werden mussen, um zu vermei-
den, dass grobe Messfehler unbemerkt
bleiben und die gesuchten Resultate
verfélschen. Daher wird in der klassi-
schen Vermessung nach dem Motto:
(Eine Messung ist keine Messung»
vorgeschrieben, immer ein redundantes
Messsystem vorzusehen, um eine ge-
nigende Kontrolle zu ermaoglichen.

Erst Ende der sechziger Jahre wurde in
der Geodasie das Problem der Zuver-
lassigkeit mit Hilfe der mathematischen
Statistik streng formuliert und quantita-
tiv gelost [Baarda 1968].

Der Begriff «<zuverlédssigy ist in der
Umgangssprache Ublich und kann fur
qualitative Betrachtungen auch in der
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Geodésie mit der Bedeutung «glaub-
wirdigy, <erprobt), <vertrauenswirdig
verwendet werden.

Die Entwicklung von quantitativen stati-
stischen Verfahren erforderte eine Préazi-
sierung der Definition. Leider hat sich
bisher international keine einheitliche
Begriffserklarung fir die geodatischen
Anwendungen durchgesetzt [Grafarend
u.a. 1979].

Fur die korrekte Entwicklung und das
Verstehen der Theorie ist jedoch eine
klare und eindeutige Festlegung der
Begriffe unerlasslich, und daher kann
auf eine Definition hier nicht verzichtet
werden.

7.2 Definition der Zuverlassigkeit im

Hinblick auf grobe Fehler

Gegeben seien:

- das geodatische Netz mit dem funk-
tionalen und dem stochastischen
Modell

- der grosste Fehler Ajnax jeder Beob-
achtung (bzw. Unbekannten), wel-
cher die Anforderungen an das
Vermessungswerk noch nicht in Fra-
ge stellt, und die Wahrscheinlichkeit
B, die man als noch zumutbares
Risiko betrachtet, falls ein grober
Fehler Aimax Nicht entdeckt wird

- das gewadhlte statistische Testverfah-
ren T(a), mit welchem man das
Modell nach den Messungen prifen
wird, und die entsprechende Wahr-
scheinlichkeit o fir die irrtimliche
Verwerfung des Modells.

Daraufhin nennt man das Messsystem
im Hinblick auf allfallige grobe Fehler
zuverlassig, wenn fur i=1, 2, ..., n ein
verborgener Fehler Ajmax der i-ten
Beobachtung (bzw. Unbekannte) bei
der Durchfihrung des Tests T(a) mit
Wahrscheinlichkeit  (1-B)  entdeckt
wird.
Falls der Fehler Ajnax sich auf die
unbekannten Parameter der Ausglei-
chung (z.B. Koordinaten) bezieht,
spricht man von &ausserer Zuverlassig-
keit. Falls Aimax als Fehler einer Beob-
achtung betrachtet wird, wird hingegen
von innerer Zuverlassigkeit gesprochen
[Baarda 1968].
Gleichwertig ist die Definition, welche
die Zuverlassigkeit in Beziehung mit
den Grenzfehlern V; setzt, die gerade
noch mit Wahrscheinlichkeit (1-B) ent-
deckt werden konnen. Die Zuverléssig-
keitsbedingung ist dann:

vi §Aimax-

Mit der Definition der Zuverldssigkeit
des Messsystems stellt sich sofort die
Frage nach der Systemabgrenzung.
Was gehort zum Messsystem? Das
heisst, was ist Objekt der Zuverlassig-
keit? Die Antwort ist leicht der Defini-
tion zu entnehmen:

- das geodétische Netz mit den Mo-

delleigenschaften
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- die Fehlerhypothese (Alternativhypo-
these) mit den Anforderungen an
das Vermessungswerk und

- das gewahlte statistische Testverfah-
ren.

Beim praktischen Gebrauch wird meist
lediglich von der Zuverlassigkeit des
geodatischen Netzes gesprochen, und
es ist daher nicht verwunderlich, dass
man oft glaubt, es handle sich dabei um
eine Eigenschaft der reinen Netzgeome-
trie.

Nur selten wird die direkte Abhéngig-

keit der Zuverlassigkeit vom gewdhlten

statistischen Testverfahren erwéhnt. Be-
merkungen diesbezlglich finden sich

z.B. etwas implizit im Vorwort von

[Baarda 1968] und deutlicher in [Heck

1980].

