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Neues Altes in der Ausgleichungsrechnung
H.Wolf

Die Vielzahl der modernen Ideen und Verfahren, die sich heute dem Geodäten in
der Ausgleichungsrechnung darbieten, auf ihren Gehalt an klassischen Komponenten

zu untersuchen und zu betrachten, war - nach einem Vorschlag von
Herrn Prof. Dr. Matthias - der Gegenstand eines am 18.2.1983 vor dem Geodätischen

Kolloquium der ETH Zürich abgehaltenen Vortrages, der den nachfolgenden

Ausführungen zu Grunde gelegt ist.

Etudes et considérations sur le contenu en composants classiques des idées et
méthodes récentes qui s'offrent aux géodésiens pour le calcul compensatoire: tel
était le thème du colloque de géodésie organisé à /'EPFZ le 18 février 1983 à

l'initiative du Prof. Dr Matthias et qui sert de fondement à l'exposé suivant.

Zeichnet man einen Querschnitt durch
die aktuelle Methodenlehre der
geodätischen Datenverarbeitung, insbesondere

der Ausgleichungsrechnung, so zeigt
sich ein vielgestaltiges Bild von ganz
neuartigen Modellen und Prozessen,
denen gegenüber die klassischen
Verfahren als sehr viel weniger differenziert
und flexibel erscheinen. Dennoch
bestehen gewisse Gemeinsamkeiten, die
sie miteinander verbinden, wobei
allerdings nur schwer zu sagen ist, inwieweit

in dem einen die Wurzel des
anderen zu sehen ist. Entsprechend
dem hier gesteckten Rahmen ist die
Darstellungsweise nur eine exemplarische

und kann sich nur auf eine
begrenzte Anzahl von ausgewählten
Sachverhalten beziehen.

1. Ausgleichungs-Prinzipien Q

Vor Beginn jeder Ausgleichung - oder
<Parameterschätzung> im Sprachgebrauch

der Statistik - ist die Frage nach
dem dabei anzuwendenden Grundprinzip,

d. h. nach der Zielfunktion Q,
klarzustellen.

1.1 Die Methode der kleinsten
Quadrate MdkQ)
Sie steht auch heute noch im Mittelpunkt

aller Ausgleichungsprobleme und
drückt sich bekanntlich aus durch

Q, =vTPv min, Gauss (1794) (1.1-1)

wobei die Gewichtsmatrix P bei Gauss
eine Diagonalmatrix war; v ist der
Vektor der Verbesserungen
Residuen).

Eigenschaften: Q, besitzt zwei bereits
von Gauss nachgewiesene Eigenschaften:

a) Wenn die der Ausgleichung zu
unterwerfenden Beobachtungen eine
Normalverteilung besitzen, so ist die
zusammengesetzte Wahrscheinlichkeitsdichte

const- exp-Q, des
Gesamtsystems ein Maximum (Gauss
1809).

b) Wie auch immer die Beobachtungen
verteilt sein mögen (normal oder
anormal), die Anwendung von (1.1-1)
führt in jedem Fall zu kleinsten
mittleren Fehlern der Unbekannten
bzw. von linearen Funktionen von
ihnen (Gauss 1821).

Neu: Die moderne Literatur, vgl. Koch
(1980), welche die MdkQ als statistisches

Schätzverfahren darstellt, entwik-
kelt diese aus dem Prinzip der (normalen)

(Maximum Likelihood) (Fisher 1912)

oder aus dem Prinzip der (minimalen
Varianz). Wir erkennen darin die beiden
(Gaussschen) Eigenschaften a) und b)

wieder. Während Gauss im Fall von a)

die Ausgleichungsergebnisse als
(wahrscheinlichste) und im Fall von b) als

(plausibelste) bezeichnete, heissen sie
modern (beste lineare unverzerrte
Schätzungen), und <MdkQ> wird in der
Funktionalanalysis als (Prinzip der
minimalen L2-Norm> bezeichnet.

1.2 Die Methode der kleinsten
Absolutsumme
Noch aus der vor-Gaussschen
stammend, lautet sie

Zeit

Q2 ZIvI min (1.2-1)

erstmals von Boscovic (1770) und dann
auch von Laplace (1799) benutzt, der
allerdings noch die Bedingung Zv 0

hinzugenommen hat.
Neu: Unter der Bezeichnung (Minimale
L,-Norm> ist das Verfahren z. B. von
Fuchs (1980) neu erarbeitet worden. Es

eignet sich besonders zur Auffindung
grob fehlerhafter Beobachtungen.

1.3 Die Methode der kleinsten
Maximalverbesserung
Wie bereits von Gauss (1809) erkannt,
kann man die auf Tschebyscheff (1853)
zurückgehende Ausgleichungsforde-
rung gemäss

Q, (1.3-1)

als aus der MdkQ hervorgehend ansehen,

indem man das zu vmax gehörende
Gewicht gleich Unendlich annimmt.
Neu: Unter der Bezeichnung (Minimax-
Methode), vgl. Heindl/Reinhart (1976),
oder Loo-Norm wird das Tschebyscheff-
Verfahren im Zusammenhang mit
Problemen der Einhaltung von vorgegebenen

Toleranzen verwendet.

1.4 Die Methoden der höheren
Fehlerpotenz-Summen
Beckenbach (1916) diskutiert
Ausgleichungen gemäss

Q4 Zv4 min (1.4-1)

bzw. allgemein: nach Potenzsummen
mit geradzahligem Exponenten.

1.5 Robuste Ausgleichungsmethoden
Sind die letzten k (von insgesamt n)

Beobachtungen grob fehlerhaft, so dass
man sie aus der Ausgleichung aus-
schliessen muss, so braucht man nur
deren Gewichte gleich Null zu setzen:
Pk Pk+i ...=Pn 0. sodass

k-1
Q°= Z pvv min (1.5-1)

Neu: Den Einfluss der fehlerhaften
Beobachtungen kann man mindern,
indem man eine (robuste) Ausgleichung,

vgl. Carosio (1979), durchführt,
wobei in

Qs ¦Ef(v)
1

min (1.5-2)

gewisse Funktionen der v einbezogen
werden, was - genau wie bei (1.5-1) -
eine iterative Berechnung notwendig
macht, um die Vk bis vn zu lokalisieren.

2. Beobachtungsgleichungen,
Gewichte
2.1 Aufstellung und Linearisierung der
Beobachtungsgleichungen
Bei Anwendung der vorgenannten
Grundprinzipien auf eine spezielle
Aufgabe hat man den jeweiligen geometrischen

oder physikalischen Sachverhalt
durch die Beobachtungsgieichungen
(Fehler- bzw. Bedingungsgleichungen)
wiederzugeben. Falls nichtlinear, hat
man sie zu linearisieren, zumeist durch
Taylorisierung. Bei komplizierteren
funktionalen Zusammenhängen, so bei
Bahnbestimmungen in der Astronomie,
gelegentlich auch in der Photogrammetrie,

ersetzt man neuerdings die Bildung
der erforderlichen Differentialquotienten

durch die Bildung von Differenzenquotienten,

indem man die betr. Funktion

noch an einer Nachbarstelle ent¬
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wickelt und dann die Änderung der
Funktion durch die Änderung des
jeweiligen Argumentes dividiert - ein
Verfahren, das sich bereits bei Gerling
(1843) findet. Eine ähnliche empirische
Taylonsierung hat Tewinkel (1959) für
die Justierungsausgieichung eines Prä-
zisionspantographen angegeben.
Eine andere (Taylonsierungs-freie) Art
der Linearisierung ist die Methode des
Parameter-Austausches, bei der gewisse

Unbekannte x,, x2, durch eine
gleich grosse Anzahl von funktional
abhängigen Parametern y,, y2,
ersetzt werden. Die Abhängigkeiten

(x,,x2,...) f(Vi. y2. ¦)

können dann aber keine linearen
Funktionen sein, vgl. z. B. Helmert (1872).

