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Neues Altes in der Ausgleichungsrechnung

H. Wolf

Die Vielzahl der modernen Ideen und Verfahren, die sich heute dem Geodaten in
der Ausgleichungsrechnung darbieten, auf ihren Gehalt an klassischen Kompo-
nenten zu untersuchen und zu betrachten, war — nach einem Vorschlag von
Herrn Prof. Dr. Matthias — der Gegenstand eines am 18.2.1983 vor dem Geodati-
schen Kolloquium der ETH Zirich abgehaltenen Vortrages, der den nachfolgen-

den Ausfliihrungen zu Grunde gelegt ist.

Etudes et considérations sur le contenu en composants classiques des idées et
meéthodes récentes qui s'offrent aux géodésiens pour le calcul compensatoire: tel
était le theme du colloque de géodésie organisé a I'EPFZ le 18 février 1983 a
l'initiative du Prof. Dr Matthias et qui sert de fondement & I'exposé suivant.

Zeichnet man einen Querschnitt durch
die aktuelle Methodenlehre der geoda-
tischen Datenverarbeitung, insbesonde-
re der Ausgleichungsrechnung, so zeigt
sich ein vielgestaltiges Bild von ganz
neuartigen Modellen und Prozessen,
denen gegeniber die klassischen Ver-
fahren als sehr viel weniger differenziert
und flexibel erscheinen. Dennoch be-
stehen gewisse Gemeinsamkeiten, die
sie miteinander verbinden, wobei aller-
dings nur schwer zu sagen ist, inwie-
weit in dem einen die Wurzel des
anderen zu sehen ist. Entsprechend
dem hier gesteckten Rahmen ist die
Darstellungsweise nur eine exemplari-
sche und kann sich nur auf eine be-
grenzte Anzahl von ausgewahlten Sach-
verhalten beziehen.

1. Ausgleichungs-Prinzipien Q

Vor Beginn jeder Ausgleichung - oder
«Parameterschatzung> im  Sprachge-
brauch der Statistik - ist die Frage nach
dem dabei anzuwendenden Grundprin-
zip, d. h. nach der Zielfunktion Q, klarzu-
stellen.

1.1 Die Methode der kleinsten
Quadrate (= MdkQ)

Sie steht auch heute noch im Mittel-
punkt aller Ausgleichungsprobleme und
drlckt sich bekanntlich aus durch

Q, =Vv'Pv=min, Gauss (1794)  (1.1-1)

wobei die Gewichtsmatrix P bei Gauss

eine Diagonalmatrix war; v ist der
Vektor der Verbesserungen (= Resi-
duen).

Eigenschaften: Q, besitzt zwei bereits
von Gauss nachgewiesene Eigenschaf-
ten:

a) Wenn die der Ausgleichung zu unter-
werfenden Beobachtungen eine Nor-
malverteilung besitzen, so ist die
zusammengesetzte Wahrscheinlich-
keitsdichte const- exp-Q, des Ge-
samtsystems ein Maximum (Gauss
1809).

b) Wie auch immer die Beobachtungen
verteilt sein mogen (normal oder
anormal), die Anwendung von (1.1-1)
fihrt in jedem Fall zu kleinsten
mittleren Fehlern der Unbekannten
bzw. von linearen Funktionen von
ihnen (Gauss 1821).

Neu: Die moderne Literatur, vgl. Koch

(1980), welche die MdkQ als statisti-

sches Schétzverfahren darstellt, entwik-

kelt diese aus dem Prinzip der (norma-

len) (Maximum Likelihood» (Fisher 1912)

oder aus dem Prinzip der (minimalen

Varianz). Wir erkennen darin die beiden

«Gaussscheny Eigenschaften a) und b)

wieder. Wahrend Gauss im Fall von a)

die Ausgleichungsergebnisse als «wahr-

scheinlichstey und im Fall von b) als
plausibelste) bezeichnete, heissen sie
modern <beste lineare unverzerrte

Schatzungen, und (MdkQ> wird in der

Funktionalanalysis als «Prinzip der mini-

malen L,-Norm) bezeichnet.

1.2 Die Methode der kleinsten
Absolutsumme

Noch aus der vor-Gaussschen Zeit
stammend, lautet sie
Q,=21vl=min (1.2-1)
erstmals von Boscovi¢ (1770) und dann
auch von Laplace (1799) benutzt, der
allerdings noch die Bedingung 2v=0
hinzugenommen hat.

Neu: Unter der Bezeichnung (Minimale
L,-Norm) ist das Verfahren z.B. von
Fuchs (1980) neu erarbeitet worden. Es
eignet sich besonders zur Auffindung
grob fehlerhafter Beobachtungen.

1.3 Die Methode der kleinsten
Maximalverbesserung

Wie bereits von Gauss (1809) erkannt,
kann man die auf Tschebyscheff (1853)
zurickgehende  Ausgleichungsforde-
rung gemass

Q3= Vmax = Min (1.3-1)
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als aus der MdkQ hervorgehend anse-
hen, indem man das zu vmax gehodrende
Gewicht gleich Unendlich annimmt.
Neu: Unter der Bezeichnung (Minimax-
Methode), vgl. Heindl/Reinhart (1976),
oder Loo-Norm wird das Tschebyscheff-
Verfahren im Zusammenhang mit Pro-
blemen der Einhaltung von vorgegebe-
nen Toleranzen verwendet.

1.4 Die Methoden der hoheren
Fehlerpotenz-Summen

Beckenbach (1916) diskutiert Ausglei-
chungen gemass
Q,=Xv*=min (1.4-1)
bzw. allgemein: nach Potenzsummen
mit geradzahligem Exponenten.

1.5 Robuste Ausgleichungsmethoden
Sind die letzten k (von insgesamt n)
Beobachtungen grob fehlerhaft, so dass
man sie aus der Ausgleichung aus-
schliessen muss, so braucht man nur
deren Gewichte gleich Null zu setzen:
Pk=Pk+1=...=pn= 0, so dass
k=1
Q2= 12 pwv =min (1.5-1)
Neu: Den Einfluss der fehlerhaften
Beobachtungen kann man mindern,
indem man eine «obustey Ausglei-
chung, vgl. Carosio (1979), durchfihrt,
wobei in
n

Qs = 1Zf(v) =min (1.5-2)
gewisse Funktionen der v einbezogen
werden, was - genau wie bei (1.5-1) -
eine iterative Berechnung notwendig
macht, um die vi bis vy, zu lokalisieren.