Wichtig fur die folgenden Betrachtun-

gen ist die Bemerkung, dass eine

positivere Bewertung der Zuverlassig-
keit eines Messsystems erzielt werden
kann:

- durch Verbesserung der Netzgeome-
trie oder

- durch bescheidenere Anforderungen
an das Vermessungswerk oder

- durch die Wahl eines empfindliche-
ren statistischen Testverfahrens.

Die dritte Feststellung ist hier von

Besonderer Bedeutung, wenn man sie

in Zusammenhang mit dem vorgeschla-

genen NMAX-Test betrachtet. Der

NMAX-Test weist gegenluber den her-

kommlichen Verfahren eine grossere

Empfindlichkeit in der Entdeckung der

lokalen Modellfehler auf, so dass er

einen Beitrag zur Verbesserung der

Zuverldssigkeit der Messsysteme lei-

sten kann.

8. Einfache Verfahren aus der
Praxis

Die moderne Theorie der Zuverlassig-
keit, die sich auf statistische Methoden
stltzt, ist etwas mehr als zehn Jahre alt.
Sie ist nicht immer sehr einfach anzu-
wenden und wird daher noch selten in
der schweizerischen Praxis eingesetzt.
Die Notwendigkeit, zuverlassige Mess-
systeme zu entwerfen, ist hingegen
keineswegs neu und bildet seit langem
eine Voraussetzung des Vermessungs-
wesens.

Die Losungen, die in der Vergangenheit
gewahlt wurden, sind nicht grundsatz-
lich anders als die modernen. Anstatt
die genaue Wahrscheinlichkeit zu be-
rechnen, mit welcher kleine Fehler
durch statistische Methoden entdeckt
werden konnen, wurden Mustermess-
anordnungen als Vergleich herangezo-
gen, die erfahrungsgeméss als zuverlas-
sig galten. (Beispiel: Die Instruktion fur
die Triangulation 4. Ordnung vom 10.
Juni1919)

Um der Tatsache Rechnung zu tragen,
dass die Zuverlassigkeit eines Messsy-
stems nicht unabh&ngig von der Art
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des Testverfahrens und der gestellten
Anforderungen ist, wurden immer auch
Toleranzformeln oder -tabellen angege-
ben, welche die Zuverlassigkeit des
Systems sicherten. Ein Beispiel dafir
sind die Fehlergrenzen der bereits
genannten Instruktion. Es ist vermutlich
unndtig zu bemerken, dass in diesen
alten Methoden die drei Systemele-
mente der modernen Definition deutlich
zu erkennen sind.

9. F-Test und Zuverlissigkeit

(nach W. Baarda)

Der eigentliche Durchbruch der Zuver-
l&ssigkeitsbetrachtungen in der Geoda-
sie ist W.Baarda zu verdanken. Seine
sehr bekannte Publikation [Baarda
1968] Uber die Zuverlassigkeit geodati-
scher Netze gilt heute noch als Grundla-
ge fur alle Entwicklungen auf diesem
Gebiet. Die Arbeiten von W.Baarda
zeigten einen Weg auf, um das Problem
der Zuverlassigkeit eines Messsystems
nach den strengen Methoden der ma-
thematischen Statistik zu Iosen. Als
Testverfahren wird der F-Test mit einer
Wahrscheinlichkeitsschranke o fur die
Annahme oder die Verwerfung des
Modells gewahlt. Nach der Ausglei-
chung nach der Methode der kleinsten
Quadrate wird die Testvariable F = 6*/0°
gebildet, welche fur normalverteilte
Beobachtungen F-verteilt ist. Der Frei-
heitsgrad f (=n-u) von & wird der
Ausgleichung entnommen, wahrend fiir
o der Freiheitsgrad e angenommen
wird.

Falls die i-te Beobachtung durch einen
groben Fehler A; verfalscht ist, werden
6 und F ebenfalls verfalscht und ihre
Erwartungswerte veréndert.

E(FY) = E(F) + 2 =1+
Fur unkorrelierte Beobachtungen ist
dann

_ & W

al i [Conzett 1981].
| |

Die Verteilung der Testgrosse F (ohne
grobe Fehler) ist die bekannte F- oder
Fisher-Verteilung. Die Verteilung von F*
ist hingegen die nichtzentrale F-Vertei-
lung mit A als Nichtzentralitatsparame-
ter.