2.2 Wahl der Gewichte
Bei bekannten Kovarianzen I| bzw.
Kofaktoren Gj der Beobachtungen I gilt*
für die Gewichte

P a§ir1 QT (2.2-1)

worin Oo die Varianz der Gewichtseinheit

ist.
Sonderfälle:
a) Lässt man einzelne Gewichte p (so

für fehlerfrei angenommene
Beobachtungen) gegen Unendlich
anwachsen, so gehen die zugehörigen
Verbesserungen v gegen Null, und
die Fehlergleichungen gehen damit
in (Bedingungsgleichungen zwischen
den Unbekannten) Restriktionen)
über. Dieser Gedanke stammt von
Seidel (1874), vgl. auch Koch und
Pope (1969).
Als Problem-Umkehr ergibt sich daraus

die Möglichkeit, die Aufgabe der
(vermittelnden Beobachtungen mit
Restriktionen) so zu lösen, dass man
die Restriktionsgieichung als
Fehlergleichung mit einem sehr hohen,
aber endlichen Gewicht behandelt,
so dass man alles im Schema der
vermittelnden Beobachtungen
ausgleichen kann.

b) Prof. H. H. Schmid (1965) hat gezeigt,
wie durch Nullsetzen einzelner
Gewichte die betr. Beobachtungsgrösse
den Charakter einer Unbekannten
annimmt, so dass man alle Aufgaben
im System der bedingten Beobachtungen

lösen kann - auch im numerischen

Sinne, indem man jenen
Beobachtungen ein sehr kleines, endliches

Gewicht beimisst.

3. Korrelierte Beobachtungen
In der Geodäsie ist diese Bezeichnung
etwa seit dem Erscheinen von Tienstras
grundlegender Publikation, auf deren

"Bitte den Unterschied zwischen I und 1

(eins) in diesem Aufsatz beachten.

hohen geometrischen Ideengehalt kürzlich

Prof. Moritz (1979) hinwies,
gebräuchlich geworden. (Früher:
(untereinander abhängige Beobachtungen).)
Das Mass der gegenseitigen -
zufallsbedingten - Abhängigkeiten wird
ausgedrückt durch die (als symmetrisch
angenommenen) Kovarianzmatrixen I|
der Beobachtungen I [L,, L2 Ln]T:

Ii cov(l) o%
Qu. 0.12.

Q|2. Û22' <tfQi (3-1)

oder in moderner Darstellung (worin E

die Erwartungswerte bezeichnet):

cov (I) EjeeT[, mit i l-EI (3-2)

3.1 Das allgemeine
Fehlerfortpflanzungsgesetz
Für lineare Funktionen der L, z. B. f AI,
lautet es:

cov(f) cov(AI)=Acov(l)AT (3.1-1)

Es ist dies keine Schöpfung der Neuzeit,
sondern findet sich schon bei Gauss
(1821), Art. 18, auch mit Bildung der
Kovananzterme Q,k, (i f k), in (3-1)

3.2 Das Primärfehler-Konzept,
vgl. Pelzer (1974), Brückner (1981)

Hängt eine Messungsgrösse I* nicht nur
von den Ablesungen l° ab, sondern
auch noch von gewissen Einflussgrös-
sen x (Eichkonstanten, Refraktionskoeffizienten

u. a. m), linearisiert zu

r i° + Rx,

wobei cov (l°) E|o, cov (x) Ix,

sogiltlr I|o + RIxRT,

was sich aber als ein besonderer Fall

von (3.1-1) darstellt, indem

A [l,R],cov(l*)

(I Einheitsmatrix)

Zio. 0
O.Zx

3.3 Tienstras (Standard-Problem l>

bedingte Beobachtungen)
Mit den Bedingungsleichungen
Bv+w o, (mit w=BI), worin B eine
Koeffizientenmatrix und w der
Widerspruchsvektor ist, erhält man mit (1.1-1)
und (2.2-1) die Normalgleichungen

BQ|BTk + w=o (3.3-1)

worin k der Vektor der Korrelaten
Lagrange-Multiplikatoren) ist. Die

Relation (3.3-1) ist nicht neu, sondern
findet sich bereits bei Bessel (1838); die
Fehlerrechnung dazu stammt von Zech
(1857) und Andrae (1867).
Dabei bestimmt Bessel die Kofaktoren
Qj der aus den Stationsausgleichungen
erhaltenen Winkel xstat ='n (ihre An¬

zahl ustat) durch Inversion der Sta-
tionsnormalgleichungs-Koeffizienten-
matrix NStat :

Q N Stat (3.3-2)

so dass die Normalgleichungen (3.3-1)
nunmehr lauten:

BN§,'a,BTk + w o

womit

v QBTk
-Ns;atBT(BN§;atBT)-

(3.3-3)

(3.3-4)

(Die Nstat BT hiessen die (Übertra-
gungsgrössen», und BTk waren die
(Hilfsgrössen>.)
Anwendung: In dieser Weise, also nach
korrelierten Beobachtungen, ist das
Schweizerische Dreiecksnetz I.

Ordnung (Gradmessungsnetz) bereits 1884
ausgeglichen worden - also mehr als
60 Jahre vor Tienstra; vgl. Schweiz
(1884).
Zuvor jedoch hatten Hansen (1867) und
Helmert (1872) gezeigt, dass es gar
nicht nötig ist, die Inverse (3.3-2)
explizit mit allen Elementen zu bilden,
sondern dass man (3.3-1) viel einfacher
auf folgende Weise erhält: Gelegentlich
der Auflösung der Stationsnormalgleichungen

fügt man dem Schema noch
die Matrix BT sowie die Nullmatrix 0
bei:

Nsti BT

0.

Dann gewinnt man, z. B. nach dem
Gaussschen Algorithmus, als
Nebenprodukt die Matrix RT (0 • ustat und
die Reduktionsfaktoren werden in der
Matrix

:diag[[paa] Stai, [pbb-1]stat.

gesammelt. Dann erhält man für (3.3-3):

BNsJat BT RPRT (3.3-5)

Bei Tienstra (1947), der den Rechengang

(3.3-3), (3.3-4) als (Standard-
Problem III in two steps) beschreibt,
findet sich jedoch der Zusammenhang
(3.3-5) nicht.

3.4 Tienstras (Standard-Problem ll>

vermittelnde Beobachtungen)
Aus den Fehlergleichungen v Ax-l
fliessen mit (1.1-1) und (2.2-1) die
Normalgleichungen

ATQT'Ax-ATQr'l=0 (3.4-1)

worin A die Koeffizientenmatrix und x
die Schätzwerte der unbekannten
Parameter sind, Tienstra (1947).
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Werden im Fall der geodätischen
Stations- und Netzausgleichung wieder die
Kovarianzen gemäss (3.3-2) aus den
Stationsnormalgleichungen entnommen,

so findet beim Einsetzen in (3.4-1)
eine doppelte Inversion statt, so dass
man nur die originäre (unaufgelöste)
Matrix Nstat als Gewichtsmatrix benötigt:

ATNs,a,.Ax-ATNstat.l 0 (3.4-2)

Auf diesen einfachen, rechnerisch sehr
bequem zu handhabenden Zusammenhang

bezogen sich schon Schreiber
(1876) und Helmert (1880), S. 509,
während bei Tienstra überall die
vollständige Inversion, d.h. Of1, verlangt
wird.