2. Beobachtungsgleichungen,
Gewichte

2.1 Aufstellung und Linearisierung der
Beobachtungsgleichungen

Bei Anwendung der vorgenannten
Grundprinzipien auf eine spezielle Auf-
gabe hat man den jeweiligen geometri-
schen oder physikalischen Sachverhalt
durch die Beobachtungsgleichungen
(Fehler- bzw. Bedingungsgleichungen)
wiederzugeben. Falls nichtlinear, hat
man sie zu linearisieren, zumeist durch
Taylorisierung. Bei komplizierteren funk-
tionalen Zusammenhdngen, so bei
Bahnbestimmungen in der Astronomie,
gelegentlich auch in der Photogramme-
trie, ersetzt man neuerdings die Bildung
der erforderlichen Differentialquotien-
ten durch die Bildung von Differenzen-
quotienten, indem man die betr. Funk-
tion noch an einer Nachbarstelle ent-
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wickelt und dann die Anderung der
Funktion durch die Anderung des je-
weiligen Argumentes dividiert - ein
Verfahren, das sich bereits bei Gerling
(1843) findet. Eine dhnliche empirische
Taylorisierung hat Tewinkel (1959) fur
die Justierungsausgleichung eines Pra-
zisionspantographen angegeben.

Ene andere (Taylorisierungs-freie) Art
der Linearisierung ist die Methode des
Parameter-Austausches, bei der gewis-
se Unbekannte x,, x,, ... durch eine
gleich grosse Anzahl von funktional
abhangigen Parametern vy,, vy, ... er-
setzt werden. Die Abhangigkeiten

(X, Xo,...) = flyy. yo. .. )

konnen dann aber keine linearen Funk-
tionen sein, vgl. z. B. Helmert (1872).

2.2 Wahl der Gewichte

Bei bekannten Kovarianzen ¥, bzw.

Kofaktoren Q; der Beobachtungen | gilt*

fur die Gewichte

P=acdZ'=qQ" (2.2-1)

worin o3 die Varianz der Gewichtsein-

heit ist.

Sonderfalle:

a) Lasst man einzelne Gewichte p (so

fur fehlerfrei angenommene Beob-
achtungen) gegen Unendlich an-
wachsen, so gehen die zugehdrigen
Verbesserungen v gegen Null, und
die Fehlergleichungen gehen damit
in (Bedingungsgleichungen zwischen
den Unbekannten) (= Restriktionen)
uber. Dieser Gedanke stammt von
Seidel (1874), vgl. auch Koch und
Pope (1969).
Als Problem-Umkehr ergibt sich dar-
aus die Mdoglichkeit, die Aufgabe der
«vermittelnden Beobachtungen mit
Restriktionen) so zu losen, dass man
die Restriktionsgleichung als Fehler-
gleichung mit einem sehr hohen,
aber endlichen Gewicht behandelt,
so dass man alles im Schema der
vermittelnden Beobachtungen aus-
gleichen kann.

b) Prof. H.H. Schmid (1965) hat gezeigt,
wie durch Nullsetzen einzelner Ge-
wichte die betr. Beobachtungsgrosse
den Charakter einer Unbekannten
annimmt, so dass man alle Aufgaben
im System der bedingten Beobach-
tungen I6sen kann - auch im numeri-
schen Sinne, indem man jenen Beob-
achtungen ein sehr kleines, endli-
ches Gewicht beimisst.

3. Korrelierte Beobachtungen

In der Geodésie ist diese Bezeichnung
etwa seit dem Erscheinen von Tienstras
grundlegender Publikation, auf deren

*Bitte den Unterschied zwischen | und 1
(eins) in diesem Aufsatz beachten.
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hohen geometrischen Ideengehalt kiirz-
lich Prof. Moritz (1979) hinwies, ge-
brauchlich geworden. (Friher: <unter-
einander abhangige Beobachtungen.)

Das Mass der gegenseitigen - zufalls-
bedingten - Abhangigkeiten wird aus-
gedrickt durch die (als symmetrisch
angenommenen) Kovarianzmatrixen %,
der Beobachtungen I =[L;, L,, ..., 1T

Q1. Qo ...
I =cov(l)= o?,[on, Qg } =0 Q (3-1)

oder in moderner Darstellung (worin E
die Erwartungswerte bezeichnet):

cov (I) = E{esT}, mite=1- E{l} (3-2)

3.1 Das allgemeine Fehler-
fortpflanzungsgesetz

Far lineare Funktionen der L, z. B. f=Al,
lautet es:

cov (f) =cov (Al) =Acov (AT (3.1-1)
Es ist dies keine Schopfung der Neuzeit,
sondern findet sich schon bei Gauss
(1821), Art.18, auch mit Bildung der
Kovarianzterme Q. (i # k), in (3-1)

3.2 Das Primarfehler-Konzept,

vgl. Pelzer (1974), Briickner (1981)

Hangt eine Messungsgrosse I* nicht nur
von den Ablesungen I° ab, sondern
auch noch von gewissen Einflussgros-
sen x (Eichkonstanten, Refraktionskoef-
fizienten u.a. m.), linearisiert zu

I*=1°+Rx,
wobei cov (I°) = Zjo, cov (X) = Z,,

so gilt: I» = L0+ RLRT,

was sich aber als ein besonderer Fall
von (3.1-1) darstellt, indem

A=[IR], cov(l") = [zl(‘)’ (Z) ]

(I'=Einheitsmatrix).

3.3 Tienstras «(Standard-Problem I»

(= bedingte Beobachtungen)

Mit den Bedingungsleichungen
Bv+w=o0, (mit w=BI), worin B eine
Koeffizientenmatrix und w der Wider-
spruchsvektor ist, erhalt man mit (1.1-1)
und (2.2-1) die Normalgleichungen
BQB'k+w=0 (3.3-1)
worin k der Vektor der Korrelaten
(= Lagrange-Multiplikatoren) ist. Die
Relation (3.3-1) ist nicht neu, sondern
findet sich bereits bei Bessel (1838); die
Fehlerrechnung dazu stammt von Zech
(1857) und Andrae (1867).

Dabei bestimmt Bessel die Kofaktoren
Q, der aus den Stationsausgleichungen
erhaltenen Winkel Xsiar =In (ihre An-

zahl = ustar) durch Inversion der Sta-
tionsnormalgleichungs-Koeffizienten-
matrix Ngat :
Q= Ngfat (3.3-2)
so dass die Normalgleichungen (3.3-1)
nunmehr lauten:

BNsl: BTk+w=0 (3.3-3)
womit

v=QBTk=

= ~Nsls BT(BNs{5: BT) 'w (3.3-4)

(Die NslsBT hiessen die «Ubertra-
gungsgrosseny, und BTk waren die
Hilfsgrosseny.)

