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richtig, auch diese mit einem Lohn zu
bewerten. Wir unterstellten im Modell
hieftr Fr. 26 000.-. Unter diesen Annah-
men ergeben sich Nutzen-Kosten-Rela-
tionen, wie sie in Tabelle 4 aufgefihrt
sind.

Varianten Nutzen/Kosten

Basisvariante 15.8%
Variante mit Subven-

tionsklrzung 1.9%
Wachstumsvariante 16,7%

Tab.4 Deckungsgrad der volkswirtschaftli-
chen Kosten der Meliorationssubventionen
durch Mehreinkommen der subventionierten
Faktoren

In der Basisvariante sind also 15,8% der
volkswirtschaftlichen Kosten der Melio-
rationssubventionen durch Mehrein-
kommen der subventionierten Faktor-
menge gedeckt, d. h. dieser Anteil kann
als Einkommenstransfer interpretiert
werden. Der Wert der Wachstumsva-
riante liegt mit 16,7% nur unwesentlich
hoher. Dies ist einerseits auf die eng
vorgegebene Beschrankung des Wirt-
schaftswachstums und anderseits auf
die Annahme konstanter Opportunitats-
kosten, die unabhangig von der jeweili-
gen Wirtschaftslage sind, zurickzufih-
ren. Ein Vergleich mit dem bescheide-
nen Wert von 1,9% bei der Variante mit
Subventionskirzung zeigt, wie empfind-
lich das Nutzen-Kosten-Verhaltnis auf
die Subventionshohe reagiert.

Es stellt sich nun die Frage, wie die
Grossenordnung dieser Koeffizienten zu
beurteilen ist.

Als erstes ist zu bedenken, dass Ge-
samtmeliorationen mit Glterzusam-

menlegungen, Wegebauten usw. Werke
sind, die nur als kollektive Aktionen
durchgefihrt werden kénnen. Nun ist
aber der individuelle, einzelbetriebliche
Nutzen offensichtlich nicht so gross,
dass sich, bei voller Kostenfolge, die
Gruppe der Betroffenen aus eigener
Initiative dazu entschliessen kann, sol-
che Werke durchzufiihren. Damit ent-
stehen aber auch jene (Nebennutzen)
einer Melioration nicht, an denen die
Nicht-Betroffenen, der Staat, die Offent-
lichkeit interessiert sind. Als solche
Nebennutzen koénnen allgemein ange-
fihrt werden: Die bessere Erreichung
anerkannter agrarpolitischer Ziele, wie
z.B. die Existenzsicherung flachenab-
hangiger Familienbetriebe mit ver-
gleichbarer Einkommenslage, die Erhal-
tung einer standortgerechten Produk-
tion und eine kostengunstige Land-
schaftspflege. Ferner ist die bessere
Erreichung gesamtschweizerischer und
regionaler offentlicher Zielsetzungen zu
erwdhnen, z.B. die Ausscheidung und
Erhaltung von Naturschutzgebieten, die
Erleichterung  der  Regionalplanung
durch Entflechtung, die Erschliessung
als Erholungsraum usw. Will die Offent-
lichkeit die erwahnten Zielsetzungen,
die grosstenteils den Charakter 6ffentli-
cher Guter aufweisen, Uber eine Ge-
samtmelioration erreichen, hat sie sich
durch Kostenlbernahme an dem Werk
zu beteiligen. Dies hat in dem Ausmass
zu geschehen, dass sich die direkt
Betroffenen aufgrund von individuellen
Nutzen-Kosten-Uberlegungen dazu ent-
schliessen, Meliorationen zuzustimmen.
Wie unsere Uberlegungen gezeigt ha-

ben, kann das bei der heute Ublichen
Kostenteilung durchaus der Fall sein. Es
besteht u.E. hiefir gentgend wirt-
schaftlicher Anreiz.

Eine schlissige Nutzen-Kosten-Analyse
fur die verbleibenden rund 84% der
Subventionskosten kann nicht erfolgen,
weil die Mehrzahl der angestrebten
Nutzen nicht-monetédrer Art und nicht
quantifizierbar sind. Wir gelangen aber
immerhin zu einer indirekten Bewer-
tung, indem wir sagen konnen, dass
ihnen bei ausgeglichener Bilanz minde-
stens ein Wert im Umfang von ca. 84%
der volkswirtschaftlichen Kosten der
Meliorationssubventionen  zukommen
muss.

Ob den angestrebten offentlichen Ziel-
setzungen tatséchlich dieser Wert zuge-
messen wird, ist subjektiv und letztlich
ein politischer Entscheid, der nicht
Gegenstand unserer Arbeit ist.

