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richtig, auch diese mit einem Lohn zu
bewerten. Wir unterstellten im Modell
hiefür Fr. 26 000.-. Unter diesen Annahmen

ergeben sich Nutzen-Kosten-Relationen,

wie sie in Tabelle 4 aufgeführt
sind.

Varianten Nutzen/Kosten

Basisvanante 15,8%
Variante mit
Subventionskürzung 1,9%
Wachstumsvariante 16,7%

Tab.4 Deckungsgrad der volkswirtschaftlichen
Kosten der Meliorationssubventionen

durch Mehreinkommen der subventionierten
Faktoren

In der Basisvariante sind also 15,8% der
volkswirtschaftlichen Kosten der
Meliorationssubventionen durch Mehreinkommen

der subventionierten
Faktormenge gedeckt, d. h. dieser Anteil kann
als Einkommenstransfer interpretiert
werden. Der Wert der Wachstumsvariante

liegt mit 16,7% nur unwesentlich
höher. Dies ist einerseits auf die eng
vorgegebene Beschränkung des
Wirtschaftswachstums und anderseits auf
die Annahme konstanter Opportunitätskosten,

die unabhängig von der jeweiligen

Wirtschaftslage sind, zurückzuführen.

Ein Vergleich mit dem bescheidenen

Wert von 1,9% bei der Variante mit
Subventionskürzung zeigt, wie empfindlich

das Nutzen-Kosten-Verhältnis auf
die Subventionshöhe reagiert.
Es stellt sich nun die Frage, wie die
Grössenordnung dieser Koeffizienten zu
beurteilen ist.
Als erstes ist zu bedenken, dass Ge-
samtmeliorationen mit Güterzusam¬

menlegungen, Wegebauten usw, Werke
sind, die nur als kollektive Aktionen
durchgeführt werden können. Nun ist
aber der individuelle, einzelbetriebliche
Nutzen offensichtlich nicht so gross,
dass sich, bei voller Kostenfolge, die
Gruppe der Betroffenen aus eigener
Initiative dazu entschliessen kann, solche

Werke durchzuführen. Damit
entstehen aber auch jene <Nebennutzen>
einer Melioration nicht, an denen die
Nicht-Betroffenen, der Staat, die Öffentlichkeit

interessiert sind. Als solche
Nebennutzen können allgemein angeführt

werden: Die bessere Erreichung
anerkannter agrarpolitischer Ziele, wie
z.B. die Existenzsicherung flächenabhängiger

Familienbetriebe mit
vergleichbarer Einkommenslage, die Erhaltung

einer standortgerechten Produktion

und eine kostengünstige
Landschaftspflege. Ferner ist die bessere
Erreichung gesamtschweizerischer und
regionaler öffentlicher Zielsetzungen zu
erwähnen, z. B. die Ausscheidung und
Erhaltung von Naturschutzgebieten, die
Erleichterung der Regionalplanung
durch Entflechtung, die Erschliessung
als Erholungsraum usw. Will die Öffentlichkeit

die erwähnten Zielsetzungen,
die grösstenteils den Charakter öffentlicher

Güter aufweisen, über eine Ge-
samtmelioration erreichen, hat sie sich
durch Kostenübernahme an dem Werk
zu beteiligen. Dies hat in dem Ausmass
zu geschehen, dass sich die direkt
Betroffenen aufgrund von individuellen
Nutzen-Kosten-Überlegungen dazu
entschliessen, Meliorationen zuzustimmen.
Wie unsere Überlegungen gezeigt ha¬

ben, kann das bei der heute üblichen
Kostenteilung durchaus der Fall sein. Es

besteht u. E. hiefür genügend
wirtschaftlicher Anreiz.
Eine schlüssige Nutzen-Kosten-Analyse
für die verbleibenden rund 84% der
Subventionskosten kann nicht erfolgen,
weil die Mehrzahl der angestrebten
Nutzen nicht-monetärer Art und nicht
quantifizierbar sind. Wir gelangen aber
immerhin zu einer indirekten Bewertung,

indem wir sagen können, dass
ihnen bei ausgeglichener Bilanz mindestens

ein Wert im Umfang von ca. 84%
der volkswirtschaftlichen Kosten der
Meliorationssubventionen zukommen
muss.
Ob den angestrebten öffentlichen
Zielsetzungen tatsächlich dieser Wert
zugemessen wird, ist subjektiv und letztlich
ein politischer Entscheid, der nicht
Gegenstand unserer Arbeit ist.

Zum Schluss sei erwähnt, dass gegen
unseren Ansatz, unsere Vorgehensweise,

Kritik ins Feld geführt werden kann.
Unser Projekt stellt aber immerhin den
ersten Versuch dar, die regional- und
volkswirtschaftlichen Konsequenzen
eines so bedeutenden Werkes, wie es
eine Gesamtmelioration darstellt, vor
dessen Abschluss quantitativ zu erfassen

bzw, abzuschätzen. Dieser methodische

Versuch ist sicher noch
verbesserungsfähig.
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Die räumliche Helmerttransformation in algebraischer
Darstellung
R, Köchle

Durch rein algebraische Überlegungen, ohne von den Drehwinkeln explizit
Gebrauch zu machen, gelangt man zu untenstehendem Formelsatz für die
Transformationsparameter der räumlichen Helmerttransformation y uAXj + y0 eines
Punkthaufens mit Koordinaten Xj auf einen andern Punkthaufen mit Koordinaten
Vi
Bei der Herleitung wird dem Operator (x) des Vektorproduktes eine andere als die
gewohnte Auslegung gegeben, wodurch der fugenlose Einbau des Vektorproduktes

in den Matrixkalkül möglich wird.