Anwendung: In dieser Weise, also nach
korrelierten Beobachtungen, ist das
Schweizerische Dreiecksnetz . Ord-
nung (Gradmessungsnetz) bereits 1884
ausgeglichen worden - also mehr als
60 Jahre vor Tienstra; vgl. Schweiz
(1884).

Zuvor jedoch hatten Hansen (1867) und
Helmert (1872) gezeigt, dass es gar
nicht notig ist, die Inverse (3.3-2)
explizit mit allen Elementen zu bilden,
sondern dass man (3.3-1) viel einfacher
auf folgende Weise erhalt: Gelegentlich
der Auflosung der Stationsnormalglei-
chungen fugt man dem Schema noch
die Matrix BT sowie die Nullmatrix O
bei:

NStat. BT
0

Dann gewinnt man, z.B. nach dem
Gaussschen Algorithmus, als Neben-
produkt die Matrix RT = (O - ustat), und
die Reduktionsfaktoren werden in der
Matrix

P - diag| (paalstar. [pbD - Tstar. -
gesammelt. Dann erhélt man fur (3.3-3):

BNgl, BT = RPRT (3.3-5)
Bei Tienstra (1947), der den Rechen-
gang (3.3-3), (3.3-4) als «(Standard-
Problem Il in two steps) beschreibt,

findet sich jedoch der Zusammenhang
(3.3-5) nicht.

3.4 Tienstras «Standard-Problem I
(= vermitteInde Beobachtungen)
Aus den Fehlergleichungen v=Ax-I

fliessen mit (1.1-1) und (2.2-1) die
Normalgleichungen
ATQ 'A% -ATQ] =0 (3.4-1)

worin A die Koeffizientenmatrix und X
die Schatzwerte der unbekannten Para-
meter sind, Tienstra (1947).

Mensuration, Photogrammeétrie, Génie rural 7/83



Werden im Fall der geodéatischen Sta-
tions- und Netzausgleichung wieder die
Kovarianzen gemaéss (3.3-2) aus den
Stationsnormalgleichungen entnom-
men, so findet beim Einsetzen in (3.4-1)
eine doppelte Inversion statt, so dass
man nur die origindre (unaufgeldste)
Matrix Ngiar als Gewichtsmatrix beno-
tigt:

ATNsiat A% - ATNsiat | = 0 (34-2)
Auf diesen einfachen, rechnerisch sehr
bequem zu handhabenden Zusammen-
hang bezogen sich schon Schreiber
(1876) und Helmert (1880), S. 509,
wahrend bei Tienstra Uberall die voll-
standige Inversion, d.h. Q;', verlangt
wird.

3.5 Koordinaten als korrelierte
Beobachtungen

Fur die Vielzahl von trigonometrischen
Folgearbeiten hat sich das von Jordan
(1882) angegebene Prinzip als sehr
fruchtbar erwiesen: Man betrachte die
aus einer Vor-Ausgleichung erhaltenen
Koordinatenwerte als korrelierte Beob-
achtungen, wenn man sie in eine Folge-
Ausgleichung einfuhrt. Jordan gibt auch
genau die (richtige) Rechenvorschrift
an, nach der man die zugehorige
Kovarianzmatrix flir die korrelierten
Beobachtungen (z. B. die Koordinaten x;,
yi des Punktes Nr. i) erhdlt: Man elimi-
niere im Normalgleichungssystem der
Vor-Ausgleichung, z.B. mit dem
Gaussschen Algorithmus, alle anderen
Unbekannten bis auf [x;, vy =x; so
dass das reduzierte Normalgleichungs-
system Nix; = w; verbleibt. Dann haben
die korrelierten Beobachtungen

xi =N:'w; die (gesuchte) Kovarianzma-
trix

cov (x;) = oaN;"! (3.5-1)
Jordan (1882) liefert sogleich ein An-
wendungsbeispiel hierzu: Liegen fir x;
zwei verschiedene Bestimmungen vor,
namlich

a) X' =N ~'w! mit cov (X/) = g5 2N; !
b) x{’= Ni"~'w{'mit cov (x{) = ag>N;""",

so gehoéren dazu die neuen Fehlerglei-
chungen

a) X{ + vy = %, oder
Vi = % - x{, mit P = cov™'(x)

b) xi" + vy = X;, oder
Vi = X = x{", mit P{" = cov™'(x{")

worin vy und vy die neuen Verbesse-
rungen sind, welche von x{ bzw. x{" zu X;
hinfihren. Bildet man hieraus die Nor-
malgleichungen, so erhdlt man das
nach %; aufzulésende System

(05 °N; + 05 NI} -

— (05 2Nix! + 05 2N'x") =0 (3.5-2)
eine Rechenweise, die man auch als
<Additionstheorem fir reduzierte Nor-
malgleichungeny, Wolf (1968) S. 75,
bezeichnet hat, oder als (Helmertsche
Blockmethodes, vgl. Helmert (1880),
S. 559. Sie wurde auch fur die Ausglei-
chung des europaischen Dreiecksnet-
zes <(RETrig» vorgeschlagen und in
Anwendung gebracht.

3.6 Zurickfihrung der Ausgleichung
korrelierter Beobachtungen auf eine
nicht korrelierte Ausgleichung

Wird im Falle von korrelierten Beobach-
tungen die Gewichtsmatrix

-1
_ Qy, Qig, ...
P=Q'= [ou, o”,..}

nach einem Vorschlag von Helmert
(1907) zerlegt in P = KKT, so dass

_ |vanaenan. | »
K=1|0o o571 . | -dannist

(3.6-1)

Q=v'Pv=vIKKlv=
= (KTV)T(KTV) =
= vV, wobei v =Kv.

(3.6-2)

Nach Helmert heissen dann die zu v
gehorenden =K'l die < quivalenter
Beobachtungen, welche nach (3.6-2)
die Kovarianzmatrix
cov (I) = a2l (3.6-3)
besitzen, d.h. die (den Kkorrelierten
Beobachtungen | zugeordneten) dquiva-
lenten Beobachtungen | sind korrela-
tionsfrei und besitzen alle das Gewicht
p =1. Mit v=K"-v konnte Helmert jede
Ausgleichung korrelierter Beobachtun-
gen auf eine Ausgleichung nicht korre-
lierter Beobachtungen 1 zuriickfiihren
(und mit diesen dann in klassischer
Weise weiterrechnen).