Zum Schluss sei erwahnt, dass gegen
unseren Ansatz, unsere Vorgehenswei-
se, Kritik ins Feld gefuhrt werden kann.
Unser Projekt stellt aber immerhin den
ersten Versuch dar, die regional- und
volkswirtschaftlichen Konsequenzen ei-
nes so bedeutenden Werkes, wie es
eine Gesamtmelioration darstellt, vor
dessen Abschluss quantitativ zu erfas-
sen bzw. abzuschétzen. Dieser methodi-
sche Versuch ist sicher noch verbesse-
rungsfahig.
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Die raumliche Helmerttransformation in algebraischer

Darstellung

R. Kochle

Durch rein algebraische Uberlegungen, ohne von den Drehwinkeln explizit
Gebrauch zu machen, gelangt man zu untenstehendem Formelsatz fiir die Trans-
formationsparameter der raumlichen Helmerttransformation y; = uAX; + Yo eines
Punkthaufens mit Koordinaten X; auf einen andern Punkthaufen mit Koordinaten

Yi-

Bei der Herleitung wird dem Operator (<) des Vektorproduktes eine andere als die
gewohnte Auslegung gegeben, wodurch der fugenlose Einbau des Vektorpro-

duktes in den Matrixkalkil méglich wird.

fur die Drehmatrix A
pour la matrice de rotation A

2 (A (Xi-Xs))x(yi-ys)=0
_2(Yi-Ys)TA(X - Xs)

fur den Massstab
pour le facteur d’échelle

fir die Schiebung
pour la translation

Koordinaten der Schwerpunkte)

coordonnées des centres de gravité)

! z(xi—xs)T(xi—xs)
Yo =Ys—-pAXs

(xS, YS:
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1. Ansatz und Aufstellen der
Minimumbedingung

Wir gehen vom Bild zweier Haufen
einander  paarweise  zugeordneter
(= homologer) Punkte aus, die rdumlich
getrennt liegen und in ein kartesisches
Koordinatensystem eingebettet seien.
Die Ortsvektoren des ersten Haufens
seien X1, X, ..., xn und die des Zwei-
ten Haufens y1. y2. ..., Yn. Gesucht ist
eine Transformation

¥i=pAxi+yo mit ATA=AAT =1 (1.1)

die durch Schieben, Drehen und An-
dern des Massstabs den ersten Haufen

Institut fir Geodasie und Photogrammetrie
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Separata Nr. 37

Mensuration, Photogrammeétrie, Génie rural 9/82



Au travers de réflexions purement algébriques, sans explicitement faire usage des
angles de rotation, on obtient le systéeme d‘équations ci-dessus pour les parameétres
de la transformation de Helmert dans l'espace Y;= uAX;+ Yo d'un ensemble de
points avec coordonnées X; sur un autre ensemble de points avec coordonnées Y.

Au cours de [établissement des formules, I'opérande (<) du produit vectoriel est
interprété différamment qua lordinaire, ce qui rend possible lintroduction du

produit vectoriel dans le calcul matriciel.

moglichst gut dem zweiten Haufen
annadhert. Als Optimierungsprinzip for-
dert man, dass die Summe der Ab-
standsquadrate zwischen homologen
Punkten des einen und des andern
Haufens minimal werde, was mit den
Residuen vj in der Formelsprache lautet

Vi=Yi-Yi=pAXj+ Yo -Vi (1.2)
e=2VvTvi=Min. (1.3)

Eine Transformation der Art (1.1) wird
als Ahnlichkeitstransformation und mit
der Zusatzbedingung (1.3) als Helmert-
transformation bezeichnet.

Notation:

& ¢, € seien auf die Schwerpunkte der
einzelnen Punkthaufen bezogene X, vy,
y.

Zur Vereinfachung der Schreibweise
werden kinftig die Indizes an den
Grossen X, Y, Y, & €, € v weggelassen;
wo diese Symbole unter dem Summen-
zeichen erscheinen, muss man sie sich
Uber ihre n Werte summiert denken.

Aus den 3n+ 6 skalaren Gleichungen
(1.1) und mit (1.2), (1.3) gilt es, 7 Trans-
formationsparameter zu finden, namlich
die drei Komponenten von yg, den
Massstabsfaktor p und 3 wesentliche
Parameter fiir A. Das Problem wurde in
der Literatur schon oft behandelt, seine
Schwierigkeit liegt in der Nichtlineari-
tat der Orthogonalitdtsbeziehungen
ATA =1. Man hat in den frihen Ansat-
zen den in der Ausgleichungsrechnung
Ublichen Weg der Linearisierung durch
Anbringen von kleinen Verbesserungen
an Naherungswerten dreier unbekann-
ter Drehwinkel beschritten (z.B. Rinner
[1]) und auch den allgemeinen Fall
beliebig korrelierter Punktkoordinaten
miteinbezogen (Wolf [2], S.455). Die
genaue Losung ist dann das Ergebnis
einer lteration. M. Tienstra [3], der mit
andern Parametern als den Dwehwin-
keln arbeitet, gelang es durch scharfsin-
nige mathematische Uberlegungen, ei-
ne iterationsfreie Losung fur A zu
finden; er zeigt auch, dass sich die
Losung auf ein Eigenwertproblem redu-
zieren l&sst und nicht unbedingt eindeu-
tig zu sein braucht. In der vorliegenden
Arbeit wollen wir ganz konventionell
vorgehen, durchwegs in Matrixnotation
arbeiten und sehen, wohin uns die
Formeln fiihren.

Fir einen stationaren Wert von ¢ (also
auch fur ein Minimum) folgt aus (1.3)

Vde=2vlidv=2dvlv=0 (1.4)

Das Bilden des Differentials dv in (1.2)
und Einsetzen in (1.4) fuhrt auf den
Ausdruck

Y vidv=2 v (duAx+ pdAx + dyo)
=dpZ VIAX+p X vIdAx +
(Zvhdyo=0 (1.5)

aus dem sich die unbekannten Parame-
ter berechnen lassen.