I(A(Xi-Xs))x(yi-ys) 0

£(yi-ys)TA(Xi-Xs)
I(Xj-Xs)T(Xi-Xs)

y0 ys-uAxs

(Xs, ys:

für die Drehmatrix A
pour la matrice de rotation A

für den Massstab
pour le facteur d'échelle

für die Schiebung
pour la translation

Koordinaten der Schwerpunkte)
coordonnées des centres de gravité)

1. Ansatz und Aufstellen der
Minimumbedingung
Wir gehen vom Bild zweier Haufen
einander paarweise zugeordneter

homologer) Punkte aus, die räumlich
getrennt liegen und in ein kartesisches
Koordinatensystem eingebettet seien.
Die Ortsvektoren des ersten Haufens
seien Xi, x2 xn und die des zweiten

Haufens yi. Y2. ¦ •. Yn Gesucht ist
eine Transformation

y, jjAx, + y0 mitATA AAT I (1.1)

die durch Schieben, Drehen und
Ändern des Massstabs den ersten Haufen
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Au travers de réflexions purement algébriques, sans explicitement faire usage des
angles de rotation, on obtient le système d'équations ci-dessus pour les paramètres
de la transformation de Helmert dans l'espace y uAXj + y0 d'un ensemble de

points avec coordonnées Xj sur un autre ensemble de points avec coordonnées y.
Au cours de l'établissement des formules, l'opérande (x) du produit vectoriel est
interprété différamment qu'à l'ordinaire, ce qui rend possible l'introduction du
produit vectoriel dans le calcul matriciel.

möglichst gut dem zweiten Haufen
annähert. Als Optimierungsprinzip
fordert man, dass die Summe der
Abstandsquadrate zwischen homologen
Punkten des einen und des andern
Haufens minimal werde, was mit den
Residuen Vj in der Formelsprache lautet

Vi y-j _ Vi MAxj + y0 - yi (1.2)

ZviTVi<p Min. (1.3)

Eine Transformation der Art (1.1) wird
als Ähnlichkeitstransformation und mit
der Zusatzbedingung (1.3) als
Helmerttransformation bezeichnet.

Notation:
£, e, ë seien auf die Schwerpunkte der
einzelnen Punkthaufen bezogene x, y,
y
Zur Vereinfachung der Schreibweise
werden künftig die Indizes an den
Grössen x, y, y, l, e, ë, v weggelassen:
wo diese Symbole unter dem Summenzeichen

erscheinen, muss man sie sich
über ihre n Werte summiert denken.

Aus den 3n + 6 skalaren Gleichungen
(1.1) und mit (1.2), (1.3) gilt es, 7
Transformationsparameter zu finden, nämlich
die drei Komponenten von y0, den
Massstabsfaktor u und 3 wesentliche
Parameter für A. Das Problem wurde in
der Literatur schon oft behandelt, seine
Schwierigkeit liegt in der Nichtlineari-
tät der Orthogonalitätsbeziehungen
ATA I. Man hat in den frühen Ansätzen

den in der Ausgleichungsrechnung
üblichen Weg der Linearisierung durch
Anbringen von kleinen Verbesserungen
an Näherungswerten dreier unbekannter

Drehwinkel beschritten (z. B. Rinner
[1]) und auch den allgemeinen Fall

beliebig korrelierter Punktkoordinaten
miteinbezogen (Wolf [2], S. 455). Die
genaue Lösung ist dann das Ergebnis
einer Iteration. M. Tienstra [3], der mit
andern Parametern als den D&ehwin-
keln arbeitet, gelang es durch scharfsinnige

mathematische Überlegungen, eine

iterationsfreie Lösung für A zu
finden; er zeigt auch, dass sich die
Lösung auf ein Eigenwertproblem
reduzieren lässt und nicht unbedingt eindeutig

zu sein braucht. In der vorliegenden
Arbeit wollen wir ganz konventionell
vorgehen, durchwegs in Matrixnotation
arbeiten und sehen, wohin uns die
Formeln führen.
Für einen stationären Wert von q> (also
auch für ein Minimum) folgt aus 1.3)

!4d(p Z vTdv I dvTv 0 1.4)

Das Bilden des Differentials dv in (1.2)
und Einsetzen in (1.4) führt auf den
Ausdruck

I vTdv I vT (duAx + MdAx + dy0)
du Z vTAx + u Z vTdAx +
(ZvT)dyo 0 (1.5)

aus dem sich die unbekannten Parameter

berechnen lassen.

2. Lösen der Minimumbedingung

für die Schiebung und
den Massstab
Der Ausdruck in (1.5) muss identisch
verschwinden für beliebige zulässige
Änderungen in u, A und y0. Wir wollen
daraus die Folgerungen ziehen.