Die Matrix K ist spater bei Cholesky
(1924) im Zusammenhang mit der
Auflésung von Normalgleichungen auf-
getreten. Die Zerlegung P =KK" wird
heute als «Cholesky-Faktorisierung> be-
zeichnet (geht aber auf Helmert zuriick).

4. Pradiktion und Kollokation

Diese von Prof. Moritz bereits 1963
entwickelten Verfahren stellen mit ihren
Erweiterungen auf den Hilbertschen
Raum vollkommene Neuschopfungen
dar. Dabei wird die Pradiktion als eine
Form der Inter- bzw. Extrapolation
verstanden, und die (geodatische) Kol-
lokation nimmt zusatzlich noch die
Bestimmung einer Trendfunktion mit
hinzu.

Vermessung, Photogrammetrie, Kulturtechnik, 7/83

Legt man die einfache Form

I=L-Lo=s+n mitlLy=AX (4-1)
zugrunde (wegen der allgemeineren
Form I=Hs+n vgl. Wolf [1974]), so
bedeuten hier L den Vektor der Be-
obachtungen, Lo ist der Trend (in
linearer Abhangigkeit von den Trendpa-
rametern X), s ist der Vektor der Signale
(= unregelmassiger systematischer An-
teil), und n ist - als «noise» — der Vektor
der unregelmassigen Messungsfehler.
Die Bestimmung der einzelnen Elemen-
te von n, s, X wird dann so durchge-
fuhrt, dass

n'Ioan+sl Xods=

=[nT, sT][o””g }‘[’S‘} min @2

woraus (4-3)

x= [AT (Znn t+ zss)ilA]_IAT(znn + Zss)_1L

n=2Xn (Znn+ Zss)::lr
$=Zss (Znn+Lss) | (4-4)
Die Pradiktionsaufgabe besteht dann
darin, an einer nichtgemessenen Stelle
x* den zugehorigen Signalwert s* zu
interpolieren (= vorherzusagen), woflr
gilt (mit n*=0):
s* = XgrsXsas (4-5)
worin Znn, Lss, Zs*s die zugehdrigen
Kovarianzen sind.

Von Schwarz (1976) ist statt (4-3) eine

andere, numerisch bequemer zu hand-
habende Form gefunden worden:

%= (ATZ A - ATEPTEA) (4-6)
CAT(I- I P ZnAL

worin P =%, + Z5d (4-7)
Diese Form ist im klassischen Sinn sehr
leicht verifizierbar, wenn man nach
Helmert (1907) die Signale s als unbe-
kannte Parameter § behandelt und (4-1)
in der Form von Fehlergleichungen
anschreibt:

-n=38§+A%-L, Gewicht =X}
S

5 Cewihi=Eg 0l

Dann lauten die nach (4-2) hieraus
fliessenden Normalgleichungen:

Ps+ X A% =I.lL

AT AR =ATILL (4-8)

Die Auflosung liefert dann sogleich
(4-6) sowie § =P 'L, (4-10)
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4.1 Die Interpolation nach quasi-
systematischen Fehlern

Sie kann - in gewisser Weise - als eine
Vorform der Pradiktion angesehen wer-
den und war von Thiele (1880), vgl.
Helmert (1907), angegeben worden,
wobei man sich auf den Fall bezog,
dass die L sich nach einem Parameter t
ordngn lassen. Der wesenhafte Unter-
schied zur Préadiktion besteht darin,
dass die quasisystematischen Fehler &
jeweils die Unterschiede zweier Signal-
werte s sind:

0 N T
d.h.6=Hs=[ - 141 ,_][51,52,..]

An die Stelle von (4-8) treten dann die
Gleichungen

-n=8+Ax-L, Gewicht =X} (4.1-1)
6=HS§ , Gewicht = Z53 '

Dann ergeben sich die X und § aus

n'Zin+ 8548 = min (41-2)
genau wie in (4-6) bzw. (4-10), nur
dass P durch Ps=%, +HTIzdH zu
ersetzen ist, woraus sich fur den ge-
suchten Interpolationswert s* ergibt:

s* = +12538 (4.1-3)
Fur die Kovarianzen wurden damals nur

Diagonalmatrizen bentzt, insbesondere
war:

Ion = diag[gy, ga. .. ).
53 = diag[gy. g, .- ]

Tii+1=a'/a 38, I54 = diag(g.. g/ +1].
a=[11T5=[5, &+~

4.2 Beniitzung der Kollokation zur
Verbindung von stochastischen mit
physikalischen Gréssen

Treten innerhalb einer Aufgabe sowohl
mit Messfehlern behaftete Beobachtun-
gen wie auch unregelmaéssig variieren-
de physikalische Grossen auf, wie dies
Prof. Moritz in seinen fundamentalen
Darlegungen fir die Funktionale des
terrestrischen Schwerefeldes gezeigt
hat, so hat man die Messfehler durch
den noise n und physikalische Zufalls-
variablen durch die Signale s bzw. ihre
Differenzen & auszudricken.

Die dabei anzuwendenden Prinzipien
(4-2) bzw. (4.1-2) sind auch friher
schon, insbesondere zur Berechnung
von Trendparametern X, benttzt wor-
den.

Beispiele:

Typ A (mit Signalen s):

Helmert (1877), S.233: n= Messungs-
fehler von Horizontalwinkeln, s = Sei-
tenrefraktionseinflisse,
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Helmert (1886), (1906): n = Messungs-
fehler, s = Lotabweichungen,

Wolf (1949): Berechnung des (Europa-
ischen Datums» (auch fuar ED79 gel-
tend): n = Laplace-Widerspriiche,
s = Lotabweichungen.

Typ B (mit quasisystematischen Feh-
lern &):

Helmert (1907): n = Uhr-Ablesefehler,
6 = Uhrgang-Stérungen

Schildheuer (1961): n= Schwingungs-
Ablesefehler, &= D&mpfungs-Storun-
gen

Hermanowski (1963): n =Nivellierfehler,
6 = vertikale Erdkrustenbewegungen
Serbetci (1968): n = Gravimeter-Ablese-
fehler, &= Gravimeter-(Fahrgang>-Sto-
rungen.