Fur jeden eventuellen groben Fehler ist
es maoglich, im voraus zu berechnen,
mit welcher Wahrscheinlichkeit er ent-
deckt werden kann, wenn die Grosse
F=06%0® auf die zentrale F-Verteilung
mit Annahmeschranke Fgr getestet
wird (Abb. 7).

Oder was gleichwertig ist: man kann
berechnen, wie gross ein grober Fehler
Vi sein muss, damit er durch den
obengenannten Test mit einer vorgege-
benen Wahrscheinlichkeit (1-B) ent-
deckt wird. Diese Schwellenwerte fur
die groben Fehler in den einzelnen
Beobachtungen werden innere Zuver-
l&ssigkeitsgrossen der Beobachtungen
im Messsystem genannt [Baarda 1968],
[Just1979].

Die Wahl des F-Tests als Prifmethode
im Messsystem hat den Nachteil, dass
nur recht betrachtliche A; entdeckt
werden kdnnen, wenn der Freiheitsgrad
des Netzes gross wird.

10. Zuverlassigkeit und einfache
Tests aus der Praxis

Im vorhergehenden Kapitel wurden
Vorteile und Nachteile der Wahl des F-
Tests als Priufverfahren im Messsystem
beschrieben. Ebenfalls erwahnt wurde,
dass fur grosse Netze die Empfindlich-
keit des F-Tests auf grobe Fehler we-
sentlich kleiner ist als diejenige der
einfachen Testverfahren aus der Praxis
(VTest, geometrische Bedingungen
usw.). Darlber wurde im ersten Teil
dieser Arbeit bei der Schilderung der
Testverfahren a posteriori ausfiihrlich
berichtet.

Da in der Praxis oft grosse Netze
bearbeitet werden (Hunderte von Unbe-
kannten mit Tausenden von Messun-

v

g

Abb.7 Wahrscheinlichkeitsdichten der Teststatistik F bei zutreffendem und bei unzutreffen-

dem Modell
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gen), stellt sich sofort die Frage, ob es
nicht moglich ware, die Zuverlassigkeit
eines Messsystems zu bestimmen, in
welchem einer der erwédhnten Einzel-
tests als Prifverfahren eingesetzt wird.
Dies wirde zu praxisbezogeneren Zu-
verlassigkeitskriterien fihren. Dank der
guten Empfindlichkeit besonders geeig-
net ware der Test der standardisierten
Verbesserungen, welcher in 3.4 be-
schrieben ist.

Fir eine einzelne Beobachtung der
Ausgleichung ist es moglich zu prifen,
ob sie im Messsystem zuverlassig
kontrolliert ist. Da aber die standardi-
sierten Verbesserungen w; unter sich
korreliert sind, ist es sehr schwierig, die
Wahrscheinlichkeit B zu bestimmen,
dass bei Vorhandensein eines groben
Fehlers A; fur alle Beobachtungen die
Ungleichung

WiEwgri=12,...,n

erfullt ist.

Mit anderen Worten: Wenn als Prifver-
fahren der Test der standardisierten
Verbesserungen gewahlt wird, kann
keine vollstandige statistische Zuverlas-
sigkeitsanalyse  des  Messsystems
durchgefihrt werden.

11. NMAX-Test und Zuverlassigkeit
11.1 Einfihrung

In der Beschreibung der Beurteilungs-
verfahren aufgrund der durchgefiihrten
Messungen wurde darauf verwiesen,
dass die Hauptkomponentenanalyse
und der NMAX-Test sehr geeignete
Prufverfahren sind, da sie einerseits die
lokale Wirkung von eventuellen groben
Fehlern beriicksichtigen und anderseits
auch einen Gesamttest ermoglichen.
Selbstversténdlich kann man sich jetzt
fragen, ob die Zuverldssigkeit des
Messsystems streng berechnet werden
kann, wenn die zum System gehotren-
den Testverfahren die Hauptkomponen-
tenanalyse oder der gleichwertige
NMAX-Test sind.