Das Glied mit dy0:

Das skalare Produkt dy0T Zv muss zu
null werden für beliebige Vektoren dy0.
Das kann nur geschehen, wenn

Zv Zy-Zy 0 (2.1)

gilt. Daraus folgt, wenn man die Koordinaten

der Schwerpunkte mit

Xs^Zx, ys 7ily ys ^Zy (2.2)
n nn

einführt,

ys ys

Man kann diese bekannte Tatsache
ausdrücken als

(2.3)

Satz 1 : Bei der Helmerttransformation
wird der Schwerpunkt des beweglichen
mit dem Schwerpunkt des festen
Punkthaufens zusammengelegt

Durch Mitteln von (1.1) über alle Punkte
und mit (2.3) ergibt sich für y0 der
Ausdruck

y0 ys-uAxs (2.4)

und (1.1) lässt sich in der Form

y ys + uA(x-xs) (2,5)

darstellen. Führt man die auf die
Schwerpunkte bezogenen Koordinaten

£ x-xs, e y-ys,
e y-ys y-ys (2.6)

ein, so vereinfacht sich (2.5) zur
Gleichung

ë=uA£ (2.7)

die wir unsern weitern Entwicklungen
zu Grunde legen werden. Aus 1.2) folgt
wegen (2.6) und (2.3) auch

v E-e=uA$-e (2.8)

Das Glied mit du:

Der Differentialausdruck (1.5) gilt für
beliebig liegende Koordinatensysteme,
also auch für eines mit dem Ursprung
in xs und die darauf bezogenen Koordinaten

l. Damit das erste Glied in (1.5)
für beliebiges du verschwinde, muss
gelten

Z vTAc>0 oder auch ZvTe=0 (2.9)

der zweite Ausdruck wegen (2.7), weil
u^O. Mit (2.8) wird aus (2.9)

Z vTe Z eTc - Z eTc 0 (2.10)

Weiter ergibt vormultiplizieren von (2.8)
mit vT. aufsummieren und Berücksichtigung

von (2.9)

Z vTv - Z vTe - Z ëTe + Z eTe (2.11)

Die Beziehungen (2.10) und 2.11) lassen
sich zu

Z eTe Z eTe Z eTe - Z vTv (2.12)

zusammenfassen.
Ersetzt man v in der linken Gleichung
von (2.9) durch die rechte Seite von
(2.8) und berücksichtigt ATA I,
entsteht die Gleichungskette

IvtAc=I(pctAt-et)A5
uZSWA5-ZeTA5
uZ$TE-ZeTA5
uZ^-^ZeTe 0

Damit lassen sich zwei Ausdrücke für u

anschreiben, den zweiten in Anlehnung
an (2.12)

ZeTA$

2 _
Z eTë

_
Z eTe - Z vTv

ZcTc im

(2.13)

(2.14)

Wir fassen (2.13) in Worte als

Satz 2 Den Massstabsfaktor einer
Helmerttransformation von x auf y
findet man nach folgender Regel: Man
bilde für den bereits gedrehten x-Punkt-
haufen und auf die Schwerpunkte
bezogene x- und y-Vektoren die Summe

der Skalarprodukte zwischen homologen

x und y und dividiere durch die
Summe der Längenquadrate von x.

Wie ersichtlich, muss man A kennen,
bevor man u berechnen kann. Allerdings

erhält man bei kleinen Residuen v
schon eine sehr gute Näherung für u2,

wenn man nach (2.14) die durchschnittlichen

Längenquadrate der auf die
Schwerpunkte bezogenen Ortsvektoren
beider Punkthaufen ins Verhältnis setzt.

3. Einschaltung:
Der Operator der
Vektormultiplikation (das Vektormal)
Bevor wir mit der Behandlung des
Hauptproblems weiterfahren, wollen
wir zeigen, wie sich das im Matrixkalkül

Vermessung, Photogrammetrie, Kulturtechnik, 9/82 293



als Fremdkörper erscheinende
Vektorprodukt durch eine Uminterpretierung
des Malzeichens ohne Schwierigkeiten
darin einbauen lässt und einige für das
Weitere nützliche Rechenregeln angeben.

Die tiefere Begründung dafür wird
am Ende des Abschnittes hier kurz
angedeutet, soll aber ausführlicher in
einem spätem Artikel, zusammen mit
einigen Beweisen und einem weiteren
Anwendungsbeispiel, folgen.
Das Vektormal ist ein Operator, der auf
die beiden links und rechts von ihm
stehenden Vektoren (z.B. Sxu) wirkt
und sie nach den vertrauten Regeln
miteinander zu einem Produkt
verknüpft. Es ist bekannt (siehe z.B.
Thompson [4], dass man im
dreidimensionalen Vektorraum Sxu äquivalent

als Matrixprodukt Su schreiben
darf, worin S eine dem Vektor s eindeutig

zugeordnete, schiefsymmetrische
Matrix ist. Wir wollen definieren:

Sx^
S," 0 -s3 s2

s2 x s3 0 -s,
s3 -s2 s, 0

S (3.1)

wobei ST -S. Wir fassen also das
Vektormal als Operator auf, der auf den
links von ihm stehenden Vektor wirkt
und ihn nach obigem Schema in eine
schiefsymmetrische Matrix verwandelt,
die von einem (nicht geschriebenen)
Matrixmultiplikationszeichen gefolgt ist.
Jedem Vektor ist somit im dreidimensionalen

