Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik : VPK = Mensuration,
photogrammeétrie, génie rural

Herausgeber: Schweizerischer Verein fur Vermessung und Kulturtechnik (SVVK) =
Société suisse des mensurations et améliorations foncieres (SSMAF)

Band: 80 (1982)

Heft: 6

Artikel: Robuste Ahnlichkeitstransformation und Interpolation nach dem
arithmetischen Mittel

Autor: Carosio, A.

DOl: https://doi.org/10.5169/seals-231166

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-231166
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Robuste Ahnlichkeitstransformation und Interpolation nach
dem arithmetischen Mittel

A. Carosio

Zwei Aufgaben werden in der geodatischen Praxis sehr oft mit Koordinatentrans-
formationen geldst: der Vergleich mehrerer unabhéngig gemessener Netze mit
gemeinsamen Punkten und die Einpassung neuer Netze in bestehende Fix-
punktsysteme. Vor kurzem wurde das Programm TRANSINT im Bundesamt fur
Landestopographie entwickelt, das eine Lésung fiir die Ahnlichkeitstransforma-
tion mit robuster Ausgleichung enthalt, sowie ein Verfahren fir die Interpolation
nach dem arithmetischen Mittel. Der vorliegende Bericht beschreibt die mathe-
matischen Grundlagen beider Aufgaben und weist Angaben tber die Anwen-

dung der Computerprogramme auf.

Dans les applications pratiques de la géodésie, il y a deux problémes qui sont
résolus treés souvent par transformation de coordonnées: la comparaison de ré-
seaux géodésiques indépendants avec points communs et l'intégration de nou-
veaux réseaux dans un systéme global préexistant. L'Office fédéral de topographie
a développé récemment le programme TRANSINT qui contient une solution pour
la transformation de Helmert par compensation robuste et un procédé pour l'inter-
polation selon la moyenne arithmétique. Le présent travail décrit les modéles
mathématiques et donne des indications pour I'utilisation du logiciel.

1. Einfuhrung

In der angewandten Geodéasie wird
man sehr oft mit Problemen konfron-
tiert, die mathematisch mit einfachen
oder komplexen Koordinatentransfor-
mationen geldst werden kénnen. Zwei
Aufgaben treten besonders oft in Er-
scheinung: der Vergleich zweier unab-
héangig gemessener Netze und die
Einpassung eines neuen Netzes in ein
bestehendes Fixpunktsystem.

1.1 Der Vergleich geodéatischer Netze
In zwei verschiedenen Koordinatensy-
stemen (global und lokal) werden ganz
unabhangig die Koordinaten der glei-
chen Punkte bestimmt (Y;, X; und v;, x;),
und nun mochte man feststellen, ob
tatsdchlich die Werte in den beiden
Systemen zu den gleichen Punkten
gehoren und wie gross die eventuellen
gegenseitigen Abweichungen sind.

Zur Losung solcher Aufgaben werden
in den meisten Féllen die Koordinaten
des lokalen Systems &hnlich transfor-
miert (z.B. durch Helmert-Transforma-
tion):

Y =Yy +MCos -y + m-sin-w X 0
X' =Xy = m-sin (0-y + M-COS- () X

Die unbekannten Transformationspara-
meter werden mit einer Ausgleichung
nach der Methode der kleinsten Qua-
drate bestimmt, damit die kleinstmagli-
che Summe der Quadrate der Koordi-
natendifferenzen zwischen beiden Sy-
stemen entsteht. Die Koordinatenver-
besserungen

V=Y-y
X=X - X (2)
196

geben dann Hinweise auf die gegensei-
tigen Abweichungen der Koordinaten
der beiden Systeme.

1.2 Die Einpassung eines Netzes in be-
stehende Fixpunkte

Diese zweite Aufgabenstellung ist z. B.
in [2] beschrieben: Gegeben sind zwei
Systeme, die die gleichen Punkte ent-
halten. Im ersten System (globales Sy-
stem) sind nur die Koordinaten einiger
Punkte (Passpunkte) bekannt, wahrend
im zweiten System (lokales System) die
Koordinaten aller Punkte vorliegen. Ge-
sucht sind die Koordinaten aller Punkte
im globalen System.