2.Losen der Minimum-

bedingung fiir die Schiebung und
den Massstab

Der Ausdruck in (1.56) muss identisch
verschwinden fir beliebige zulassige
Anderungen in u, A und Y. Wir wollen
daraus die Folgerungen ziehen.

Das Glied mit dyq:

Das skalare Produkt dyo' X v muss zu
null werden fir beliebige Vektoren dy.
Das kann nur geschehen, wenn

2v=2y-2y=0 (2.1)

gilt. Daraus folgt, wenn man die Koordi-
naten der Schwerpunkte mit

_ 1 -
Xs=2IX ys=p IV, Ys=1 LV (22)
einfuhrt,
Ys=1Vs (2.3)

Man kann diese bekannte Tatsache
ausdricken als

Satz 1. Bei der Helmerttransformation
wird der Schwerpunkt des beweglichen
mit dem Schwerpunkt des festen Punkt-
haufens zusammengelegt.

Durch Mitteln von (1.1) Uber alle Punkte
und mit (2.3) ergibt sich fur yo der
Ausdruck

Yo =Ys—pAXs (2.4)
und (1.1) lasst sich in der Form
Y =Ys+ pA(X - Xs) (2.5)

darstellen. Fuhrt man die auf die
Schwerpunkte bezogenen Koordinaten

E=X-Xs E=Y-VYs

E=Y-Ys=Y-VYs (2.6)
ein, so vereinfacht sich (2.5) zur Glei-
chung

€=pAt (2.7)

die wir unsern weitern Entwicklungen
zu Grunde legen werden. Aus (1.2) folgt
wegen (2.6) und (2.3) auch

v=g-e=pAl-¢ (2.8)
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Das Glied mit dy:

Der Differentialausdruck (1.5) gilt fur
beliebig liegende Koordinatensysteme,
also auch fur eines mit dem Ursprung
in Xs und die darauf bezogenen Koordi-
naten & Damit das erste Glied in (1.5)
fur beliebiges dup verschwinde, muss
gelten

Y vIAZ=0oderauchZvlie=0 (2.9)

der zweite Ausdruck wegen (2.7), weil
p# 0. Mit (2.8) wird aus (2.9)

Ivie=Ygle-2ee=0 (2.10)
Weiter ergibt vormultiplizieren von (2.8)

mit vI, aufsummieren und Berticksichti-
gung von (2.9)

Yviv=-Xvie=-2€ele+Zele (21

Die Beziehungen (2.10) und 2.11) lassen
sich zu

Yee=Xele=2Xele-2Zvlv
zusammenfassen.

Ersetzt man v in der linken Gleichung
von (2.9) durch die rechte Seite von

(2.8) und beriicksichtigt ATA=1, ent-
steht die Gleichungskette

Y VIAZ=X (uETAT - gT) AE
=u )3 F.TAT AE - z STAE
=pLETE-2 eTAL
~uEEE-TelE=0

Damit lassen sich zwei Ausdricke flr p

anschreiben, den zweiten in Anlehnung
an (2.12)

(212)

§

= ZZSETAEE (2.13)
Yelg Yele-Zvlv

VESTET e (214)

Wir fassen (2.13) in Worte als

Satz 2: Den Massstabsfaktor einer
Helmerttransformation von X auf 'y
findet man nach folgender Regel: Man
bilde fiir den bereits gedrehten X-Punkt-
haufen und auf die Schwerpunkte
bezogene X- und y-Vektoren die Sum-
me der Skalarprodukte zwischen homo-
logen x und'y und dividiere durch die
Summe der Langenquadrate von X.

Wie ersichtlich, muss man A kennen,
bevor man u berechnen kann. Aller-
dings erhalt man bei kleinen Residuen v
schon eine sehr gute N&herung fur 2,
wenn man nach (2.14) die durchschnitt-
lichen Langenquadrate der auf die
Schwerpunkte bezogenen Ortsvektoren
beider Punkthaufen ins Verhéltnis setzt.

3. Einschaltung:

Der Operator der Vektor-
multiplikation (das Vektormal)
Bevor wir mit der Behandlung des
Hauptproblems weiterfahren, wollen
wir zeigen, wie sich das im Matrixkalkdl
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als Fremdkorper erscheinende Vektor-
produkt durch eine Uminterpretierung
des Malzeichens ohne Schwierigkeiten
darin einbauen lasst und einige flur das
Weitere nitzliche Rechenregeln ange-
ben. Die tiefere Begriindung dafr wird
am Ende des Abschnittes hier kurz
angedcutet, soll aber ausfihrlicher in
einem spatern Artikel, zusammen mit
einigen Beweisen und einem weiteren
Anwendungsbeispiel, folgen.

Das Vektormal ist ein Operator, der auf
die beiden links und rechts von ihm
stehenden Vektoren (z.B. sxu) wirkt
und sie nach den vertrauten Regeln
miteinander zu einem Produkt ver-
knipft. Es ist bekannt (siehe z. B.
Thompson [4], dass man im dreidi-
mensionalen Vektorraum Sxu aquiva-
lent als Matrixprodukt Su schreiben
darf, worin S eine dem Vektor s eindeu-
tig zugeordnete, schiefsymmetrische
Matrix ist. Wir wollen definieren:

Sy 0 -s3 59
Sx= [Syp|x = S3 0 =54 =S (31)
S3 -s, s, O

wobei ST=-S. Wir fassen also das
Vektormal als Operator auf, der auf den
links von ihm stehenden Vektor wirkt
und ihn nach obigem Schema in eine
schiefsymmetrische Matrix verwandelt,
die von einem (nicht geschriebenen)
Matrixmultiplikationszeichen gefolgt ist.
Jedem Vektor ist somit im dreidimen-
sionalen Raum eindeutig nach (3.1)
eine schiefsymmetrische Matrix und
jeder schiefsymmetrischen Matrix ein-
deutig ein Vektor zugeordnet.