3.5 Koordinaten als korrelierte
Beobachtungen
Für die Vielzahl von trigonometrischen
Folgearbeiten hat sich das von Jordan
(1882) angegebene Prinzip als sehr
fruchtbar erwiesen: Man betrachte die
aus einer Vor-Ausgleichung erhaltenen
Koordinatenwerte als korrelierte
Beobachtungen, wenn man sie in eine Folge-
Ausgleichung einführt. Jordan gibt auch
genau die (richtige) Rechenvorschrift
an, nach der man die zugehörige
Kovarianzmatrix für die korrelierten
Beobachtungen (z. B. die Koordinaten x,,

yi des Punktes Nr. i) erhält: Man eliminiere

im Normalgleichungssystem der
Vor-Ausgleichung, z. B. mit dem
Gaussschen Algorithmus, alle anderen
Unbekannten bis auf [x,, y,]T x,, so
dass das reduzierte Normalgleichungssystem

N|X| w, verbleibt. Dann haben
die korrelierten Beobachtungen
x, Nr'w, die (gesuchte) Kovarianzmatrix

cov x. oIn; (3.5-1)

Jordan (1882) liefert sogleich ein
Anwendungsbeispiel hierzu: Liegen für x,
zwei verschiedene Bestimmungen vor,
nämlich

a) x', N[ ~'w, mit cov (x[) aó2N[ ~1

b) x"= N|'"'w;'mit cov (x[) aö2N""',

so gehören dazu die neuen Fehlergleichungen

a) x[ + Vxi Xi, oder
vx x, - xf, mit Pf cov '

b) x[' + Vxi x oder
Vx x, -xf mit P" cov

worin vXj und vx, die neue
rungen sind, welche von x[ bzw. x" zu x,

hinführen. Bildet man hieraus die
Normalgleichungen, so erhält man das
nach x, aufzulösende System

(oo"2N; + gö"2N;')x, -
- (oó-2N;x[ + or2N;'x;') o (3.5-2)

eine Rechenweise, die man auch als
(Additionstheorem für reduzierte
Normalgleichungen), Wolf (1968) S. 75,
bezeichnet hat, oder als (Helmertsche
Blockmethode), vgl. Helmert (1880),
S. 559. Sie wurde auch für die Ausgleichung

des europäischen Dreiecksnetzes

(RETrig) vorgeschlagen und in

Anwendung gebracht.

3.6 Zurückführung der Ausgleichung
korrelierter Beobachtungen auf eine
nicht korrelierte Ausgleichung
Wird im Falle von korrelierten Beobachtungen

die Gewichtsmatrix

P Qf
0,,.Qr
Qi2. o2: (3.6-1)

nach einem Vorschlag von Helmert
(1907) zerlegt in P KKT, so dass

dann ist

Q vTPv vTKKTv
(KTv)T(KTv)
vTv, wobei v KTv.

(3.6-2)

Nach Helmert heissen dann die zu v
gehörenden I KTI die (äquivalenten)
Beobachtungen, welche nach (3.6-2)
die Kovarianzmatrix

cov (I) OqI (3.6-3)

besitzen, d. h. die (den korrelierten
Beobachtungen I zugeordneten) äquivalenten

Beobachtungen I sind
korrelationsfrei und besitzen alle das Gewicht
p 1. Mit v KT_1v konnte Helmert jede
Ausgleichung korrelierter Beobachtungen

auf eine Ausgleichung nicht korrelierter

Beobachtungen T zurückführen
(und mit diesen dann in klassischer
Weise weiterrechnen).
Die Matrix K ist später bei Cholesky
(1924) im Zusammenhang mit der
Auflösung von Normalgleichungen
aufgetreten. Die Zerlegung P KKT wird
heute als (Cholesky-Faktorisierung>
bezeichnet (geht aber auf Helmert zurück).

4. Prädiktion und Kollokation
Diese von Prof. Moritz bereits 1963
entwickelten Verfahren stellen mit ihren
Erweiterungen auf den Hilbertschen
Raum vollkommene Neuschöpfungen
dar. Dabei wird die Prädiktion als eine
Form der Inter- bzw. Extrapolation
verstanden, und die (geodätische)
Kollokation nimmt zusätzlich noch die
Bestimmung einer Trendfunktion mit
hinzu.

Legt man die einfache Form

l L-L0 s+n, mit L0=Ax (4-1)

zugrunde (wegen der allgemeineren
Form l Hs+n vgl. Wolf [1974]), so
bedeuten hier L den Vektor der
Beobachtungen, Lo ist der Trend (in
linearer Abhängigkeit von den
Trendparametern x), s ist der Vektor der Signale

unregelmässiger systematischer
Anteil), und n ist - als (noise> - der Vektor
der unregelmässigen Messungsfehler.
Die Bestimmung der einzelnen Elemente

von n, s, x wird dann so durchgeführt,

dass

nTZnnn + STZssS

[nT, sT]
ZnnO
o Zss

-1 n

s
min (4-2)

woraus (4-3)

X [AT (Znn + Zss -1A]- 'ATfZnn + ZssJ-'L

n Znn (Znn + Zss)_1l,
S Zss (Znn ' *-ssl '• (4-4)

Die Prädiktionsaufgabe besteht dann
darin, an einer nichtgemessenen Stelle
x* den zugehörigen Signalwert s* zu

interpolieren vorherzusagen), wofür
gilt (mit n* 0):

s* Zs-sZss's (4-5)

worin Znn, Zss, ZS'S die zugehörigen
Kovarianzen sind.
Von Schwarz (1976) ist statt (4-3) eine
andere, numerisch bequemer zu
handhabende Form gefunden worden:

X (ATZnnA-ATZnnP_1ZnnA)"
¦AT(I-ZnnP"')ZnnL

worin P Znn + Zss

(4-6)

(4-7)

Diese Form ist im klassischen Sinn sehr
leicht verifizierbar, wenn man nach
Helmert (1907) die Signale s als
unbekannte Parameter s behandelt und (4-1)
in der Form von Fehlergleichungen
anschreibt:

n s + Ax - L, Gewicht
s s Gewicht

: y-'Min (4-8)

Dann lauten die nach (4-2) hieraus
fliessenden Normalgleichungen:

Ps + ZnnAx =ZnnL]
i A Z-nnAX — A 2_nnL

(4-9)

Die Auflösung Jiefert dann sogleich
(4-6)sowies P~'Znnl (4-10)
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4.1 Die Interpolation nach
quasisystematischen Fehlern
Sie kann - in gewisser Weise - als eine
Vorform der Prädiktion angesehen werden

und war von Thiele (1880), vgl.
Helmert (1907), angegeben worden,
wobei man sich auf den Fall bezog,
dass die L sich nach einem Parameter t
ordnen lassen. Der wesenhafte
Unterschied zur Prädiktion besteht dann,
dass die quasisystematischen Fehler 5
jeweils die Unterschiede zweier Signalwerte

s sind:

5i.i + i =Sj + i-Sj, (i 1, 2 n).

d.h. 5 Hs:
-1 + 1

i + i Si, So

An die Stelle von (4-8) treten dann die
Gleichungen

¦ n s + Ax - L, Gewicht Znn
5 Hs Gewicht Z55

(4.1-1)

Dann ergeben sich die x und s aus

nTZnnn + 5tZö55 min (41-2)

genau _wie in (4-6) bzw. (4-10), nur
dass P durch P5 Znn + HTZgöH zu
ersetzen ist, woraus sich für den
gesuchten Interpolationswert s* ergibt:

-1Z55S (41-3)

Für die Kovarianzen wurden damals nur
Diagonalmatrizen benützt, insbesondere
war:

Znn diagfg,, g2....],
Zgô diag[g',,g2,...]