4.3 Inversionsfreie Pradiktion
Zur Umgehung der lastigen Inversionen
n (4-3), (4-4), (4-6) hat man Pradik-
tionsverfahren vorgeschlagen, die ohne
Matrizeninversion —auskommen, vgl.
Bjerhammar (1973), Stnkel (1980),
Svensson (1981), die samtlich auf die
Bildung von gewogenen Mittelwerten |*
(aus den gegebenen 1) hinauslaufen
(mit den Gewichten p):
I*=Zpil/Zpi. (i=1,2,...n) (4.3-1)
| |
Eine geometrische Anwendung ergibt
sich, wenn die | Koordinaten-Klaffungen
I = [Ax;, Ay]" darstellen, die sich zwi-
schen zwei geodéatischen Netzen an
den gemeinsamen Stltzpunkten zeigen
und die dann auf gewisse Neupunkte
[Ax*, Ay*]T interpoliert werden sollen:

Ax* = Tpilxi/Zpi;

Ay* = Zpidyi/Zp; (4.3-2)
| |

wobei fir die Gewichte

pi =1/SP (4.3-3)

gesetzt wird, wenn S gleich der Entfer-
nung des betreffenden Neupunktes
vom Stutzpunkt Nr. i gesetzt wird; A
spielt dabei die Rolle eines «atenten
Parameters», vgl. Wolf (1981).

In dieser Weise wurde bereits 1895/97
bei der preussischen Landesaufnahme
in der Ausgleichung des (Niederrheini-
schen Dreiecksnetzesy (mit A=1) ver-
fahren, vgl. v. Schmidt (1895), (1897):
Die Ax;, Ay; waren dabei die nach einer
Drehstreckung des zwangsfrei ausge-
glichenen Netzes erhaltenen Klaffun-
gen.

Nennt man den mit A aus (4.3-1)
fliessenden Mittelwert I, so hat Bjer-
hammar (1973) noch eine bedeutsame
Erweiterung durch Bildung eines allge-
meineren Mittelwertes I** zu

= (k7 + ko3 + ...+ kmlh)/

Sk +ko+ ..+ k) (4.3-4)

angegeben, worin die k empirisch zu
ermittelnde Koeffizienten (Gewichte)
sind, und wobei

pi=1/( /S? + c*)N. Ausserdem ist ¢ eine
willktrlich zu wahlende Glattungskon-
stante.

5. Freie Ausgleichungen
Die «freien Ausgleichungen) stellen,
was ihren algebraischen Hintergrund
anbelangt, eine vollkommene Neuent-
wicklung in der Ausgleichungsrech-
nung dar. Vor allem sind es die von
Prof. Bjerhammar geschaffene Theorie
der verallgemeinerten Matrix-Inversen
bei singularen Féllen sowie der Inver-
sion rechteckiger Matrizen, die hier eine
besondere Wiirdigung verdienen.
Von der Anwendungsseite her gesehen,
ergeben sie sich immer dann, wenn der
Fall einer «Uberparametrisierung> vor-
liegt, d.h. wenn bei einer Ausgleichung
mehr (unabhéngige) Unbekannte x
eingefiihrt werden, als zur eindeutigen
Lésung des speziellen Problems erfor-
derlich sind.
Beispiele:
a) Stationsausgleichungen mit
tungsunbekannten,
b) Skalenteilungsuntersuchungen  mit
Strich-Unbekannten,
c) Geodéatische Netze aller Art mit
Datums- und Konfigurationsdefekten.
d) Trigonometrische Hohennetze mit
einseitigen Hohenwinkeln, wenn eine
Refraktionsunbekannte eingefihrt
wird.

Rich-

5.1 Lésungen zur freien Ausgleichung
Im Falle von Uberparametrisierung
weist die Koeffizientenmatrix A der
Verbesserungsgleichungen
v=AX-I, Gewichtsmatrix=P  (5.1-1)
keinen vollen Spaltenrang u auf, son-
dern es ist rg(A) =g, so dass ein Rang-
defekt d =u-qg auftritt. Dann ist auch
rg(ATPA) = rg(N) = q. Zur Behebung des
Defektes d kann man

- entweder a)

die d Zusatzbedingungen

G'x=o0 (5.1-2)
einfihren, wie sie aus x’x =min (5.1-3)
folgen, vgl. 6.1,

- oder b)

die d zusatzlichen Fehlergleichungen
v=Gx (5.1-4)
noch hinzugeben,

wodurch die Aufgabe eindeutig I6sbar
wird, vgl. Pelzer (1974). Das System der
ausgeglichenen Grosse verbleibt «<ver-
schmierungsfrei, solange gilt:

AG =0, oder NG=0 (6.1-5)
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Loésungen von singuldren Problemen
der Art a) und b) gab es friiher schon:
zu a). Hansen (1867) fuhrt bei Stations-
ausgleichungen mit Richtungsunbe-
kannten Xy, Xg, ..., Xs die Zusatz-Bedin-
gung (Restriktion) ein:

G'x=%+%+...+% =0.

Dies flhrt, wie Hansen (1839) gezeigt
hat, zu den Normalgleichungen (mit
den Korrelaten k):

& — AT
g%(; Gk=,;\- Pl (5.1-6)
Bei der numerischen Auflésung bzw.
Inversion muss man wegen det(N) =0
die Reihenfolge der Unbekannten veran-
dern, indem die k vor die letzten d der
Parameter x zu stellen sind; eine Er-
kenntnis, die man Helmert (1907) ver-
dankt. Aus der Inversion von (5.1-6)
erhalt man auch die Pseudoinverse N*;
zu b). Thiele (1903) hat bei seinen
singuldren Systemen bereits mit den d
Zusatz-(oder  Pseudo-)Beobachtungs-
gleichungen v gearbeitet. Seine Aussa-
ge, diese mussten jedoch so gewahlt
werden, dass das Innere der Ausglei-
chung nicht verandert wird, trifft genau
die Bedingungen (5.1-5). Stellt man
dann aus (5.1-1) und (5.1-4) das Ge-
samtnormalgleichungssystem auf, so
erhélt man

(N+ GGT)x=ATPI (6.1-7)
dessen Inversion jedoch nicht die Pseu-
doinverse liefert:

(N+GGT)'=N;'#N*

Will man von Ng'auf N* tibergehen, so
gilt, nach Koch (1980):

N* =No'-G(GTGG'G)'GT

oder wenn man mit Pelzer (1974) die G
auf GG = I normiert;

Nt =(N+GG')'-GG"

5.2 Zur <inneren) Fehlertheorie

Die innere Fehlertheorie, geschaffen
von Prof. Meissl (1962), benutzt die
Pseudoinverse, deren Spur minimal ist,
als Trager der Genauigkeitsinformation.
Doch ist die Berechnung der inneren
Genauigkeit nicht notwendig an die
Berechnung des Lésungsvektors X der
freien Ausgleichung gebunden, vgl.
Wolf (1981).