11.2 Die L6ésung

In 4.3 und 4.4 wurden die Hauptkom-
ponenten des Verbesserungsvektors
berechnet:

W=UuTvVv

(V ist der Verbesserungsvektor und U
die Eigenvektorenmatrix der Kofakto-
renmatrix Qy.) Fur die Durchftihrung
des Tests wurden dann die Hauptkom-
ponenten W standardisiert

S = (wWi/VM. wo/ Vg, ),

wo die A; die Eigenwerte der Matrix Q.y
sind. Die Komponenten von S, fir
welchen A;=0 ist, werden gestrichen
(so dass S nur f-dimensional ist). Wenn
die Matrix

1
A—1/2= i 1
1/)‘_2 .

eingefuhrt ist, kann die folgende Bezie-
hung hergestellt werden:

S=A"2UuTy

Gemass [Linkwitz 1960] ist fur unkorre-
lierte Beobachtungen

V==EPL,

so dass

S=-A""2UTQuPL,

und
S=GTLmitGT=-A""2UTQ,P

Die standardisierten Hauptkomponen-
ten s; sind die linearen Funktionen der
Beobachtungen, welche durch die Ma-
trix GT (f, n) definiert sind.

Falls ein grober Fehler A; die i-te Beob-
achtung verfalscht, verandern sich auch
die Komponenten sg von S.

Nach diesen Vorbemerkungen ist es
maoglich, in Anlehnung an die Herleitun-
gen von W.Baarda die Zuverlassigkeit
des Messsystems zu prifen.

Folgendes wird vorausgesetzt:

Auf die einzelnen Testgrossen sy wirkt
nur ein einziger eventueller grober
Fehler, d.h. die Haufigkeit der groben
Fehler ist so gering, dass im Einflussbe-
reich jeder Beobachtung hochstens
einer zu beflrchten ist.

Falls die i-te Beobachtung durch einen
groben Fehler A; verfalscht ist, ist sg
weiterhin normalverteilt, aber mit Er-
wartungswert

A= Qik A

anstatt Null (A = Nichtzentralitdtspara-
meter) (Abb. 8).
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Abb.8 Wahrscheinlichkeitsdichte einer
Komponente des Testvektors S beim Auftre-
ten eines groben Fehlers

Von der Annahmeschranke sgr des
NMAX-Tests (siehe Testbeschreibung in
5) und von der Tabelle der Normalver-
teilung kann die Wahrscheinlichkeit By
abgelesen werden, dass trotz dem
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groben Fehler A; die k-te Komponente
von S* in den Annahmebereich fallt
(Fehler 2. Art).

Die angegebenen Beziehungen erlau-
ben es, fur jede Komponente zu berech-
nen, wie gut die Hauptkomponenten-
analyse mit der Annahmeschranke o
wirkt und wie gross die Wahrschein-
lichkeit (By) ist, dass trotz dem groben
Fehler die k-te Komponente von S in
den Annahmebereich fallt.

Ein Fehler zweiter Art (d. h. falschlicher-
weise Annahme der Nullhypothese)
entsteht, wenn trotz dem groben Fehler
alle Komponenten von S in den Annah-
mebereich fallen. Seine Wahrscheinlich-
keit betrégt

p=[[ f

Annahmebereich

f(S) ds;-ds,-dss...

wo f die mehrdimensionale Wahr-
scheinlichkeitsdichte der multivariaten
stochastischen Variablen S ist, welche
den Erwartungswert (gi. Gio. Qis .. .) * A
aufweist.

Da die einzelnen Komponenten stocha-
stisch unabhéngig sind, kann die oben
angegebene Gesamtwahrscheinlichkeit
aus dem Produkt der Wahrscheinlich-
keiten eines Fehlers 2. Art fur jede
einzelne Komponente berechnet wer-
den

B= Bi B B

B=J fi(sy) ds; ’ f fa(sy) ds,
Annahme- Annahme-
bereich bereich
(1-dimensional) (1-dimensional)

Die fy sind die eindimensionalen Nor-
malverteilungen der einzelnen Kompo-
nenten von S. Sie haben Varianz =1 und
Erwartungswert

E(f) = A= gik - Ai.

Die Werte der einzelnen Integrale sind
der Tabelle der Normalverteilung zu
entnehmen.

Nachdem fir jede Beobachtung der
grosste noch unschéadliche grobe Feh-
ler festgelegt worden ist, kann die
Wahrscheinlichkeit B berechnet wer-
den, dass der Fehler nicht entdeckt
wird (erste Zuverlassigkeitsdefinition).
In ahnlicher Art kann man festlegen,
wie gross der Fehler V; ist, der mit einer
bestimmten  vorgegebenen  Wahr-
scheinlichkeit (1-B,) aufgedeckt wer-
den kann (zweite Zuverlassigkeitsdefini-
tion).