Raum eindeutig nach (3.1)
eine schiefsymmetrische Matrix und
jeder schiefsymmetrischen Matrix
eindeutig ein Vektor zugeordnet.
Als Gedankenstütze merken wir uns:
1. Die Elemente der Hauptdiagonale
von Sx sind alle null.
2. An der Hauptdiagonale gespiegelte
Elemente unterscheiden sich nur im
Vorzeichen.
3. Die Vektorkomponenten sind den
beiden Rändern nach mit alternierendem

Vorzeichen aufgereiht, beginnend
von rechts unten nach links oben. In der
rechten, oberen Ecke steht das positive
Vorzeichen.
Das Vektorprodukt darf nach dem
Vorgehenden als

P SxU (Sx) U (3.2)

gedeutet werden, in Komponenten
geschrieben

(3.2a)
0 -s3 s2 Ul

s3 0 -s, u2

s2 s, 0 U3

S2U3--s3u2
S3U1--S1U3

s,u2--s2u,

Im dreidimensionalen Raum ist das
Ergebnis wieder ein Vektor.
Im zweidimensionalen Vektorraum
erhält man das richtige Ergebnis, wenn
man definiert

Sx [-s2, s, (3.3)

Hier verwandelt der Vektormal-Operator
den Spaltenvektor in einen Zeilenvektor,

und das Produkt

SxU (Sx)U -SoU, + s,u2 (3.4)

wird zu einem Skalar.
Mit dieser Interpretation erhält auch das
Vektorprodukt eines Vektors mit einer
Matrix einen Sinn: axB (ax)B bedeutet

die Multiplikation der Matrix (ax) mit
der Matrix B. Das Resultat ist eine
Matrix, deren Spalten die Vektorprodukte

von a mit den Spalten von B sind.

axB ax(b,, b2, b3)

(axb,, axb2, axb3) (3.5)

Zum Beispiel lässt sich Sx als
Sxl (sxi,, Sxi2, Sxi3) deuten, was
(3.1) entspricht.
Nun wollen wir die wichtigsten Rechenregeln

für das Vektormal zusammenstellen.

Wir gliedern die Regeln in

solche, die nur im zweidimensionalen
(n 2), in solche, die nur im dreidimensionalen

Vektorraum (n 3) und in

solche, die allgemein in beiden Räumen
gelten, und fangen mit den letzteren an.

Allgemein für n =2 und n =3 gültige
Regeln:
1. Linearität bezüglich Addition und
Multiplikation mit einem Skalar

(a + b)x ax + bx (3.6)

(Ya)x Yax (3.7)

2. Vertauschungsregel (Antikommutati-
vität)

axb -bxa (3.8)

3. Multiplikation mit sich selber

axa 0 (3.9)

Umkehrung: Wenn axb 0 für a 4= b,
dann folgt
a 0 oder b 0 oder b Aa (3.10)

4. Stürzung

(axb)T bT(ax)T (3.11)

5. Wirkung des Vektormals auf ein
Vektorprodukt (Entwicklungssatz)

(axb)x baT-abT (3.12)

Es gilt auch

(ax)Tbx (aTb)I-baT (3.12a)

(ax)Tax (aTa)I-aaT (3.12b)

(3.12b) ist die Formel für den Trägheitstensor

eines Punktes mit Ortsvektor a
und Masse 1.

6. Nichtassoziativität mit dem
Matrixprodukt

(Ab)x^A(bx) (3.13)

Im allgemeinen darf man die Klammer
links nicht weglassen, man beachte
aber (3.21) und (3.22). Der Ausdruck
rechts ist für n 2 nicht definiert.

Nur für n =3 gültige Regeln:
7. Die grundlegende zusätzliche Beziehung

im dreidimensionalen Vektorraum
ist die schiefe Symmetrie bei der
Stürzung.

(ax)T -ax (3.14)

Neben Formel (3.11) gilt auch

(axb)T -bTax aTbx (315)

Aus (3.15) folgt
aTax (axa)T 0T (3.16)

(axbx)T bxax (3.17)

8. Wirkung des Vektormals auf ein
Vektorprodukt.
Neben Formel (3.12) gilt auch

(axb)x axbx-bxax (3.18)

axbx baT-(aTb)I (3.19)

(axb)xc cxbxa (3.20)
(Lösen der Klammer)

9. Die Multiplikation einer orthogonalen
Matrix mit einem Vektorprodukt ist
distributiv bezüglich der beiden Faktoren

des Vektorprodukts.

In Formeln: Wenn ATA I, dann gilt

Abxc A(bxc) ±(Ab)xAc
+ für det A + 1 (3.21)
- für det A - 1

Die selbe Regel kann auch als

(Ab)x=±AbxAT (3.22)

geschrieben werden (Lösen der Klammer,

vgl. (3.13)).