Dividiert man die Spur von NT durch
die Anzahl u der unbekannten Parame-
ter, so erhalt man in
6% = Sp(N*)/u (5.2-1)
ein Kriterium fir die Gute eines ausge-
glichenen Systems. Dagegen ist die

Meinung Uber die praktische Bedeu-
tung der Einzelwerte fir die inneren
Parametervarianzen (und der inneren
Fehlerellipsen) geteilt, vgl. Bossler
(1972), Gotthardt (1975), Pelzer (1980),
S. 290.

Weiteres zur Anwendung der freien
Ausgleichung in 6.

5.3 Zwei Lésungsbeispiele fir die freie
Ausgleichung bei Konfigurations-
defekten

Um das Wesen der Uberparametrisie-
rung infolge von fehlenden Messungen,
d.h. bei Konfigurationsdefekten, deut-
lich herauszustellen, seien nachstehend
die Losungen fur 2 einfache Beispiele
angegeben.

a) Vorwiértseinschneiden mit nur 1
Zielstrahl (d=2-1=1)

Gemessen: der Richtungswinkel t
Fehlergleichung (mit dem Gewicht 1):

ity o %
v=—y6x+&5t6y—l=Ax—l
So So

det(N) = det(ATPA) =
1

—sintcost]=o

_ 1sin’t,
s2|-sintcost, cos®t

Daher: Pseudoinverse

N+ = | sin’t -sintcost| o
-sintcost, cos’t 0

) co | OK| _ | Isint | _
Losung: X [59} N [ Icost]

= [_ . ]sol, so dass /8% + 892 = sql.

cost
Eigenschaft: /& = /8%*+ &y% = min.

Geometrische Deutung: Man muss vom
Naherungspunkt P, das Lot (mit der
Lange syl) auf den gemessenen Strahl
fallen, um den ausgeglichenen Punkt zu
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erhalten. (Wohin aber P, gelegt werden
soll, bleibt unendlich-vieldeutig; also
gibt es unendlich-viele Losungen.)
Helmert (1907) bereits formulierte es
so: Bei «unvollstdandigen Bestimmun-
gen> kann man die Unbekannten nicht
alle getrennt voneinander bestimmen,
sondern nur Aggregate von ihnen (hier:
oy/dx =tant, was von unendlich vielen
Punktlagen Py erfillt wird).

b) Das Eratosthenes-Problem ohne
Kamel-Karawanen (d=2-1=1)

Gemessen: der Zentriwinkel a.
Beobachtungsgleichung: Ra=s, oder
INnR+Ina=Ins, (mit R=Erdradius,
s = Bogenldnge des Kreissektors).
Fehlergleichung:

Ving =In§-InR-1Ina, P=1
oder

v=A%-1 mitA=[1-1],
x=[In§ InR]" I=Ina

so dass

det(N) = det(ATPA) = det [_ " 1] -0,

Daher: Pseudoinverse N* =l[_} - 1]

Losung:
~_|In§ | _ Ino | _
x= [lnﬁ] - N+[— lna]
_| nnal _|In va
- %lna In(1/ va)|.

sodass$= va, R=1/ vya.

(6.3-1)

Probe: Die Relation Ra = § wird erfullt.
Eigenschaft:

%% = In’s + In*R = min (5.3-2)
Helmert (1907): Es kann in Wirklichkeit
nur ein Aggregat der Unbekannten
bestimmt werden, hier §/R=a. Die
Losung (5.3-1) existiert nur, wenn Gl.
(5.3-2) als Bedingung gefordert ist, die
nur algebraisch-formalen Charakter be-
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sitzt und mit der Geometrie des Erdbe-
stimmungsproblems nichts zu tun hat.
(Ausserdem misste bei der Logarith-
mierung genau Uber die Einheiten
entschieden werden, in denen § und R
im Vergleich zu a auszudrtcken sind.)

6. Koordinaten-Transformationen
auf der Grundlage von Netzaus-
gleichungen_

6.1 Helmerts Ahnlichkeits-Trans-
formation (1893)

Sie wurde von Helmert in der Form
einer «Zwei-Stufen-Ausgleichung)
durchgefuhrt:

1. Stufe: Nicht-singulare  Ausgleichung
des betr. geodatischen Netzes, entwe-
der nach bedingten oder nach vermit-
telInden Beobachtungen. Aus einer
Koordinatenberechnung (mit vorgege-
benen Werten fir die Lagerung, den
Massstab und die Orientierung) erge-
ben sich die Koordinaten [x, y] = X" mit
ihren Kovarianzen Q.

2. Stufe: Herstellung einer mittleren La-
gerung bzw. Orientierung und eines
mittleren Massstabes durch Vergleich
mit den vorgegebenen <«Fremd-Koordi-
nateny x°, y°. Hieraus ergeben sich die
endgultigen Koordinaten X, ¥. Der Vor-
gang wird als <Anfelderungy der (X, V)
auf die (x°, y°) bezeichnet.

Dabei wird in der (2. Stufer zum Uber-
gang der X, y auf die &, ¥ eine Ahnlich-
keits-Transformation (=lineare konfor-
me Abbildung) gemass

x=x+Gt (6.1-1)

benutzt. Hierin sind:

x| x>

= [(R=x2) 1.9 =y) 1. (&= (§ =)o . T
= [(X=x) 1.y -y) 1. (X=X (Y= y%)a.. . IT

Die Transformationsmatrix G gentgt
den Cauchy-Riemannschen Bedingun-
gen:

(6.1-2)

und in t sind die 4 dusseren Transfor-

mationselemente (= <«Datumsparame-
ten) untergebracht:
t=[(t, t fa 1" (6.1-3)

deren geometrische Bedeutung durch

t; = Axo, ty = Ay, arctan (ta/ts) = 0.
V f% + fﬁ = ko

definiert ist, wobei Ax, Ay, die Ver-
schiebungsparameter, o, der Verdre-
hungswinkel und k, der Massstabspa-
rameter ist. Der Ubergang von o, und ko
auf tz und t4 stellt eine einfache Form
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des (Parameter-Austausches) dar, vgl.
2.1, so dass X nach (6.1-1) linear in den t
ist (nicht aber bzg. ap).