11.3 Anwendung

Mehrfaches Dreiecksnetz

(100 Dreiecke)

Ein reines Dreiecksnetz wie in 5.3, aber
mit 100 Dreiecken, kann ausgeglichen
werden. Man kann dann die folgenden
Zuverlassigkeitsgrossen fur die einzel-
nen Beobachtungen berechnen.
Zuverlassigkeit (nach dem NMAX-Test)
fur a=5%, B=20% und f=100

273



Messung o] Y Vi/oi
1 5.0 374 |75
2 5.0 374 | 75
3 50 374 |75
4 5.0 374 |75
5} 5.0 374 |75

Das gleiche Beispiel ergab bei der
Berechnung der Zuverlassigkeit nach
dem F-Test (siehe 9) Vi/a;=11.0.

Schlussfolgerung

Die vorliegende Arbeit mochte die
Aufmerksamkeit der Leser auf eine
einfache Feststellung lenken: Fur die
praktische Tatigkeit gilt selbstverstand-
lich, dass erfahrene, gelbte oder ein-
fach bessere Vermesser die Resultate
einer geodatischen Arbeit kritischer und
wirksamer beurteilen und kleinere Feh-
ler entdecken konnen, mit anderen
Worten zuverlassigere Resultate erzie-
len.

Das gleiche muss aber auch fir die
modernen statistischen Methoden gel-
ten: Empfindlichere oder einfach fur die
Anwendung bessere statistische Tests
‘fihren zu einer wirksameren Beurtei-
lung der Resultate geodatischer Arbei-
ten und erlauben die Entdeckung klei-
nerer Modellfehler als weniger geeigne-
te Vergleichsmethoden.

Die Wahl des Testverfahrens beeinflusst
daher massgebend die Grosse der
feststellbaren Modellfehler, d.h. der
Zuverlassigkeit, die nicht nur eine Ei-
genschaft der reinen Messanordnung
ist, sondern auch der Berechnungsver-
fahren (Testverfahren) und der Anforde-
rungen an das Vermessungswerk. Die
Entwicklung von besseren Testmetho-
den hat immer eine Konsequenz auf die

Zuverlassigkeitsbetrachtungen: Bessere
Tests erhohen die Zuverldssigkeit ohne
jegliche Anderung der Messanordnung.
Die vorliegende Verdffentlichung zeigt
mit Hilfe der mathematischen Statistik
die Zusammenhange zwischen Test und
Zuverlassigkeit einerseits und die Bezie-
hung zwischen den intuitiven Methoden
der Praktiker und den moderneren der
mathematischen Statistik anderseits.
Der neu vorgeschlagene NMAX-Test ist
eine mogliche Anwendung dieser Er-
kenntnisse und soll als Anregung gelten
fur vermehrte Anstrengungen im Be-
reich der mathematischen Beurteilungs-
verfahren.
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Die Verwendung von Kunststoffgrenzzeichen in der
Parzellarvermessung

W. Ulrich

Die Kosten der Vermarkung bestimmen in grossem Masse die Gesamtkosten
einer Parzellarvermessung. Die Reduktion dieser Kosten kann mit glinstigem
Material, mit geringem Zeitaufwand und mit der Einsparung von Grenzpunkten
erreicht werden. Die in den letzten 20 Jahren unternommenen Anstrengungen
zur Entwicklung <neuer Vermarkungen) orientierten sich vorwiegend an den
ersten beiden kostenwirksamen Elementen (Material und Zeit). Wieweit die
Gewichte damit richtig gesetzt wurden, steht nicht im Mittelpunkt des nachfol-
genden Berichtes, sondern er gibt Aufschluss tiber die Bewahrung von Kunst-
stoffgrenzzeichen. Er wurde als Schlussbericht tiber die Verwendung von Kunst-
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1. Einfiihrung und Absicht

Aufgrund der Anderung der Eidg. In-
struktion fur die Vermarkung und die
Parzellarvermessung vom 19. Dezember
1979 werden bestimmte Kunststoff-
grenzzeichen (im folgenden Marken
genannt) generell zugelassen. Fur die
definitive Zulassung sind die einzelnen
Marken bei der EMPA prifen zu lassen.
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