Zu +1 aWZssa, ^ diag[gl, g| +1].
a [1.1]T.s=[si.si + i]T.

4.2 Benützung der Kollokation zur
Verbindung von stochastischen mit
physikalischen Grössen
Treten innerhalb einer Aufgabe sowohl
mit Messfehlern behaftete Beobachtungen

wie auch unregelmässig variierende

physikalische Grössen auf, wie dies
Prof. Moritz in seinen fundamentalen
Darlegungen für die Funktionale des
terrestrischen Schwerefeldes gezeigt
hat, so hat man die Messfehler durch
den noise n und physikalische Zufalls-
vanablen durch die Signale s bzw. ihre
Differenzen 5 auszudrücken.
Die dabei anzuwendenden Prinzipien
(4-2) bzw. (4.1-2) sind auch früher
schon, insbesondere zur Berechnung
von Trendparametern x, benützt worden.

Beispiele:
Typ A (mit Signalen s):
Helmert (1877), S. 233: n Messungsfehler

von Horizontalwinkeln, s
Seitenrefraktionseinflüsse,

Helmert (1886), (1906): n Messungsfehler,

s Lotabweichungen,
Wolf (1949): Berechnung des (Europäischen

Datums) (auch für ED79
geltend): n Laplace-Widersprüche,
s Lotabweichungen.
Typ B (mit quasisystematischen Fehlern

5):
Helmert (1907): n Uhr-Ablesefehler,
5 Uhrgang-Störungen
Schildheuer (1961): n Schwingungs-
Ablesefehler, 5 Dämpfungs-Störungen

Hermanowski (1963): n Nivelherfehler.
ö vertikale Erdkrustenbewegungen
Serbetçi (1968): n Gravimeter-Ablese-
fehler, 5 Gravimeter-(Fahrgang>-Stö-
rungen.

4.3 Inversionsfreie Prädiktion
Zur Umgehung der lästigen Inversionen
in (4-3), (4-4), (4-6) hat man
Prädiktionsverfahren vorgeschlagen, die ohne
Matrizeninversion auskommen, vgl.
Bjerhammar (1973), Sünkel (1980),
Svensson (1981), die sämtlich auf die
Bildung von gewogenen Mittelwerten I*

(aus den gegebenen I) hinauslaufen
(mit den Gewichten p):

l* Zp,l,/Zp„ (i 1, 2 n) (4.3-1)

Eine geometrische Anwendung ergibt
sich, wenn die I Koordinaten-Klaffungen
I, [Ax,, Ay,]T darstellen, die sich
zwischen zwei geodätischen Netzen an
den gemeinsamen Stützpunkten zeigen
und die dann auf gewisse Neupunkte
[Ax*, Ay*]T interpoliert werden sollen:

Ax* ZpiAxj/Zpi;

Ay* Zp,Ay,/Zpi

wobei für die Gewichte

P, 1/S,X

(4.3-2)

(4.3-3)

gesetzt wird, wenn S, gleich der Entfernung

des betreffenden Neupunktes
vom Stützpunkt Nr. i gesetzt wird; X

spielt dabei die Rolle eines (latenten
Parameters), vgl. Wolf (1981).
In dieser Weise wurde bereits 1895/97
bei der preussischen Landesaufnahme
in der Ausgleichung des (Niederrheinischen

Dreiecksnetzes) (mit X 1)

verfahren, vgl. v. Schmidt (1895), (1897):
Die Ax,, Ay, waren dabei die nach einer
Drehstreckung des zwangsfrei
ausgeglichenen Netzes erhaltenen Klaffungen.

Nennt man den mit \ aus (4.3-1)
fliessenden Mittelwert If, so hat
Bjerhammar (1973) noch eine bedeutsame
Erweiterung durch Bildung eines
allgemeineren Mittelwertes I** zu

l** (k1l*+k2l*+.
/(k,+ k2 + + kn

+ kn Ol (4.3-4)

angegeben, worin die k empirisch zu
ermittelnde Koeffizienten (Gewichte)
sind, und wobei

p, 1/( -/S2 + c2)xi. Ausserdem ist c eine
willkürlich zu wählende Glättungskon-
stante.

5. Freie Ausgleichungen
Die (freien Ausgleichungen) stellen,
was ihren algebraischen Hintergrund
anbelangt, eine vollkommene
Neuentwicklung in der Ausgleichungsrechnung

dar. Vor allem sind es die von
Prof. Bjerhammar geschaffene Theorie
der verallgemeinerten Matrix-Inversen
bei singulären Fällen sowie der Inversion

rechteckiger Matrizen, die hier eine
besondere Würdigung verdienen.
Von der Anwendungsseite her gesehen,
ergeben sie sich immer dann, wenn der
Fall einer (Überparametrisierung>
vorliegt, d. h. wenn bei einer Ausgleichung
mehr (unabhängige) Unbekannte x
eingeführt werden, als zur eindeutigen
Lösung des speziellen Problems
erforderlich sind.
Beispiele:
a) Stationsausgleichungen mit

Richtungsunbekannten,
b) Skalenteilungsuntersuchungen mit

Strich-Unbekannten,
c) Geodätische Netze aller Art mit

Datums- und Konfigurationsdefekten.
d) Trigonometrische Höhennetze mit

einseitigen Höhenwinkeln, wenn eine
Refraktionsunbekannte eingeführt
wird.

5.1 Lösungen zur freien Ausgleichung
Im Falle von Überparametnsierung
weist die Koeffizientenmatrix A der
Verbesserungsgieichungen

v Ax-I, Gewichtsmatrix P (5.1-1)

keinen vollen Spaltenrang u auf,
sondern es ist rg(A) q, so dass ein
Rangdefekt d u - q auftritt. Dann ist auch
rg(ATPA) rg(N) q. Zur Behebung des
Defektes d kann man

- entweder a)

die d Zusatzbedingungen
GTx o
einführen, wie sie aus xTx:

folgen, vgl. 6.1,

- oder b)

(5.1-2)
min (5.1-3)

die d zusätzlichen Fehlergleichungen
v GTx (5.1-4)
noch hinzugeben,
wodurch die Aufgabe eindeutig lösbar
wird, vgl. Pelzer (1974). Das System der
ausgeglichenen Grösse verbleibt <ver-
schmierungsfrei), solange gilt:

AG 0, oder NG 0 (5.1-5)
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Lösungen von singulären Problemen
der Art a) und b) gab es früher schon:
zu a): Hansen (1867) führt bei
Stationsausgleichungen mit Richtungsunbe-

xs die Zusatz-Bedin-
ein:

kannten x,, x2,

gung (Restriktion)

GTx x, + x2 + + xs 0.