Bei Helmert treten indessen nicht alle n
Netzpunkte als Vergleichs- oder Stitz-
punkte auf, sondern nur v von ihnen
(v<n). Formal lasst sich das so aus-
drlcken, dass man den nx1 Losungs-
vektor %X mit der Auswahl-Matrix R
multipliziert, wobei

R=RT=diag [1.1....1,0,0,.. ]=RR

so dass
RX=%X=[%;, X .... %0, 0,0,...]7 (6.1-4)

In die Zielfunktion Q werden dann nur
die X einbezogen, indem

Q=x"Q;'x=%"RQ;'Rx =

=%"Q "% =min, (6.1-5)
mit Q"' = RQ; 'R
(bei Helmert ist Qz=I). (6.1-1) als

Fehlergleichungen aufgefasst, liefert mit
(6.1-5) die Normalgleichungen

G'Q 'Gt+G'Q 'x =0, so dass

t=-(G’TQ'G) 'GTA 'x (6.1-6)
woraus durch Einsetzen in (6.1-1):
x=(1-G(G'Q'G)"'GTQ ")x = (6.1-7)
= Sx .
womit cov (X) =S cov (x)ST (6.1-8)

Ausserdem ergibt sich GTQ 'k =0
(6.1-9)

(6.1-7) bezeichnet die S-(similarity-)
Transformation, wéhrend (6.1-9) unter
dem Namen <Helmert-Bedingungen»
bekannt geworden ist.

Helmert hat u.a. das Verfahren auch in
dem Sinne beniitzt, dass die x°, y°
durch die astronomischen Koordinaten
bestimmte Punktlagen waren, so dass
die (x-x%%, (y-y°) den Lotabweichun-
gen entsprachen. Mit (6.1-5) wurde
dann eine solche «Datumsbestimmung»
herbeigefihrt, welche die Lotabwei-
chungsquadratsumme zum Minimum
machte. Neuerdings wird die Bestim-
mung der dusseren (oder Datums-)Ele-
mente t (und die sich darauf grindende
Bestimmung von X nach [6.1-7]) als
Lésung des «Designs nullter Ordnung)
bezeichnet, vgl. Grafarend u. a. (1979).

6.2 Mittermayers freie Netz-
ausgleichung

Sie ist eine vollig neue Form der geodé-
tischen Netzausgleichung, indem (in
Anlehnung an Prof. Bjerhammars Theo-
rie der verallgemeinerten Inversen) alle
Punkte eines geodatischen Netzes va-
riabel gehalten werden, so dass ein
singulares Gleichungssystem auftritt. Zu

dessen Losung werden nach Mitter-
mayer (1972) ausser den (auf alle n

Punkte sich beziehenden) Fehlerglei-
chungen
v=Ax-I mitl=L-Ax (6.2-1)

noch die Helmert-Bedingungen (6.1-9)
mit Q =l aufgestellt:
G'x=o0 (6.2-2)
wobei rg(A) =g<u. Die Ausgleichung
wird so durchgefiihrt, dass neben
vIPv=min auch x'x=min gilt, was
nach 6.1 zu (6.2-2) gefthrt hat. Dar-
aus folgt dann wieder das Normalglei-
chungssystem

ATPA, G| | % ATPI|
R
Damit die v invariant gegentber allen t
sich ergeben, muss gelten:

AG =0 bzw. ATPAG =0, was fir alle
Ahnlichkeitstransformationen (nicht fur

die Affin-Transformation) zutrifft. In
(6.2-3) wird k=0 und

(6.2-3)

% = (ATPA)TATPI, sowie cov(X) = (6.2-4)

Ga(ATPA)+

worin 2 =der Schatzwert fiir die Va-
rianz der Gewichtseinheit ist:

83 =Vv'Pv/(n_ - q)

mit n_ = Anzahl der Messungen L. Gl.
(6.2-4) stellt wieder die Losung des
Datumsproblems nullter Ordnung dar.
Es leuchtet ein, dass eine solche L&-
sung des Optimierungsproblems nicht
eindeutig ist, denn wie (6.2-1) zeigt, ist
der Vektor X eine Folge der gewahlten
Naherungskoordinaten. Diese kénnen
aber vollkommen willkdrlich angenom-
men werden, so dass es unendlich viele
Losungen des Datumsproblems gibt —
je nach Wahl der x°. (Anders dagegen.
wenn die x° eindeutige astronomische
Koordinaten sind oder eindeutige Koor-
dinaten aus einem ({bergeordneten
System.)

6.3 Weiterfuhrungen der Koordinaten-
transformationen

Hier sind vor allem die Arbeiten der
Zircher Schule zu nennen:

a) Die allgemeine lineare Transforma-
tion nach Prof. Conzett

Sie besteht in einer affinen Transforma-
tion des auszugleichenden, variablen
Netzes, beschrieben durch 6 Parameter
ty, ty, . . .. t6. Soll zur Ahnlichkeitstransfor-
mation Ubergegangen werden, muss
dies noch durch 2 Bedingungsgleichun-
gen zwischen den Unbekannten t
(= (Restriktionsgleichungemn) ausge-
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drickt werden. Anders als bei der
Helmert-Transformation werden hier so-
wohl die X wie auch die x°, vgl. 6.1, als
Zufallsvariable (= korrelierte Beobach-
tungen) behandelt, womit sich eine
Ausgleichung nach bedingten Beob-
achtungen mit Unbekannten ergibt -
gegebenenfalls noch mit den o.g.
Restriktionen. Die Helmert-Transforma-
tion war dann ein spezieller Fall davon.
Numerisch wurde (ber die quasivermit-
telnden Beobachtungen gerechnet, vgl.
Conzett (1975).

b) Die (Allgemeine Vermittelnde Netz-
ausgleichung) nach Prof. Matthias
(1981)

Hierbei wurden als Ausgangsrelationen

gewahlt:

a) die «Konfigurationsgleichungen)
(= Fehlergleichungen fur die gemes-
senen Winkel und Strecken, Ge-
wicht: P))

b) die «Datumsgleichungeny (= Fehler-
gleichungen fiir die gegebenen Koor-
dinaten als korrelierte Beobachtun-
gen, wie von Jordan (1882) angege-
ben, und durch den Einfluss der
Datumsparameter t noch ergénzt,
Gewicht: Py).

Das  Gesamtnormalgleichungssystem

(fur die Nebenunbekannten §, die Koor-

dinatenunbekannten X und die Datums-

unbekannten t) zerféllt im Falle einer

Ahnlichkeitstransformation  (nicht je-

doch bei einer Affintransformation)

automatisch in 2 Teile, so dass dann
nach der Helmertschen (Zweistufen-

Methodey, vgl. 6.1, gerechnet werden

kann: 1. Berechnung der § und X (bei

festgehaltenen dusseren Parametern t),

2. Bestimmung der t (bei festgehaltener

Netzgestalt). Sonderfélle ergeben sich

a) furt=o0, b) fur Py =0, ¢) flr Py = ool.