Als Gedankenstlutze merken wir uns:
1.Die Elemente der Hauptdiagonale
von Sx sind alle null.

2. An der Hauptdiagonale gespiegelte
Elemente unterscheiden sich nur im
Vorzeichen.

3.Die Vektorkomponenten sind den
beiden Randern nach mit alternieren-
dem Vorzeichen aufgereiht, beginnend
von rechts unten nach links oben. In der
rechten, oberen Ecke steht das positive
Vorzeichen.

Das Vektorprodukt darf nach dem

Vorgehenden als
p=sSxu=(sx)u (3.2)

gedeutet werden, in Komponenten ge-
schrieben

0 =83 Sg||Uj4 SoUz — S3Uog
P=| s3 0 =Sq||Ug| =|S3U; — SyUg (328)
-So Sy O|us| [Syuy—S,uy

Im dreidimensionalen Raum ist das
Ergebnis wieder ein Vektor.

Im zweidimensionalen Vektorraum er-
hélt man das richtige Ergebnis, wenn
man definiert

Sx = [zjx = [-s2 8]

(3.3)

Hier verwandelt der Vektormal-Opera-
tor den Spaltenvektor in einen Zeilen-
vektor, und das Produkt

P =SxU=(Sx)U= -S,U; + SyUsy (3.4)

wird zu einem Skalar.

Mit dieser Interpretation erhélt auch das
Vektorprodukt eines Vektors mit einer
Matrix einen Sinn: axB = (ax)B bedeu-
tet die Multiplikation der Matrix (@x) mit
der Matrix B. Das Resultat ist eine
Matrix, deren Spalten die Vektorproduk-
te von @ mit den Spalten von B sind.

axB=ax(by, b, by)

= (ax by, axby, axbg) (3.5)
Zum Beispiel lasst sich sSx als
sxI=(sxiy, sxi, Sxiz) deuten, was
(3.1) entspricht.
Nun wollen wir die wichtigsten Rechen-
regeln fir das Vektormal zusammen-
stellen. Wir gliedern die Regeln in
solche, die nur im zweidimensionalen
(n=2), in solche, die nur im dreidimen-
sionalen Vektorraum (n=3) und in
solche, die allgemein in beiden Rdumen
gelten, und fangen mit den letzteren an.

Allgemein fur n=2 und n=_3 gdltige
Regeln:

1. Linearitdt bezlglich Addition und
Multiplikation mit einem Skalar
(a+b)x=ax+bx (3.6)
(3.7)

2. Vertauschungsregel (Antikommutati-
vitat)

(va)x = yax

axb=-bxa (3.8)
3. Multiplikation mit sich selber
axa=0 (3.9)

Umkehrung: Wenn axb=0 fir a# Db,

dann folgt
a=0oderb=0oderb=xa (3.10)
4. Stlrzung

(axb)T =bT(ax)T (3.11)

5. Wirkung des Vektormals auf ein
Vektorprodukt (Entwicklungssatz)

(axb)x =ba' -ab' (312)
Es gilt auch

(ax)T bx = (aTb)I - ba’ (3.12a)
(ax)Tax=(ala)l - aa’ (3.12b)

(3.12b) ist die Formel fur den Tragheits-
tensor eines Punktes mit Ortsvektor a
und Masse 1.

6. Nichtassoziativitdt mit dem Matrix-
produkt

(Ab)x # A(bx) (3.13)

Im allgemeinen darf man die Klammer
links nicht weglassen, man beachte
aber (3.21) und (3.22). Der Ausdruck
rechts ist fir n = 2 nicht definiert.

Nur fdr n = 3 glltige Regeln:

7. Die grundlegende zuséatzliche Bezie-
hung im dreidimensionalen Vektorraum
ist die schiefe Symmetrie bei der
Stirzung.

(ax)T = -ax (3.14)
Neben Formel (3.11) gilt auch
(axb)T=-blax=a'bx (3.15)
Aus (3.15) folgt

alax=(axa)T=0" (3.16)
(axbx)T =bxax (3.17)

8. Wirkung des Vektormals auf ein
Vektorprodukt.
Neben Formel (3.12) gilt auch

(axb)x=axbx-bxax (3.18)
axbx=bal - (aTb)I (3.19)
(axb)xc=cxbxa (3.20)

(Losen der Klammer)

9. Die Multiplikation einer orthogonalen
Matrix mit einem Vektorprodukt ist
distributiv bezlglich der beiden Fakto-
ren des Vektorprodukts.

In Formeln: Wenn ATA =1, dann gilt
Abxc=A(bxc)==x(Ab)xAc

+ furdet A=+ 1 (3.21)
- furdetA=-1

Die selbe Regel kann auch als

(Ab)x =+ AbxAT (3.22)

geschrieben werden (Losen der Klam-
mer, vgl. (3.13)).