10. Orthonormale Basis mit Einheitsvektoren.

Ist A= (a1,a2,a3) eine orthogonale Matrix,

ATA I, so ist det A
I a1ra2,a3l ± 1 und es gilt für die
Spaltenvektoren von A und AT

ai =±a2xa3
a2 ±a3xa, (3.23)
a3 ±aixa2
mit dem Plus- oder Minuszeichen
entsprechend dem Vorzeichen von det A.

11. Spatprodukt, Determinante

0 aTbxc
la,b,cl Determinante (3.24)

Es gelten die bekannten Eigenschaften
1 a.b.cl I c,a,b I I b,c,al
zyklische Vertauschung der Vektoren

I a.b.c I -la.c.bl
gegenseitige Vertauschung zweier
Vektoren

la.b.bl-0
Identität zweier Vektoren

la,b,xa + ubl 0
lineare Abhängigkeit

Nur für n 2 gültige Regeln:

12. Es gilt die Definition (3.3).

294 Mensuration, Photogrammetrie. Génie rural 9/82



13. Die (3.21) entsprechende Formel
lautet (mit ATA I)

bxc ±(Ab)xAc (3.25)

welche auch als Operatorgleichung

(Ab)x ±bxAT
(Lösen der Klammer) (3.26)

geschrieben werden kann.

14. Orthonormale Basis
Die (3.23) entsprechende Formel lautet
(mitATA I)

a,xa2=la,,a2l ±l (3.27)

15. Determinante

o=la,bl axb (3.28)

16. Anwendung des Vektormals auf
Skalare s und schiefsymmetrische
Matrizen S

Ergebnis: schief- (3.29)
symmetrische Matrixs ¦

"
0 -s
s 0

"
0 s

-s 0
x S ein Skalar (3.30)

Das Vektorprodukt im grössern
algebraischen Rahmen.

Als Tensorprodukt zweier Vektoren S

und u, auch lineare Dyade genannt,
definiert man die Matrix

C suT (3.31)

Das äussere Produkt der Vektoren s
und u ist als die schiefsymmetrische
Matrix

P sau C-Ct sut-ust (3.32)

definiert. Das Vektorprodukt schliesslich
ist als die Adjungierte zur Matrix P

definiert:

P=SxU=PA (SUT-UST)A (3.33)

Im dreidimensionalen Vektorraum ist p
der Vektor (3.2a), im zweidimensionalen

Vektorraum der Skalar (3.4). Zum
Begriff der Adjungierung eines Tensors
sei auf Lichnerowicz [8] verwiesen. Die
Verallgemeinerung zum oben erklärten
äussern Produkt und weitere Sätze der
sogenannten äussern Algebra findet
man in [9] vom gleichen Verfasser.
Schreibt man (3.33) skalar aus und
formt etwas um, wird daraus das
Matrixprodukt

p (sA)Tu, (3.34)

worin wir den ersten Faktor symbolisch
als

(SA)T Sx (3.35)

bezeichnen. Sx für n 3 wird zur
schiefsymmetrischen Matrix (3.1), für n 2

zum Zeilenvektor (3.3).

4. Die Minimumbedingung für die
Drehmatrix
Wir wollen den Faden aus Abschnitt 2
wieder aufgreifen und eine Lösung für
A suchen.

Das Glied mit dA:
Das zweite Glied rechterhand in (1.5),

jetzt in Schwerpunktkoordinaten
geschrieben

uZvTdAc>0 (4.1)

muss für alle dA verschwinden, die der
Nebenbedingung ATA I genügen.
Differenzieren der Nebenbedingung ergibt

dATA + ATdA 0 (4.2)

Wenn man abkürzt dB ATdA wird
durch Transponieren

dBT dATA - ATdA - dB

dB ist also eine schiefsymmetrische
Matrix, enthält drei wesentliche
Elemente und darf nach (3.1) als dbx
geschrieben werden. Dann gilt

dA AdB Adbx (4.3)

was man in (4.1) einsetzen darf mit dem
Ergebnis

ZvTdA£ ZvTAdbx£
-ZvTA$xdb -(ZvTA^x)db 0

unter Berücksichtigung von (3.8). Der
Ausdruck rechterhand, ein Skalarpro-
dukt zweier Vektoren, kann, entsprechend

der Minimumbedingung, für
beliebige Werte von db (drei, jetzt freie
Parameter) nur verschwinden, wenn

ZvTA5x 0T

ist. Transponieren, Einsetzen von (2.8)
für v und Umformen unter Beizug von
(3.14), ATA I und (3.9) führt auf

-Z$xATv=-Z$xAT(uAS-e)
-uZ^xATAS + ZExATe
-uZ$x$ + Z$xATe Z5xATe 0

Die letzte Gleichung lässt sich auch auf
die Form

-ZExATe Z(ATe)xS ±ZATexAE
±ATZexAc>0

bringen, wobei von (3.8) und (3.22)
Gebrauch gemacht wurde. Weil die
Koeffizientenmatrix AT im homogenen
Gleichungssystem rechterhand regulär
ist, det A ± 1. hat dieses für Z ex AI
nur den Nullvektor als Lösung.