¢) Dreidimensionale Helmert-
Anfelderungen
Auf Grund der bekannten Relationen
aus der analytischen Geometrie des
3D-cartesischen Raumes, vgl. z.B. La-
gally (1928), wurden dreidimensionale
Anfelderungen im Helmertschen Sinne
entwickelt:
Rinner (1954) fur die Einpassung photo-
grammetrischer Modelle und Modell-
streifen,
Wolf (1963) mit Ubergang zu dreidi-
mensionalen  ellipsoidisch-geographi-
schen Koordinaten fur Landesvermes-
sungszwecke,
Rinner (1969): 3D-Anfelderung im Zu-
sammenhang mit einer freien Ausglei-
chung des Netzes,
Schmid (1980): 3D-Anfelderung unter
Entwicklung von 2 Grundtypen fir die
Losung:
a) VIPv=min und x"Pyx = min

(= freie Ausgleichung)
b) VIPv + xTPyx = min

(= gezwangte Ausgleichung),
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wobei beide Typen (und zusatzlich
einige Sonderfélle davon) aus einem
allgemein  aufgestellten  Normalglei-
chungssystem hervorgehen.

Kochle (1982): Unter Verwendung des
ausseren Vektorproduktes werden die
Formeln der 3D-Anfelderung und der
hiernach sich ergebenden Helmert-
Transformation entwickelt, und zwar
unter Bezugnahme auf endliche Dreh-
winkel, was durch Benltzung eines
Iterationsverfahrens zu erreichen ist.

7. Das Neueste zum
Gauss-Helmert-Modell

7.1 Die klassische Konzeption

Das Gauss-Helmert-Modell driickt sich
durch die Bedingungsgleichungen mit
Unbekannten

Bv+AXx+w=0,
mitw=Bl, D{l) = 2P~ WA=
aus. Mit vIPv=min erhdlt man die
folgenden Normalgleichungen, worin k
der Vektor der Korrelaten ist.

BP BTk +AX+w=0
A T (71-2)

deren Auflésung k und X liefert, woraus
v=P 'BTk.

Eliminiert man k aus (7.1-2), so erhalt
man

AT(BP 'BT) 'Ak +
+AT(BP 'BT) 'w=o0.

Diese reduzierten Normalgleichungen
kann man sich auch entstanden denken
aus den fingierten Fehlergleichungen

\I?/’=’(ABXP-+:‘Vg'T)rTJ‘|t dem Gewicht (7.1-3)
(= «quasivermittelnde Beobachtungen).
Als Sonderfalle ergeben sich aus dem
Gauss-Helmert-Modell (7.1-1):
-—a)mitB=-1

die «vermittelnden Beobachtungen)
(= Gauss-Markov-Modell),
-b)mitA=0

die (bedingten Beobachtungen.

Im «gemischten Modelly, vgl. Koch
(1980), namlich
AX+2Z(-v)=(-w) (7.1-4)

spielen die (- w) die Rolle von Beobach-
tungen (=vy), mit D(y) = 0aZP~'ZT = o3P
(wie bei den quasivermittelnden Beob-
achtungen in (7.1-3), da Z = - B).

Dabei wird - als neugeschaffener
Begriff — vielfach der des Zufalls-Para-
meters beniltzt, so dass im neueren
Schrifttum die Verbesserungen v bei
vermittelnden Beobachtungen mit &
(= Residuen) und bei bedingten Beob-
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achtungen mit -y (= Zufalls-Parameter)
bezeichnet werden, womit sich die
ausgeglichenen Beobachtungen
I=1+v

durch

I=1+e
bei vermittelnden Beobachtungen

und durch

T=1-7
bei bedingten Beobachtungen

darstellen lassen, so dass - wie von
Prof. Koch (1980) gezeigt - die y auch
als (negative) Residuen verstanden
werden konnen.

7.2 Die moderne Auffassung

Hierbei wird von den vermittelnden
Beobachtungen (= Gauss-Markov-Mo-
dell) mit den Fehlergleichungen

v=Ax -1 (7.2-7)

ausgegangen. Dann werden nach dem
Vorgang von Schaffrin (1983) beide
Seiten von (7.2-1) mit einer passenden
Matrix R multipliziert,

sodass Rv=RAX%, -RI, -
woraus mit Rl=w und RA = - W2
eine Gauss-Helmert-Form wie in (7.1-1)
erhalten wird, namlich
Rv+Cx,+w=0 (7.2-3)
wobei hier jedoch die Zerlegung
(7.2-2) vorgeschrieben ist. Dem ist, im
Vergleich zu Gauss-Helmert, die folgen-
de Situation gegenuberzustellen:

a) Entweder man kennt die Matrix A in
(7.2-1); dann ist der Rechenweg
tber C=-RA und Uber die Bedin-
gungsgleichungen mit Unbekannten)
(7.2-3) gemass (7.1-2) in jedem Fall
ein Umweg, um X, zu erhalten (das
viel kurzer aus (7.2-1), d.h. nach
vermittelnden Beobachtungen, zu
gewinnen ist).

b) Oder man kennt C in (7.2-3); dann
ist die Reduktion auf vermittelnde
Beobachtungen (7.2-1) durch Auflo-
sen des Gleichungssystems
C+RA=0 (7.2-4)

nach den Elementen der Matrix A

und Weiterrechnung nach (7.2-1) ein

- sicherlich noch grosserer - Um-

weg zur Losung des Problems der

<bedingten Beobachtungen mit Un-
bekannteny, woflir der einfache Lo-
sungsweg (7.1-2) zur Verfligung
steht, der zugleich den Allgemeinfall
(s.0.) beschreibt.
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8. Schluss

Wie es im Strom der wissenschafts-
historischen Entwicklung nicht anders
sein kann, liess sich auch im Fall der
Ausgleichungsrechnung zeigen, dass -
bei entsprechender Aufbereitung - das
alte, klassische Ideengut in eine enge
Verbindung zu den bedeutenden Neu-
schopfungen unserer Tage gebracht
werden kann. So fligen sich die Dinge
zu einer grossen Vielheit zusammen; ein
Reichtum im ldeellen, dessen wir im-
mer eingedenk bleiben sollten.
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