Dies führt, wie Hansen (1839) gezeigt
hat, zu den Normalgleichungen (mit
den Korrelaten k):

Nx+Gk ATPI
GTx o. (5.1-6)

Bei der numerischen Auflösung bzw.
Inversion muss man wegen det(N)=0
die Reihenfolge der Unbekannten verändern,

indem die k vor die letzten d der
Parameter x zu stellen sind; eine
Erkenntnis, die man Helmert (1907)
verdankt. Aus der Inversion von (5.1-6)
erhält man auch die Pseudoinverse N+;
zu b): Thiele (1903) hat bei seinen
singulären Systemen bereits mit den d

Zusatz-(oder Pseudo-)Beobachtungs-
gleichungen v gearbeitet. Seine Aussage,

diese mussten jedoch so gewählt
werden, dass das Innere der Ausgleichung

nicht verändert wird, trifft genau
die Bedingungen (5.1-5). Stellt man
dann aus (5.1-1) und (5.1-4) das Ge-
samtnormalgleichungssystem auf, so
erhält man

(N + GGT)x ATPI (5.1-7)

dessen Inversion jedoch nicht die
Pseudoinverse liefert:

(N + GGTr' NöVN+

Will man von Nò'auf N+ übergehen, so
gilt, nach Koch (1980):

N^ Nö-G(GTGGTG)"'G'nT

oder wenn man mit Pelzer (1974) die G

auf GTG 1 normiert:

N+ (N + GGT)"'-GGT

5.2 Zur <inneren> Fehlertheorie
Die innere Fehlertheorie, geschaffen
von Prof. Meissl (1962), benutzt die
Pseudoinverse, deren Spur minimal ist,
als Träger der Genauigkeitsinformation.
Doch ist die Berechnung der inneren
Genauigkeit nicht notwendig an die
Berechnung des Lösungsvektors x der
freien Ausgleichung gebunden, vgl.
Wolf (1981).
Dividiert man die Spur von N+ durch
die Anzahl u der unbekannten Parameter,

so erhält man in

Ö2U Sp(N+)/u (5.2-1)

ein Kriterium für die Güte eines
ausgeglichenen Systems. Dagegen ist die

Meinung über die praktische Bedeutung

der Einzelwerte für die inneren
Parametervarianzen (und der inneren
Fehlerellipsen) geteilt, vgl. Bossler
(1972), Gotthardt (1975), Pelzer (1980),
S. 290.
Weiteres zur Anwendung der freien
Ausgleichung in 6.

5.3 Zwei Lösungsbeispiele für die freie
Ausgleichung bei Konfigurationsdefekten

Um das Wesen der Überparametrisie-
rung infolge von fehlenden Messungen,
d. h. bei Konfigurationsdefekten, deutlich

herauszustellen, seien nachstehend
die Lösungen für 2 einfache Beispiele
angegeben.

L
aj Vorwärtseinschneiden mit nur 1

Zielstrahl'(d 2 -1 1)

Gemessen: der Richtungswinkel t
Fehlergleichung (mit dem Gewicht 1):

sint». .cost,,,.ox-l 5y- I Ax-I
So So

det(N) det(ATPA)

in t, - sintcost
sin t cost, cos2t

Daher: Pseudoinverse

W in t, -sintcost
¦ sin t cost, cos2t

s2,

Lösung: x
öx
5y

I sin t
Icost

¦smt
cost

s0l, so dass Vax2 + öy2 s0l.

Eigenschaft: /xTx -/5x2 + 5y2 min.

Geometrische Deutung: Man muss vom
Näherungspunkt P0 das Lot (mit der
Länge s0l) auf den gemessenen Strahl
fällen, um den ausgeglichenen Punkt zu

erhalten. (Wohin aber P0 gelegt werden
soll, bleibt unendlich-vieldeutig; also
gibt es unendlich-viele Lösungen.)
Helmert (1907) bereits formulierte es
so: Bei (unvollständigen Bestimmungen)

kann man die Unbekannten nicht
alle getrennt voneinander bestimmen,
sondern nur Aggregate von ihnen (hier:
5y/öx tant. was von unendlich vielen
Punktlagen P0 erfüllt wird).

b) Das Eratosthenes-Problem ohne
Kamel-Karawanen (d 2 - 1 1)

0

Gemessen: der Zentriwinkel a.

Beobachtungsgleichung: Ra s, oder
InR + lna Ins, (mit R Erdradius,
s Bogenlänge des Kreissektors).
Fehlergleichung:

vino Ins - InR -Ina,

oder

v Ax-l, mit A [1,-1],
x=[lns, lnR]T, I Ina

so dass

det(N) det(ATPA)=det

Daher: Pseudoinverse N+

Lösung:

P 1

1 -1"
-1 1

0

1 1 -1
4 -1 1

Ins
InR

N+ Ina
- Ina

"
1/2lna In Vö.

- !4lna In(1//5)J
(5.3-1)

so dass s Va, R 1/ Vä.

Probe: Die Relation Ra s wird erfüllt.

Eigenschaft:

xTx ln2s + ln2R min (5.3-2)

Helmert (1907): Es kann in Wirklichkeit
nur ein Aggregat der Unbekannten
bestimmt werden, hier s/R a. Die
Lösung (5.3-1) existiert nur, wenn Gl.

(5.3-2) als Bedingung gefordert ist, die
nur algebraisch-formalen Charakter
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sitzt und mit der Geometrie des Erdbe-
stimmungsproblems nichts zu tun hat.
(Ausserdem musste bei der Loganth-
mierung genau über die Einheiten
entschieden werden, in denen s und R

im Vergleich zu a auszudrücken sind.)

6. Koordinaten-Transformationen
auf der Grundlage von
Netzausgleichungen

6.1 Helmerts Ähnlichkeits-Transformation

(1893)
Sie wurde von Helmert in der Form
einer (Zwei-Stufen-Ausgleichung>
durchgeführt:
1. Stufe: Nicht-singuläre Ausgleichung
des betr. geodätischen Netzes, entweder

nach bedingten oder nach
vermittelnden Beobachtungen. Aus einer
Koordinatenberechnung (mit vorgegebenen

Werten für die Lagerung, den
Massstab und die Orientierung) ergeben

sich die Koordinaten [x, y] xT mit
ihren Kovarianzen Qx.

2. Stufe: Herstellung einer mittleren
Lagerung bzw. Orientierung und eines
mittleren Massstabes durch Vergleich
mit den vorgegebenen (Fremd-Koordi-
naten> x°, y°. Hieraus ergeben sich die
endgültigen Koordinaten x, y. Der
Vorgang wird als (Anfelderung> der (x, y)
auf die (x°, y°) bezeichnet.
Dabei wird in der Cl. Stufe) zum Übergang

der x, y auf die x, y eine
Ähnlichkeits-Transformation lineare konforme

Abbildung) gemäss

Gt

benutzt. Hierin sind:

(6.1-1)

x [(x-x°)1,(y-y0),,(x-x0)2,(y-y0)2...]T
x=[(x-x0),,(y-y0),,(x-x0)2,(y-y0)2,..]T

Die Transformationsmatrix G genügt
den Cauchy-Riemannschen Bedingungen:

p. o. -y, xl
[0. 1. x. yj (6.1-2)

und in t sind die 4 äusseren Transfor-
mationselemente (Datumsparame-
ter>) untergebracht:

t=[t1,t2,t3,t4]T, (6.1-3)

deren geometrische Bedeutung durch

t, Ax0, t2 Ay0, a reta n (t3/t4) a0,

/t23 + tj=k0

definiert ist, wobei Ax0, Ay0 die
Verschiebungsparameter, a0 der
Verdrehungswinkel und k0 der Massstabsparameter

ist. Der Übergang von a0 und k0

auf t3 und t4 stellt eine einfache Form

des (Parameter-Austausches) dar, vgl.
2.1, so dass x nach (6.1-1) linear in den t
ist (nicht aber bzg. a0).
Bei Helmert treten indessen nicht alle n

Netzpunkte als Vergleichs- oder
Stützpunkte auf, sondern nur u von ihnen
(v<n). Formal lässt sich das so
ausdrücken, dass man den nx1 Lösungsvektor

x mit der Auswähl-Matrix R

multipliziert, wobei

R RT diag [1.1 1.0,0... .] RR

so dass

Rx x [x,,x2 Xu, 0, 0,.. .]T (6.1-4)