ZexA£>0 trtATA I (4.4)

oder nach Multiplikation mit dem
Massstabsfaktor

Z(exe) 0 (4.5)

Das Gleichungssystem (4.4) liefert 3
lineare und 6 wesentliche, quadratische
Gleichungen zur Lösung für die 9
Elemente von A. Im nächsten Abschnitt
ist ein indirekter, aber doch ganz praktikabler

Weg für die Lösung von A
angegeben. A in die Gleichungen für u

und y0 eingesetzt, löst das Problem
vollständig.
Die Gleichung (4.4) lässt sich formulieren

als

Satz 3: Bei der Helmerttransformation
wird der bewegliche Punkthaufen so
lange gedreht, bis die Summe der
Vektorprodukte aus einander zugeordneten

beweglichen und festen, je auf
den Schwerpunkt bezogenen Ortsvektoren

null ist.

Dieser Satz gilt auch im Zweidimensionalen.

Er ist dort von geringerer Bedeutung,

weil für n 2 ein anderer Weg
direkt zur Lösung führt (siehe Abschnitt
6).
Es ist bemerkenswert, dass in (4.4) ein
Massstabsfaktor nirgends, auch nicht
implizit, auftritt.
Wir formulieren das im

Zusatz: Die Bestimmung der Drehmatrix
A einer Helmerttransformation ist von
der Wahl des Massstabsfaktors
unabhängig.

Insbesondere führt eine Transformation
y Ax+y0 bei der nur gedreht und
geschoben, der Massstab aber festgehalten

wird, auf das selbe A.

5. Iterative Lösungen für die
Drehmatrix

5.1 Über die Cayleysche Faktorisierung
Man gelangt zu einer iterativen Lösung
für die Gleichung (4.4), wenn man die
orthogonale Matrix A nach Cayley
(siehe [4], S. 116) in zwei Faktoren
zerlegt

A (I + S)(I-S)"' (5.1)

In der Cayleyschen Formel steht S für
eine schiefsymmetrische Matrix. Eine

kleine Umformung mit der Abkürzung

C=(I-S)_I (5.2)

bringt

A=(I + S)(I-Sr'
(2i-(i-s))(i-sr
2C-I (5.3)

Vormultiplizieren von (5.2) mit I-S
führt auf

C I + SC (5.4)

und dies in (5.3) eingesetzt auf

A=I + 2SC (5.5)

Sind die Ausgangsvektoren £ zu Beginn
der Helmerttransformation schon eini-

germassen gut vororientiert (z.B. nach
dem Verfahren in [5]), so wird die
Matrix A nicht zu weit ab von der
Einheitsmatrix I liegen, und in der
Matrix SC werden alle Elemente klein
sein. Das heisst nach (5.4), dass auch C

durch I gut angenähert wird und legt
nahe, mit den Formeln (5.4) und (5.5)
ein Näherungsverfahren aufzubauen.
Zu diesem Zweck setzen wir (5.5) in

(4.4) ein mit dem Ergebnis

IzxAZ lex(l + 2SC)l
Iex£ + 2lexSC5 0
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und versuchen S daraus zu berechnen.
Das gelingt wegen der schiefen
Symmetrie mit der Schreibweise S Sx
nach (3.1). Damit entsteht unter Beiziehung

von (3.8)

!/2Z exe! - Z ex sx C£ Z ex (C£) xs
(Zex(CS)x)s

Mit der Abkürzung

M Zex(C$)x
CZ$eT-(ZeTCÇ)I (5.6)

(die rechte Seite nach 3.19)) muss man
also das Gleichungssystem

Ms=/2ZexE (5.7)

nach dem unbekannten Vektor s lösen.
Weil C im Ausdruck für M unbekannt
ist, fängt man mit C0 I an und durchläuft

dann iterierend die Gleichungen

C0 I
Mi Zex(Cj£)x

Sj+1 M, ' -/2ZexÇ
(oder ohne die Inverse nach (5.7)) (5.8)

C|+ i =I + S|+ 1 xC|

für i 0, 1, 2 (Iterationsindex)

Mit dem daraus ermittelten C geht man
in (5.3) ein und findet A. Dieses in (2.13)
eingesetzt, liefert den Massstabsfaktor
u, und A mit u in (2.4) eingesetzt, liefert
die Schiebung y0.

Geometrische Deutung von S

Das Iterationsverfahren liefert automatisch

den Vektor s, der einer einfachen
geometrischen Deutung fähig ist (siehe
z. B. bei Thompson [4], S. 155). Bei einer
eigentlichen orthogonalen Transformation

(det A + 1 zeigt der Vektor s in

Richtung der Drehachse, und seine
Länge ist gleich dem Tangens des
halben Drehwinkels.

s=-tg|r (5.9)*

r Einheitsvektor in Richtung der
Drehachse

0 Drehwinkel

Konvergenz der Iteration

Ohne das Konvergenzverhalten streng
zu untersuchen, sollen hier dazu einige
heuristische Überlegungen gemacht
werden. Der rekursive Ausdruck für C,
in (5.8) lässt sich als Funktion der S auf
den sukzessiven Iterationsstufen
anschreiben als

Ci I + Si + SiSi-1+SiSi-iSi-2+..
+ SjSi-1 Si_2.. S2S1

Besteht Konvergenz, so werden sich die
S, für grosse i dem Sollwert S annähern,

so dass im Grenzfall

* In [4] steht noch der Faktor 2, weil Thompson

sein S mit dem Faktor !4 versieht, auch
definiert er sein S mit dem umgekehrten
Vorzeichen.