10. Orthonormale Basis mit Einheitsvek-
toren.

Ist A= (a;,a, as) eine orthogonale Ma-
trix, ATA=1, so ist det A =
laj.azaszl=x1 und es gilt fur die
Spaltenvektoren von A und AT

81 = iagxa:.;
62 = iaaxa1 (323)
dz = ia1xa2

mit dem Plus- oder Minuszeichen ent-
sprechend dem Vorzeichen von det A.

1. Spatprodukt, Determinante

o=a'bxc

=la,b,cl Determinante (3.24)

Es gelten die bekannten Eigenschaften

labcl=Icabl=1Ibcal
zyklische Vertauschung der Vektoren

labcl=-lacbl
gegenseitige Vertauschung zweier Vek-
toren

labbl=0
|dentitat zweier Vektoren

labra+ubl=0
lineare Abhangigkeit

Nur fir n = 2 gdltige Regeln:
12. Es gilt die Definition (3.3).

Mensuration, Photogrammétrie, Génie rural 9/82



13. Die (3.21) entsprechende Formel
lautet (mit ATA =1)

bxc=*(Ab)xAc (3.25)
welche auch als Operatorgleichung

(Ab)x = + bx AT

(Losen der Klammer) (3.26)

geschrieben werden kann.

14. Orthonormale Basis
Die (3.23) entsprechende Formel lautet
(mit ATA=1)

a;xa,=la;axl==x1 (3.27)
15. Determinante
oc=labl=axb (3.28)

16. Anwendung des Vektormals auf

Skalare s und schiefsymmetrische Ma-

trizen S

—_— 0 -s| Ergebnis: schief- (3.29)
s O|symmetrische Matrix

_1 0 s|_ _
SX—{_S O}X—S

Das Vektorprodukt im gréssern alge-
braischen Rahmen.

Als Tensorprodukt zweier Vektoren S
und u, auch /ineare Dyade genannt,
definiert man die Matrix

C=sul (3.31)

Das aussere Produkt der Vektoren s
und u ist als die schiefsymmetrische
Matrix

P=sau=C-Cl=sul -us’ (3.32)

definiert. Das Vektorprodukt schliesslich
ist als die Adjungierte zur Matrix P
definiert:

p=sxu=PA=(sul -ushA

ein Skalar (3.30)

(3.33)

Im dreidimensionalen Vektorraum ist p
der Vektor (3.2a), im zweidimensiona-
len Vektorraum der Skalar (3.4). Zum
Begriff der Adjungierung eines Tensors
sei auf Lichnerowicz [8] verwiesen. Die
Verallgemeinerung zum oben erklérten
dussern Produkt und weitere Satze der
sogenannten gussern Algebra findet
man in [9] vom gleichen Verfasser.
Schreibt man (3.33) skalar aus und
formt etwas um, wird daraus das
Matrixprodukt

p=(sA"u, (3.34)

worin wir den ersten Faktor symbolisch
als

(sA)T = sx (3.35)

bezeichnen. sx fir n = 3 wird zur schief-
symmetrischen Matrix (3.1), fir n=2
zum Zeilenvektor (3.3).

4. Die Minimumbedingung fiir die
Drehmatrix

Wir wollen den Faden aus Abschnitt 2
wieder aufgreifen und eine Losung fir
A suchen.

Das Glied mit dA:
Das zweite Glied rechterhand in (1.5),

jetzt in  Schwerpunktkoordinaten ge-
schrieben
pZVvIdAE=0 (4.1)

muss fur alle dA verschwinden, die der
Nebenbedingung ATA = I gentgen. Dif-
ferenzieren der Nebenbedingung ergibt

dATA + ATdA =0 (4.2)

Wenn man abkirzt dB=ATdA wird
durch Transponieren

dBT =dATA=-ATdA=-dB

dB ist also eine schiefsymmetrische
Matrix, enthalt drei wesentliche Ele-
mente und darf nach (3.1) als dbx
geschrieben werden. Dann gilt

dA = AdB =Adbx (4.3)

was man in (4.1) einsetzen darf mit dem
Ergebnis

LvIdAE=X vIAdbxE
=-XVIAZxdb=-(ZvIAZx)db=0
unter Berlcksichtigung von (3.8). Der
Ausdruck rechterhand, ein Skalarpro-
dukt zweier Vektoren, kann, entspre-
chend der Minimumbedingung, fur
beliebige Werte von db (drei, jetzt freie
Parameter) nur verschwinden, wenn

Z VTAEX = OT

ist. Transponieren, Einsetzen von (2.8)
fur v .und Umformen unter Beizug von
(3.14), ATA =1 und (3.9) fuhrt auf

~YXExAlv=-TE<AT (WAE-¢)
= ‘PZEXATAE‘{"ZEXATC
=—HZEXE+ZEXATSZXEXATS=O
Die letzte Gleichung lasst sich auch auf
die Form

~XExATe=X (ATg)xE= +Y ATexAE
=+ATLexAE=0

bringen, wobei von (3.8) und (3.22)
Gebrauch gemacht wurde. Weil die
Koeffizientenmatrix Al im homogenen
Gleichungssystem rechterhand regular
ist, det A==1, hat dieses fir ZexA&
nur den Nullvektor als Losung.