In die Zielfunktion Q werden dann nur
die x einbezogen, indem

Q xTQx'x xTRQi'Rx:
xTQ~'x min,

mito"1 RQi'R
(6.1-5)

(bei Helmert ist QX=I). (6.1-1) als
Fehlergleichungen aufgefasst, liefert mit
(6.1-5) die Normalgleichungen

GTQ 1Gt + GTQ~'x o, so dass

t=-(GTÒ~,Gr,GTQT,x (6.1-6)

woraus durch Einsetzen in (6.1-1):

x (I-G(GTQ"'G)-,GTQ-')x:
Sx (6.1-7)

womit cov (x) S cov (x)ST (6.1-8)

Ausserdem ergibt sich GTQ 'x o

(6.1-9)

(6.1-7) bezeichnet die S-(similarity-)
Transformation, während (6.1-9) unter
dem Namen <Helmert-Bedingungen>
bekannt geworden ist.
Helmert hat u.a. das Verfahren auch in

dem Sinne benützt, dass die x°, y°
durch die astronomischen Koordinaten
bestimmte Punktlagen waren, so dass
die (x-x°), (y-y°) den Lotabweichungen

entsprachen. Mit (6.1-5) wurde
dann eine solche (Datumsbestimmung)
herbeigeführt, welche die Lotabwei-
chungsquadratsumme zum Minimum
machte. Neuerdings wird die Bestimmung

der äusseren (oder Datums-)Ele-
mente t (und die sich darauf gründende
Bestimmung von x nach [6.1-7]) als
Lösung des (Designs nullter Ordnung»
bezeichnet, vgl. Grafarend u. a. (1979).

6.2 Mittermayers freie
Netzausgleichung

Sie ist eine völlig neue Form der
geodätischen Netzausgleichung, indem (in
Anlehnung an Prof. Bjerhammars Theorie

der verallgemeinerten Inversen) alle
Punkte eines geodätischen Netzes
variabel gehalten werden, so dass ein
singuläres Gleichungssystem auftritt. Zu

dessen Lösung werden nach Mittermayer

(1972) ausser den (auf alle n

Punkte sich beziehenden) Fehlergleichungen

Ax-I, mitl L-Ax° (6.2-1)

noch die Helmert-Bedingungen (6.1-9)
mit Q= laufgestellt:

GTx (6.2-2)

wobei rg(A) q<u. Die Ausgleichung
wird so durchgeführt, dass neben
vTPv min auch xTx min gilt, was
nach 6.1 zu (6.2-2) geführt hat. Daraus

folgt dann wieder das
Normalgleichungssystem

ATPA, G

GT,0
ATPI

o
0 (6.2-3)

Damit die v invariant gegenüber allen t
sich ergeben, muss gelten:
AG 0 bzw. ATPAG 0, was für alle
Ahnhchkeitstransformationen (nicht fur
die Affin-Transformation) zutrifft. In

(6.2-3) wird k=o und

x (ATPA)+ATPI, sowie cov(x) ,„ „
Ô§(ATPA)+ {bZ~4'

worin ô? der Schätzwert für die
Varianz der Gewichtseinheit ist:

ÔÎ vTPv/(nL - q)

mit nL Anzahl der Messungen L. Gl.

(6.2-4) stellt wieder die Lösung des
Datumsproblems nullter Ordnung dar.
Es leuchtet ein, dass eine solche
Lösung des Optimierungsproblems nicht
eindeutig ist, denn wie (6.2-1) zeigt, ist
der Vektor x eine Folge der gewählten
Näherungskoordinaten. Diese können
aber vollkommen willkürlich angenommen

werden, so dass es unendlich viele
Lösungen des Datumsproblems gibt -
je nach Wahl der x°. (Anders dagegen,
wenn die x° eindeutige astronomische
Koordinaten sind oder eindeutige
Koordinaten aus einem übergeordneten
System.)

6.3 Weiterführungen der
Koordinatentransformationen

Hier sind vor allem die Arbeiten der
Zürcher Schule zu nennen:

a) Die allgemeine lineare Transformation

nach Prof. Conzett
Sie besteht in einer affinen Transformation

des auszugleichenden, variablen
Netzes, beschrieben durch 6 Parameter
t,, t2 t6. Soll zur Ähnlichkeitstransformation

übergegangen werden, muss
dies noch durch 2 Bedingungsgleichungen

zwischen den Unbekannten t
(Restriktionsgleichungen)) ausge-
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drückt werden. Anders als bei der
Helmert-Transformation werden hier
sowohl die x wie auch die x°, vgl. 6.1, als
Zufallsvanable korrelierte Beobachtungen)

behandelt, womit sich eine
Ausgleichung nach bedingten
Beobachtungen mit Unbekannten ergibt -
gegebenenfalls noch mit den o.g.
Restriktionen. Die Helmert-Transformation

war dann ein spezieller Fall davon
Numerisch wurde über die quasivermittelnden

Beobachtungen gerechnet, vgl.
Conzett (1975).

b) Die (Allgemeine Vermittelnde
Netzausgleichung) nach Prof. Matthias
(1981)
Hierbei wurden als Ausgangsrelationen
gewählt:
a) die (Konfigurationsgieichungen)

Fehlergleichungen für die gemessenen

Winkel und Strecken,
Gewicht: P|)

b) die (Datumsgleichungen)
Fehlergleichungen für die gegebenen
Koordinaten als korrelierte Beobachtungen,

wie von Jordan (1882) angegeben,

und durch den Einfluss der
Datumsparameter t noch ergänzt.
Gewicht: Pk).

Das Gesamtnormalgleichungssystem
(für die Nebenunbekannten s, die
Koordinatenunbekannten x und die
Datumsunbekannten t) zerfällt im Falle einer
Ähnlichkeitstransformation (nicht
jedoch bei einer Affintransformation)
automatisch in 2 Teile, so dass dann
nach der Helmertschen (Zweistufen-
Methode), vgl. 6.1, gerechnet werden
kann: I.Berechnung der s und x (bei
festgehaltenen äusseren Parametern t),
2. Bestimmung der t (bei festgehaltener
Netzgestalt). Sonderfälle ergeben sich
a) für t o. b) für Pk 0, c) für Pk °°I.

c) Dreidimensionale Helmert-
Anfelderungen
Auf Grund der bekannten Relationen
aus der analytischen Geometrie des
3D-cartesischen Raumes, vgl. z. B. La-
gally (1928), wurden dreidimensionale
Anfelderungen im Helmertschen Sinne
entwickelt:
Rinner (1954) für die Einpassung photo-
grammetrischer Modelle und
Modellstreifen,

Wolf (1963) mit Übergang zu
dreidimensionalen ellipsoidisch-geographi-
schen Koordinaten für Landesvermessungszwecke,

Rinner (1969): 3D-Anfelderung im
Zusammenhang mit einer freien Ausgleichung

des Netzes,
Schmid (1980): 3D-Anfelderung unter
Entwicklung von 2 Grundtypen für die
Lösung:
a) vTPv min und xTPxx mm

freie Ausgleichung)
b) vTPv + xTPxx min

gezwängte Ausgleichung),

wobei beide Typen (und zusätzlich
einige Sonderfälle davon) aus einem
allgemein aufgestellten Normalglei-
chungssystem hervorgehen.
Köchle (1982): Unter Verwendung des
äusseren Vektorproduktes werden die
Formeln der 3D-Anfelderung und der
hiernach sich ergebenden Helmert-
Transformation entwickelt, und zwar
unter Bezugnahme auf endliche
Drehwinkel, was durch Benützung eines
Iterationsverfahrens zu erreichen ist.