Ein Zahlenbeispiel Massstabsfaktor u

Punkthaufen W0 aus 8 Punkten in den 1,489097
Ecken eines Einheitswürfels angeord- Standardabweichung einer Koordinanet.

Streuung der Punktkoordinaten te
mit Amplitude von 10% der Kanten- ±0,0429
länge. Dehnung mit Massstabsfaktor
1,5. Drehung um die Achsen x, y, z in 2. Indirekt über eine Näherungslödieser

Reihenfolge um sung.
0,3 rad, 0,6 rad, 0,9 rad Genäherte Drehmatrix A0 aus 3
(17,2° ,34,4° 51,6°). Punkten nach [5]

Drehmatrix .486256 .872802 -.042092
.513037 .852065 .103822 -.680345 408383 .608567

-.646508 .463138 .606243 .548348 -.267282 .792385
.564642 -.243903 .788473 Punkthaufen mit A0 transformieren,

Ergebnis: Punkthaufen W,.
anschliessend Iterationsverfahren
(5.8). Abbruchkriterium wie 1.

ErgebTransformieren von W0 atz/W, nach nis nach 4 Schritten:
Helmert. Vektor s,
1. Direkt nach Iterationsverfahren -.000751 .002973 .023730
(5.8). Drehwinkel 0,
Abbruchkriterium: 2,7413°

ISn-Sn-1 K10"5 Drehmatrix A,
Ergebnis nach 17 Schritten: .998857 -.047438 .005907
Vektor s .047429 .998873 .001642
-.318709 -.221801 .545450 -.005979 -.001360 .999981
Drehwinkel 0 Gesamtdrehung A A,A0

67,6078° .521214 .850853 -.066232
Drehmatrix A -.655615 .448880 .607186

.521214 .850854 .066233 .546356 -.273051 .791794
-.655617 .448881 .607187 Massstabsfaktor u

.546356 -.273052 .791795 1,489094

lim C, I + S + S2 + S3 +
j —>>oo

(I-S), C

entsteht. Dies ist die Neumannsche
Reihe, das Matrixäquivalent einer
geometrischen Reihe (siehe Zurmühl [6],
S. 238), von der bekannt ist, dass sie
konvergiert, wenn alle Eigenwerte der
Matrix S dem Betrage nach kleiner als 1

sind. Eine einfache Rechnung ergibt die
Eigenwerte von S als 0, ilsl, -i Isl
(hier i \J -1) und den Betrag des
zweiten und dritten Eigenwertes als I sl.
Das bedeutet nach (5.9) Konvergenz für
Drehwinkel ©<tt/2, also einen sehr
grossen Konvergenzbereich.
Durchgerechnete Zahlenbeispiele scheinen

diese Überlegung zu bestätigen.
Praktisch hat man bei guter Vororientierung

die Koeffizienten von A nach 2 bis
3 Iterationen auf 6 Stellen genau.

5.2 Durch Linearisieren
Wir gehen von einer guten Näherungslösung

u0, A0 für Massstab und
Drehmatrix aus und berechnen
Näherungskoordinaten e0 u0A0E nach (2.7). Eine
weitere kleine Drehung wird die
Näherungskoordinaten in die endgültigen
Werte überführen, was wir als

e=(l + dl)e0 (5.10)

schreiben. I + dl ist eine Orthogonalmatrix,

die nur wenig von der Einheitsmatrix

abweicht. Aus der Orthogonali-
tätsbedingung folgt analog zu (4.2)

dITI + IdIT dIT + dI 0, also
dIT -dl.
Somit ist dl eine schiefsymmetrische
Matrix und darf als

di di (5.11)

geschrieben werden. Die drei Komponenten

von di können als kleine
Drehwinkel bezüglich dreier orthogonaler
Achsen gedeutet werden, was uns
weiter aber nicht zu kümmern braucht.
Wir setzen (5.10) in (4.5) ein und erhalten

den Ausdruck

Z(exë) Zex(I-i-dix) e0
Zexe0 + Zexdixe0
-Ze0xe-(Zexe0x) di 0

Daraus ergibt sich di durch Auflösen
des Gleichungssystems

Ndi Ze0xe (5.12)

mit der Koeffizientenmatrix

N -Zexe0x Z(e0TeI-e0eT) (5.13)

worin (3.19) berücksichtigt ist.

Einen etwas ungenaueren Wert für di
erhält man durch Gleichsetzen e= e0 in

(5.13). N wird dann zur symmetrischen
Matrix

N Z(eoTe0I-e0eoT (5.14)
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Gleichung (5.12) mit N aus (5.14) findet
man in [1], [7]. Das Verfahren lässt sich
zu einem Iterationsverfahren ausbauen.
Es sei darauf hingewiesen, dass N in

(5.14) der Trägheitstensor des beweglichen

Punkthaufens bezüglich eines
Schwerpunktsystems ist, vgl. (3.12b).
Auf weitere mechanische Analogien im
Zusammenhang mit Gleichung (4.5)
machen Schmid und Scherrer in [10],
S. 66f. aufmerksam.