YexAf=0 mitATA=1

(4.4)

oder nach Multiplikation mit dem Mass-
stabsfaktor

2 (exg)=0 (4.5)

Das Gleichungssystem (4.4) liefert 3
lineare und 6 wesentliche, quadratische
Gleichungen zur Losung fur die 9
Elemente von A. Im néchsten Abschnitt
ist ein indirekter, aber doch ganz prakti-
kabler Weg fir die Losung von A
angegeben. A in die Gleichungen fur p
und Yo eingesetzt, 16st das Problem
vollstandig.

Die Gleichung (4.4) lasst sich formulie-
ren als
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Satz 3: Bei der Helmerttransformation
wird der bewegliche Punkthaufen so
lange gedreht bis die Summe der
Vektorprodukte aus einander zugeord-
neten beweglichen und festen, je auf
den Schwerpunkt bezogenen Ortsvek-
toren null ist.

Dieser Satz gilt auch im Zweidimensio-
nalen. Er ist dort von geringerer Bedeu-
tung, weil fir n=2 ein anderer Weg
direkt zur Losung fuhrt (siehe Abschnitt
6).

Es ist bemerkenswert, dass in (4.4) ein
Massstabsfaktor nirgends, auch nicht
implizit, auftritt.

Wir formulieren das im

Zusatz: Die Bestmmung der Drehmatrix
A einer Helmerttransformation ist von
der Wah! des Massstabsfaktors unab-
hangig.

Insbesondere fiihrt eine Transformation
y=Ax+y, bei der nur gedreht und
geschoben, der Massstab aber festge-
halten wird, auf das selbe A.

5. Iterative Losungen fiir die Dreh-
matrix

5.1 Uber die Cayleysche Faktorisierung
Man gelangt zu einer iterativen Losung
fur die Gleichung (4.4), wenn man die
orthogonale Matrix A nach Cayley

(siehe [4], S.116) in zwei Faktoren
zerlegt
A=(I+S)(I-S)" (5.1)

In der Cayleyschen Formel steht S fir
eine schiefsymmetrische Matrix. Eine
kleine Umformung mit der Abkirzung

C=(I-9)" (5.2)
bringt
A=(1+8)(I-9)"'
=(2I-(I-8))(I-S)"
=2C-1 (5.3)
Vormultiplizieren von (5.2) mit 1-S
fahrt auf
C=I1+SC (5.4)
und dies in (5.3) eingesetzt auf
A=1+2SC (6.5)

Sind die Ausgangsvektoren & zu Beginn
der Helmerttransformation schon eini-
germassen gut vororientiert (z.B. nach
dem Verfahren in [5]), so wird die
Matrix A nicht zu weit ab von der
Einheitsmatrix I liegen, und in der
Matrix SC werden alle Elemente klein
sein. Das heisst nach (5.4), dass auch C
durch I gut angendhert wird und legt
nahe, mit den Formeln (5.4) und (5.5)
ein Naherungsverfahren aufzubauen.

Zu diesem Zweck setzen wir (5.5) in
(4.4) ein mit dem Ergebnis

YexAf=2 ex(I+2SC)E
=2ex&+22XexSCE=0
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und versuchen S daraus zu berechnen.
Das gelingt wegen der schiefen Sym-
metrie mit der Schreibweise S=sx
nach (3.1). Damit entsteht unter Beizie-
hung von (3.8)

hLexE=-YexsxCE=Xex(CExs

= (ZSX(CE)X) S
Mit der Abkirzung
M = ZSX(CE)X

=CX&' - (XefCE)1 (5.6)

(die rechte Seite nach 3.19)) muss man
also das Gleichungssystem

Ms = hE ex& (6.7)

nach dem unbekannten Vektor s [6sen.
Weil C im Ausdruck fir M unbekannt
ist, fangt man mit Co =1 an und durch-
lauft dann iterierend die Gleichungen
Co =I

M;j=Z ex(Ci€)

Si+1=M;""-%hZexE

(oder ohne die Inverse nach (5.7)) (5.8)

Ci+1=I+si+1xC

furi=0,1, 2, ... (Iterationsindex)

Mit dem daraus ermittelten C geht man
in (5.3) ein und findet A. Dieses in (2.13)
eingesetzt, liefert den Massstabsfaktor
g, und A mit p in (2.4) eingesetzt, liefert
die Schiebung yo.

Geometrische Deutung von s

Das lterationsverfahren liefert automa-
tisch den Vektor s, der einer einfachen
geometrischen Deutung fahig ist (siehe
z.B. bei Thompson (4], S.155). Bei einer
eigentlichen orthogonalen Transforma-
tion (det A = + 1) zeigt der Vektor s in

Richtung der Drehachse, und seine

Lange ist gleich dem Tangens des
halben Drehwinkels.

N, *
sS=-1tg 5 r (5.9)

r Einheitsvektor in Richtung der
Drehachse

© Drehwinkel
Konvergenz der lteration

Ohne das Konvergenzverhalten streng
zu untersuchen, sollen hier dazu einige
heuristische Uberlegungen gemacht
werden. Der rekursive Ausdruck fiir C;
in (5.8) lasst sich als Funktion der S auf
den sukzessiven lterationsstufen an-
schreiben als

Ci=1+S;{+S;Si_1+SiSi_1Si_2+..
+8iSi-15i-2..5251

Besteht Konvergenz, so werden sich die
S fur grosse i dem Sollwert S anna-
hern, so dass im Grenzfall

*In [4] steht noch der Faktor 2, weil Thomp-
son sein S mit dem Faktor % versieht, auch
definiert er sein S mit dem umgekehrten
Vorzeichen.