7. Das Neueste zum
Gauss-Helmert-Modell
7.1 Die klassische Konzeption
Das Gauss-Helmert-Modell drückt sich
durch die Bedingungsgieichungen mit
Unbekannten

BV + AX +w= o,
mitw BI, D(I) OqP"

(7.1-1)

aus. Mit vTPv min erhält man die
folgenden Normalgleichungen, worin k
der Vektor der Korrelaten ist.

BP 1BTk + Ax-
ATk

w o

0
(7.1-2)

deren Auflösung k und x liefert, woraus

v P"1BTk.

Eliminiert man k aus (7.1-2), so erhält
man

A^Bp-'ßTr'Ax-l-
+ AT(BP-'BT)"1W 0

Diese reduzierten Normalgleichungen
kann man sich auch entstanden denken
aus den fingierten Fehlergleichungen

v Ax + w, mit dem Gewicht
P (BP'BTr1 (7.1-3)

(quasivermittelndc Beobachtungen)).
Als Sonderfälle ergeben sich aus dem
Gauss-Helmert-Modell (7.1-1):
-a) mit B -I
die (vermittelnden Beobachtungen»

Gauss-Markov-Modell),
-b)mitA 0
die (bedingten Beobachtungen).
Im (gemischten Modell), vgl. Koch
(1980), nämlich

Ax + Z(-v) (-w) (7.1-4)

spielen die (- w) die Rolle von Beobachj
tungen y), mit D(y) o§ZP_1ZT a2P

(wie bei den quasivermittelnden
Beobachtungen in (7.1-3), da Z - B).
Dabei wird - als neugeschaffener
Begriff - vielfach der des Zufalls-Parameters

benützt, so dass im neueren
Schrifttum die Verbesserungen v bei
vermittelnden Beobachtungen mit ê

Residuen) und bei bedingten Beob¬

achtungen mit -y Zufalls-Parameter)
bezeichnet werden, womit sich die
ausgeglichenen Beobachtungen
î=l + v

durch

î=l + ê
bei vermittelnden Beobachtungen

und durch

bei bedingten Beobachtungen

darstellen lassen, so dass - wie von
Prof. Koch (1980) gezeigt - die y auch
als (negative) Residuen verstanden
werden können.

7.2 Die moderne Auffassung
Hierbei wird von den vermittelnden
Beobachtungen Gauss-Markov-Modell)

mit den Fehlergleichungen

Ax,-I (7.2-1)

ausgegangen. Dann werden nach dem
Vorgang von Schaffrin (1983) beide
Seiten von (7.2-1) mit einer passenden
Matrix R multipliziert,

so dass Rv=RAx, -Rl,
woraus mit Rl w und RA :

.(7.2-2)

eine Gauss-Helmert-Form wie in (7.1-1)
erhalten wird, nämlich

Rv + Cx, + w : (7.2-3)

wobei hier jedoch die Zerlegung
(7.2-2) vorgeschrieben ist. Dem ist, im

Vergleich zu Gauss-Helmert, die folgende
Situation gegenüberzustellen:

a) Entweder man kennt die Matrix A in

(7.2-1); dann ist der Rechenweg
über C - RA und über die (Bedin-
gungsgleichungen mit Unbekannten)
(7.2-3) gemäss (7.1-2) in jedem Fall

ein Umweg, um x, zu erhalten (das
viel kürzer aus (7.2-1), d.h. nach
vermittelnden Beobachtungen, zu

gewinnen ist).

b) Oder man kennt C in (7.2-3); dann
ist die Reduktion auf vermittelnde
Beobachtungen (7.2-1) durch Auflösen

des Gleichungssystems

C -I- RA 0 (7.2-4)

nach den Elementen der Matrix A
und Weiterrechnung nach (7.2-1) ein

- sicherlich noch grösserer -
Umweg zur Lösung des Problems der
(bedingten Beobachtungen mit
Unbekannten), wofür der einfache
Lösungsweg (7.1-2) zur Verfügung
steht, der zugleich den Allgemeinfall
(s.o.) beschreibt.
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8. Schluss
Wie es im Strom der wissenschaftshistorischen

Entwicklung nicht anders
sein kann, liess sich auch im Fall der
Ausgleichungsrechnung zeigen, dass -
bei entsprechender Aufbereitung - das
alte, klassische Ideengut in eine enge
Verbindung zu den bedeutenden
Neuschöpfungen unserer Tage gebracht
werden kann. So fügen sich die Dinge
zu einer grossen Vielheit zusammen; ein
Reichtum im Ideellen, dessen wir
immer eingedenk bleiben sollten.

Literatur
Andrae, CG: Den danske Gradmaaling,
Bd. I. Kopenhagen 1867

Beckenbach, J.: Ein Beitrag zur Frage: Ist die
Fehlertheone der kleinsten Quadrate die von
der Natur geforderte? Zschr. Math. u. Phys.
64(1916), S.168ff.

Bessel, F W./(Baeyer): Gradmessung in Ost-
preussen und ihre Verbindung mit
russischen Dreiecksketten. Dümmlers Verlag,
Bonn 1838

Bjerhammar, A : Theory of Errors and
Generalized Matrix Inverses Amsterdam/London/New

York 1973

Boscovic, R.G.: De htteraria expeditione per
pontificium diditonem ad dimitiendos duos
meridiani gradus. Rom/Pans 1770

Bossier, J. D.: A Note on the Meaning of
Generalized Inverse Solutions in Geodesy.
Journ. Geophys. Res., vol. 78, S. 26161
1973

Brückner. R.: Das stochastische Modell einer
Ausgleichung nach dem Primärfehlerkon-
zept. ZfV 1981, S.246ff.
Carosio, A.: Robuste Ausgleichung VPK
1979. S.293ff.
Cholesky-Benoit: Note sur une méthode de
résolution des équations normales provenant

de l'application de la méthode des
moindres carrées à un système d'équations
linéaires en nombre inférieur à celui des
inconnues. Bull. Géodes. 1924, S.67fl
Conzett, R.: Über lineare Transformationen
von Triangulationsnetzen, VPK 1975, S. 265fl
Fisher, RA. (1912): vgl Linnik, ZW. Die
Methode der kleinsten Quadrate in moderner

Darstellung. Berlin 1961. S. 79
Fuchs. H Ausgleichung nach dem Prinzip
der kleinsten Verbesserungs-Absolutsumme.
DGK-Arb.-Krs. f. theor. Geodäsie, 4 Sitzg..
vgl. ZfV 1980, S. 291

Gauss, CF. (1794): vgl. Gauss' Werke. Bd
VIII. Göttingen 1900, S. 1381

Gauss, C F.: Theoria motus corporum ce-
lestium in sectionibus conicis solem am-
bientium, I. Teil. Hamburg 1809

Gauss, CR: Theoria combmationis observa-
tionum erronbus minimis obnoxiae, I Teil
Göttingen 1821

Gerhng. CL: Die Ausgleichungsrechnungen
der praktischen Geometrie oder die Methode

der kleinsten Quadrate. Hamburg/Gotha
1843

Gotthardt, E.: Über die Ergebnisse freier
Netzausgleichungen und ihre Deutung. VPK
(Prof. Kobold - Festschrift) 1975, S. 246ff.
Grafarend, E./Heister, H./ Keim, R./ Kropf! H./
Schaffnn.B: Optimierung Geodätischer
Messoperationen. Karlsruhe 1979

Hansen, P A.: Von der Methode der kleinsten
Quadrate. Abh. math.-phys. CL, Kgl Sachs
Ges. d. Wiss.. VIII. Leipzig 1867

Hansen, PA.: Auflösung einer allgemeinen
Aufgabe aus der Wahrscheinlichkeitsrechnung

Astron Nachr., Bd. 16, Nr 361 1839

Hemdl. G./Reinhart, E. Eine allgemeine
Methode zur Berechnung von Minimax-Fehlern.
Teil I ZfV 1976. S 126fl
Helmert, FR.: Den danske Gradmaaling, die
dänische Gradmessung. Vierteljahrsschr. d
Astron. Ges.. 1877. S. 184ff.