6. Die Helmerttransformation in der
Ebene
Als weitere Anwendung und Bestätigung

der Rechentechnik mit dem
Vektormal wollen wir die bekannten
Formeln für die ebene Helmerttransformation

herleiten. Der Ansatz ist der selbe
wie im 2. Abschnitt, hingegen kommt
man einfacher zum Ziel, wenn man den
Faktor u in die Matrix A einmultipliziert
und schreibt

H uA (6.1)

wobei wegen der Orthogonalität von A
gilt

HTH u2I und IHI2 u4 (6.2)

Nennen wir der Kürze halber eine
Matrix vom Typ H Helmertmatnx.

Wie man durch einfache skalare Rechnung

anhand von (6.2) oder auch mit
Hilfe von (5.1) verifiziert, lässt sich eine
Helmertmatnx im zweidimensionalen
Vektorraum durch zwei frei wählbare,
skalare Parameter charakterisieren und
mit der zusätzlichen Bedingung
det H >0 als

H (6.3)

darstellen. Wegen (6.2) gilt für reelle u

1

+ det H a + ß2 (6.4)

Für die weitere Rechnung wollen wir H

als

H al + ß1) 5)

schreiben. In der Formel ist das Vektormal

auf die Eins (einen Skalar)
angewandt, was nach (3.29) im Zweidimensionalen

die schiefsymmetrische Matrix

1x (6.6)

ergibt. Aus Komponentenrechnung folgt
unmittelbar

aTl xb bxa,
aT1xa axa 0 (6.7)
axixb aTb= bTa

Genau wie in (2.7) vereinfacht sich der
Ansatz für Schwerpunktkoordinaten zu

z=Hl. v y-y ë-e HÇ-e (6.8)

Die Minimumbedingung der kleinsten
Quadrate ergibt den Ausdruck (1.4),
den wir weiter entwickeln.

ZvTdv=ZvTdHE
ZvT(daI + dß1x)$
daZvT<: + dßZvT1xS
daZETv+dßZ$xv=0

Wiederum muss der letzte Ausdruck für
beliebige da und dß identisch zu null
werden, was nur möglich ist. wenn gilt

Z£Tv 0 =ZSTH$-Z$Te
aZ$T^ + ßZ$T1x$-Z$Te
aZ$T£-Z$Te 0

Z£xv 0 Z£x(H£-e)
Z£xHc:-Zc'xe
aZ Ix l + ßZ Ix 1 x l - Z Ix e

ßZ£T£-Z£xe 0

Hierin wurde (6.7) berücksichtigt.
Explizit erhalten wir daraus die Elemente

a und ß als

Z£Te „ Z£xe

za ß:
Z£TS

(68)

Der Massstab u berechnet sich nach
(6.4) und der Drehwinkel 0, weil be-
kanntermassen a u cos 0, ß u sin 0
ist, als

0 arctg£ (6.9)

In der Symbolik noch einfacher als mit
dem Vektormal wird die Herleitung der
Helmerttransformation für n 2, wenn
die Ortsvektoren und die Helmertmatnx
beide als komplexe Zahlen geschrieben
werden.
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SWK/SSMAF
Schweizerischer Verein für Vermessungs¬

wesen und Kulturtechnik
Société suisse des mensurations et

améliorations foncières

Präsidentenkonferenz des
SVVK vom 31. März 1982 in
Bern
Kurzfassung des Protokolls:
Unter dem Vorsitz von Zentralpräsident Jules
Hippenmeyer haben die Präsidenten der
Sektionen und verschiedener Kommissionen

ihre statutarische Versammlung abgehalten
Die Traktandenliste für die Hauptversammlung

vom 18.6.1982 in Engelberg wurde
genehmigt und im Detail wie folgt behandelt:

Der Jahresbericht 1981 des Zentralvorstandes

wurde gutgeheissen Ebenso wurden
die Jahresrechnung 1981, das Budget 1983

sowie der Jahresbeitrag 1983 angenommen
Die Wahlvorschläge für Zentralvorstand.
Rechnungsrevisoren, Standeskommission
und Chefredaktor wurden sanktioniert
Ausserdem wurde der Vorschlag des
Zentralvorstandes, die Mitglieder des FIG-Büros
Schweiz zu Ehrenmitgliedern zu ernennen,
mit Applaus gutgeheissen und zum Antrag
der Präsidentenkonferenz erhoben

Ferner hat sich die Präsidentenkonferenz
damit einverstanden erklärt, dass sich der
Zentralvorstand weiterhin für die Beibehaltung

der interkantonalen Fachkurse für
Vermessungszeichnerlehrlmge der
deutschsprachigen Schweiz einsetzt. Zudem soll der
Zentralvorstand Kompetenz erhalten, einer
Kostenbeteiligung des SVVK bzw. der
Lehrfirmen im Sinne von Art 34 des BBG in

einem vom BIGA allenfalls zu erlassenden
Reglement zuzustimmen.
Der Zentralpräsident orientierte abschliessend,

dass die Statutenrevision des SVVK
verabschiedet werden konnte und der
Entwurf für die neuen Statuten demnächst zur
Vernehmlassung zugestellt werde

Für das Protokoll: Sekretariat SVVK
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