Ein Zahlenbeispiel
Punkthaufen W, aus 8 Punkten in den
Ecken eines Einheitswrfels angeord-
net. Streuung der Punktkoordinaten
mit Amplitude von 10% der Kanten-
lange. Dehnung mit Massstabsfaktor
1,5. Drehung um die Achsen x, y, z in
dieser Reihenfolge um
0,3rad, 0,6rad, 0,9 rad
(17,2°,34,4° ,51,6°.

Drehmatrix
513037 .852065 -.103822
-.646508 463138 606243
564642 -.243903 788473

Ergebnis: Punkthaufen W,.

Transformieren von W, auf W, nach

Massstabsfaktor p

1.489097
Standardabweichung einer Koordina-
te

+0,0429

2. Indirekt Uber eine Naherungslo-
sung.

Genaherte Drehmatrix Ao aus 3
Punkten nach [5]

486256 872802  -.042092
-.680345 408383 608567
548348  -.267282 .792385

Punkthaufen mit Ay transformieren,
anschliessend Iterationsverfahren
(5.8). Abbruchkriterium wie 1. Ergeb-
nis nach 4 Schritten:

Helmert. Vektor s,
1.Direkt  nach lIterationsverfahren | -.000751 002973 .023730
(5.8). Drehwinkel ©,
Abbruchkriterium: 2,7413°
Ish-sn_11<107® Drehmatrix A
Ergebnis nach 17 Schritten: .998857 -.047438 .005907
Vektor s 047429 998873 .001642
-.318709 -.221801 -.545450 | -.005979 -.001360 999981
Drehwinkel © Gesamtdrehung A = A;A,
67,6078° 521214 850853 -.066232
Drehmatrix A -.655615 448880 .607186
521214 8560854 -.066233 546356 -.2730561 791794
-.6556617 448881 607187 | Massstabsfaktor p
546356 -.273052 791795 1,489094
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limCi=1+S+S?+S%+ .
7T —a-st=c

entsteht. Dies ist die Neumannsche
Reihe, das Matrixdaquivalent einer geo-
metrischen Reihe (siehe Zurmdhl! [6],
S.238), von der bekannt ist, dass sie
konvergiert, wenn alle Eigenwerte der
Matrix S dem Betrage nach kleiner als 1
sind. Eine einfache Rechnung ergibt die
Eigenwerte von S als O, ilsl, -i Isl
(hier i=y/-1) und den Betrag des
zweiten und dritten Eigenwertes als | s 1.
Das bedeutet nach (5.9) Konvergenz fiir
Drehwinkel © <m/2, also einen sehr
grossen Konvergenzbereich.
Durchgerechnete Zahlenbeispiele schei-
nen diese Uberlegung zu bestatigen.
Praktisch hat man bei guter Vororientie-
rung die Koeffizienten von A nach 2 bis
3 Iterationen auf 6 Stellen genau.

5.2 Durch Linearisieren

Wir gehen von einer guten N&herungs-
I6sung po. Ag flir Massstab und Dreh-
matrix aus und berechnen N&herungs-
koordinaten €5 = poAo& nach (2.7). Eine
weitere kleine Drehung wird die N&he-
rungskoordinaten in die endgdltigen
Werte Uberfihren, was wir als

g=(1+dl)e (5.10)

schreiben. I+dI ist eine Orthogonal-
matrix, die nur wenig von der Einheits-
matrix abweicht. Aus der Orthogonali-
tatsbedingung folgt analog zu (4.2)

dI"T+1dIT =dIT + dI = 0, also

dIT = -dL

Somit ist dI eine schiefsymmetrische
Matrix und darf als

dl = dix (5.11)

geschrieben werden. Die drei Kompo-
nenten von di kénnen als kleine Dreh-
winkel beziglich dreier orthogonaler
Achsen gedeutet werden, was uns
weiter aber nicht zu kiimmern braucht.
Wir setzen (5.10) in (4.5) ein und erhal-
ten den Ausdruck

Y (ex€)=2ex([+dix) g
=2 exeo+ Lexdixeg
=_280X8—(ZSX80X) d|=0

Daraus ergibt sich di durch Auflésen
des Gleichungssystems

Ndi=2Zeoxe

mit der Koeffizientenmatrix
N=-Yexeox=21(go el -€0€") (5.13)
worin (3.19) bertcksichtigt ist.

(6.12)

Einen etwas ungenaueren Wert fir di
erhalt man durch Gleichsetzen € = g; in
(56.13). N wird dann zur symmetrischen
Matrix

N =12 (g5 eol - €00") (5.14)
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Gleichung (5.12) mit N aus (5.14) findet
man in [1], [7]. Das Verfahren lasst sich
zu einem lterationsverfahren ausbauen.
Es sei darauf hingewiesen, dass N in
(5.14) der Tragheitstensor des bewegli-
chen Punkthaufens bezlglich eines
Schwerpunktsystems ist, vgl. (3.12b).
Auf weitere mechanische Analogien im
Zusammenhang mit Gleichung (4.5)
machen Schmid und Scherrer in [10],
S. 66f. aufmerksam.