Helmert, FR.: Die Ausgleichungsrechnung
nach der Methode der kleinsten Quadrate. 1.

Auflage Leipzig 1872, 2. Auflage Leipzig
1907, 3. Auflage Leipzig/Berlin 1924

Helmert. ER.: Die mathematischen und
physikalischen Theorien der höheren Geodäsie,

I Teil Leipzig 1880

Helmert, FR. Lotabweichungen, Heft I.

Berlin 1886

Helmert, FR.: Die Europäische Längengradmessung

in 52° Breite. Berlin 1893

Helmert. FR. (zusammen mit A. Börsch):
Lotabweichungen. Heft III. Berlin 1906

Hermanowski. A.: Strenge Methode zur
Ausgleichung und Berechnung von vertikalen

Änderungen der Erdkruste auf Grund von
Wiederholungsnivellements hoher Präzision
(polnisch). Zes. Nauk. Pohtechn. Warsz.
No. 70. Geodez. No. 8 Warschau 1963, S. Iff.

Jordan, W.: Höhere Geodäsie und Topographie

des Deutschen Reiches. In:
Jordan/Steppes: Das deutsche Vermessungswesen,

I Band, Stuttgart 1882, S. 127ff.

Koch, KR.: Parameterschätzung und
Hypothesentests in linearen Modellen. Bonn 1980

Koch, K. R./Pope. A. J.: Least Squares Adjustment

with zero variances. ZfV 1969, S. 390ff.
Köchle, R.: Die räumliche Helmerttransformation

in algebraischer Darstellung. VPK
1982, S. 292fl
Lagally, M.: Vorlesungen über Vektorrechnung.

Leipzig 1928

Laplace, S.: Traité de mécanique céleste,
tome 2. Paris 1799

Matthias, H.J: Allgemeine vermittelnde
Netzausgleichung. IGP-Mitteilg. Nr. 30.
Zürich 1981

Meissl, P.: Die innere Genauigkeit eines
Punkthaufens. Ûst. ZfV 1962. S. 1591

Mittermayer, E.: Zur Ausgleichung freier
Netze. ZfV 1972, S.481fl
Moritz, H.: Statistische Methoden in der
gravimetrischen Geodäsie. ZfV 1963,
S 4091
Moritz, H.: The Geometry of Least Squares.
Veröfftl. Finn. Geod. Inst. No. 89. Helsinki
1979, S.134ff
Pelzer, H.: Zur Behandlung singulärer Aus-
gleichungsaufgaben. ZfV 1974, S. 181ff.

Pelzer, H.: Beurteilung der Genauigkeit und
der Zuverlässigkeit geodätischer Netze. In:
(Geodätische Netze in Landes- und
Ingenieurvermessung). Stuttgart 1980, S. 273ff.
Rinner, K.: Über räumliche Drehungen. DGK,
Reihe A, Nr. 25, München 1957, S. 271

Rinner. K.: Über die Ausgleichung von
Prüfnetzen. Nachr. Kart.- u. Vermw. (Prof.
Gigas - Festschr) Frankfurta. M. 1969,
S.115ff.
Schaffrin, B.: Varianz-Kovananz-Komponen-
tenschätzung bei der Ausgleichung heterogener

Wiederholungsmessungen. DGK,
C277. München 1983

Schildheuer, E.: Analyse und Ausgleichung
von Schwingungsbeobachtungen. Diss.
Bonn 1960

Schmid, H.H.: Ein allgemeiner Ausglei-
chungsalgonthmus zur Auswertung von
hybriden Messanordnungen Bui. 1965,
S. 93ff.

Schmid, H.H.: Vom freien zum gelagerten
Netz. IGP-Mittlg. Nr 29. Zürich 1980

v. Schmidt: Die Kgl. Preussische Landestriangulation,

Hauptdreiecke. 7 Teil, Berlin 1895,
9. Teil, Berlin 1897

Schreiber, O.: Die Kgl. Preussische Landes-
triangulation, Hauptdreiecke. 3 Teil, Berlin
1876. S. 111

Schwarz, K. R: Least Squares Collocation for
Large Systems. Boll, di Geod. e Se. Aff.
1976. S.309fl
Schweiz: (Das schweizerische Dreiecksnetz»,
2. Band: Die Netzausgleichung und die
Anschlussnetze der Sternwarten. Zürich
1884

Seidel, L.: Über die Bestimmung der
wahrscheinlichsten Werte solcher Unbekannten,
zwischen welchen Bedingungsgleichungen
bestehen. Astron. Nachr. Bd. 84, Nr. 2005,
Sp. 193. 1874

Serbetçi. M.: Bestimmung und Berücksichtigung

von algebraischen Korrelationen bei
Gravimetermessungen. Diss. Bonn 1968

Sünkel, H.: Local Representation of the
Gravity Field. Ûsterr. Beitr. z. 17. Gen.-Vers.
ZUGG. Wien1981,S.200ff.
Svensson, L.: Inversion-Free Bjerhammar
Predictors in Geodesy, Vili. Hotine Sympos.
Como 1981, Stockholm 1981

Tewinkel, G.C: Pantograph Adjustment.
Washington D. C. 1959

Thiele, TN: Sur la compensation de quelques

erreurs quasi-systématiques par la
méthode des moindres carrés. Copenhague
1880

Thiele, T N.: Theory of observations. London
1903

Tienstra, J.M.: An Extension of the Technique

of the Methods of Least Squares to
Correlated Observations. Bull. Géodes. 1947,
S. 301 ff.

Tienstra, J. M.: The Foundation of the Calculus

of Observations and the Method of Least
Squares. Bull. Géodes. 1948, S. 289ff.
Tienstra, J. M.: Theory of the Adjustment of
Normally Distributed Observations. Amsterdam

1956

Tschebyscheff (1853): vgl. Behnke, H/
Tietz, H.: Mathematik II. Frankfurta. M. 1966,
S. 9; sowie: Stiefel. E: Einführung in die
numerische Mathematik. Stuttgart 1961,
S. 47ff.
Wolf, H.: Die Lotabweichungsausgleichung
für das zentraleuropäische Netz. Veröfftl.
Inst. f. Erdmess., Heft 6. Bamberg 1959,
S.21ff.

Wolf, H.: Geometrie Connection and
Reorientation of Threedimensional Triangulation

Nets. Bull. Géodes. 1963, S. 165ff.

Wolf, H.: Ausgleichungsrechnung nach der
Methode der kleinsten Quadrate. Bonn 1968

Wolf, H.: Über verallgemeinerte Kollokation.
ZfV 1974. S.475fl
Wolf, H.: Zur Grundlegung der Kollokations-
methode. ZfV 1977, S. 237
Wolf, H.: Latente Parameter ZfV 1981,
S. 517ff.

Wolf, H.: Innere Genauigkeit und Gaussscher
Algorithmus. ZfV 1981. S 217

Zech, J.: Zur Methode der kleinsten Quadrate.

Tübingen 1857.

Adresse des Verfassers:
Helmut Wolf, Dr.-lng., em. o. Professor
an der Universität Bonn
Nuss-Allee 17, D-5300 Bonnl

240 Mensuration, Photogrammetrie, Génie rural 7/83


	Neues Altes in der Ausgleichsrechnung