6. Die Helmerttransformation in der
Ebene

Als weitere Anwendung und Bestati-
gung der Rechentechnik mit dem Vek-
tormal wollen wir die bekannten For-
meln fur die ebene Helmerttransforma-
tion herleiten. Der Ansatz ist der selbe
wie im 2. Abschnitt, hingegen kommt
man einfacher zum Ziel, wenn man den
Faktor p in die Matrix A einmultipliziert
und schreibt

H=pA (6.1)
wobei wegen der Orthogonalitat von A
gilt

HTH=p und IHI2=,*

Nennen wir der Kirze halber
Matrix vom Typ H Helmertmatrix.

(6.2)

eine

Wie man durch einfache skalare Rech-
nung anhand von (6.2) oder auch mit
Hilfe von (5.1) verifiziert, 1dsst sich eine
Helmertmatrix im zweidimensionalen
Vektorraum durch zwei frei waéhlbare,
skalare Parameter charakterisieren und
mit der zusétzlichen Bedingung
detH>0 als

I -B
H-= [B J (63)
darstellen. Wegen (6.2) gilt fur reelle u
p?=+detH=a?+p> (6.4)
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Schweizerischer Verein fur Vermessungs-
wesen und Kulturtechnik
Société suisse des mensurations et
améliorations fonciéres

Prasidentenkonferenz des
SVVK vom 31.Mérz 1982 in
Bern

Kurzfassung des Protokolls:

Unter dem Vorsitz von Zentralprasident Jules

Hippenmeyer haben die Prasidenten der
Sektionen und verschiedener Kommissionen

Fur die weitere Rechnung wollen wir H
als

H = ol + Blx (6.5)

schreiben. In der Formel ist das Vektor-
mal auf die Eins (einen Skalar) ange-
wandt, was nach (3.29) im Zweidimen-
sionalen die schiefsymmetrische Matrix

_10 -1
w9

ergibt. Aus Komponentenrechnung folgt
unmittelbar

a'1xb=bxa,

aT1 xa=axa=0
ax1xb=a'b=b'a
Genau wie in (2.7) vereinfacht sich der
Ansatz fir Schwerpunktkoordinaten zu

(6.8)

Die Minimumbedingung der kleinsten
Quadrate ergibt den Ausdruck (1.4),
den wir weiter entwickeln.

Yvidv=X vIdHE
=Y vl(dal + dp1x)E&
=daX vIE+ dX vI1xE
=doXZ&lv+dpXExv=0
Wiederum muss der letzte Ausdruck fur

beliebige da und dp identisch zu null
werden, was nur moglich ist, wenn gilt

YElv=0 =XE&HE-XETe
=X ETE+BIET1xE-2L &g
=aX&TE-28e=0
2Exv=0=2E&x(HE-¢)
=ZE><HE—EE><8
=al ExE+BLEIxE-LExe
=BZETE—ZEXS=O
Hierin wurde (6.7) bertcksichtigt.

Explizit erhalten wir daraus die Elemen-
teaundp als

_LEle
TEE

(6.6)

(6.7)

e=HE v=y-y=tc-e=H&-¢

Bziixe
LETE

o

(6.8)

ihre statutarische Versammlung abgehalten.
Die Traktandenliste fur die Hauptversamm-
lung vom 18.6.1982 in Engelberg wurde
genehmigt und im Detail wie folgt behan-
delt:

Der Jahresbericht 1981 des Zentralvorstan-
des wurde gutgeheissen. Ebenso wurden
die Jahresrechnung 1981, das Budget 1983
sowie der Jahresbeitrag 1983 angenommen.
Die Wahlvorschlage fur Zentralvorstand,
Rechnungsrevisoren,  Standeskommission
und Chefredaktor wurden sanktioniert. Aus-
serdem wurde der Vorschlag des Zentral-
vorstandes, die Mitglieder des FIG-Biros
Schweiz zu Ehrenmitgliedern zu ernennen,
mit Applaus gutgeheissen und zum Antrag
der Prasidentenkonferenz erhoben.
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Der Massstab p berechnet sich nach
(6.4) und der Drehwinkel ©, weil be-
kanntermassen a=p cos O, B=p sin ©
ist, als

@=arctgg (6.9)

In der Symbolik noch einfacher als mit
dem Vektormal wird die Herleitung der
Helmerttransformation fir n=2, wenn
die Ortsvektoren und die Helmertmatrix
beide als komplexe Zahlen geschrieben
werden.
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Ferner hat sich die Prasidentenkonferenz
damit einverstanden erklart, dass sich der
Zentralvorstand weiterhin fir die Beibehal-
tung der interkantonalen Fachkurse fur
Vermessungszeichnerlehrlinge der deutsch-
sprachigen Schweiz einsetzt. Zudem soll der
Zentralvorstand Kompetenz erhalten, einer
Kostenbeteiligung des SVVK bzw. der Lehr-
firmen im Sinne von Art.34 des BBG in
einem vom BIGA allenfalls zu erlassenden
Reglement zuzustimmen.
Der Zentralprasident orientierte abschlies-
send, dass die Statutenrevision des SVVK
verabschiedet werden konnte und der Ent-
wurf fur die neuen Statuten demnachst zur
Vernehmlassung zugestellt werde.

Fur das Protokoll: Sekretariat SVVK
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