Fir die Losung des Problems wird eine
geeignete mathematische Abbildung
(Interpolationsfunktion) zwischen den
Koordinaten im lokalen System und
jenen im globalen System bendtigt. Nur
selten kann eine solche Abbildung eine
einfache geometrische Transformation
(Translation, Rotation) sein, da in den
meisten Fallen globale und lokale Koor-
dinaten verschiedene Ungenauigkeiten
zufélliger und systematischer Natur
aufweisen.

Fur die Wahl einer geeigneten Interpola-
tionsfunktion mussen die funktionalen
und statistischen Eigenschaften der
vorhandenen Koordinaten (das mathe-
matische Modell) genigend genau
bekannt sein. Je nach Modell ist die
eine, die andere oder Uberhaupt keine
Interpolationsfunktion zweckmassig.

Es ist daher fur diese Aufgabe nicht
moglich, eine allgemeine Losung fur
alle geodéatischen Anwendungen zu
finden. In jedem einzelnen Fall muss
Uberprtft werden, welches Interpola-
tionsverfahren sich am besten eignet.

Die haufigste Anwendung in der Lan-
destriangulation ist die Einpassung von
zwangsfrei berechneten Netzen in ein
bestehendes Ubergeordnetes Fixpunkt-
system. Die Eigenart dieser Applikation
liegt in der Tatsache, dass das lokale
System, welches verdndert werden
darf, aus einer modernen, sehr guten
Triangulation stammt (mittlerer Fehler
der Punkte ca. 1-2 cm). Das globale
System, das gegeben ist und vor allem
aus wirtschaftlichen Grinden nicht
modifiziert wird, enthélt hingegen oft
Fehler, die wesentlich grosser sind als
die Ungenauigkeit der lokalen Punkte.
Diese Fehler kdnnen mit Hilfe des
lokalen Netzes genau bestimmt werden
und gelten daher als fest und bekannt.
Sie sind also keine zufélligen Fehler,
sondern Grossen mit funktionalem Cha-
rakter.

1.3 Praktische Losung

Zur Lésung beider Aufgaben, der Ahn-
lichkeitstransformation und der Interpo-
lation von neuen Triangulationsnetzen
in bestehende Fixpunktsysteme, wurde
im Bundesamt fir Landestopographie
das Computerprogramm TRANSINT
entwickelt, das mit geringem Aufwand
zu den gewdulnschten Resultaten fihrt.
Im folgenden wird Uber das mathemati-
sche Modell und Uber die mdglichen
Anwendungen in der Praxis berichtet.

2. Robuste Ahnlichkeits-

transformation

2.1 Alilgemeines

Der Vergleich von Triangulationsnetzen

mittels  Ahnlichkeitstransformation ist

ein klassisches und h&ufig verwendetes

Verfahren in der angewandten Geo-

dasie.

Zur Veranschaulichung kénnen fol-

gende mogliche Anwendungen dienen:

- Beispiel 1
Nach der Messung eines neuen
Operates 4. Ordnung wurden die
Beobachtungen in einem zwangs-
freien Netz ausgeglichen, um die
innere Genauigkeit zu prifen. Da-
nach mochte man durch eine Ahn-
lichkeitstransformation die Uberein-
stimmung zwischen der neuen Trian-
gulation und dem Ubergeordneten
Fixpunktsystem kontrollieren.

- Beispiel 2
Bei Deformationsmessungen mochte
man die Koordinaten der Fixpunkte
der Ausgangsmessung mit denjeni-
gen einer Wiederholungsmessung
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vergleichen. Das Netz der Fixpunkte
wird fur beide Epochen zwangsfrei
ausgeglichen und dann das neuere
Netz in das altere &hnlich transfor-
miert.

Bei beiden Anwendungen hat die Trans-

formation folgende Eigenschaften:

- Die Ahnlichkeitstransformation hat 2,
3 oder 4 Parameter (Translation,
Translation-Rotation, Helmert-Trans-
formation).

— Die Transformationsparameter mis-
sen so bestimmt werden, dass die
transformierten Lokalkoordinaten so
gut wie moglich in das globale
Koordinatensystem passen.

- Die Beobachtungen der Ausglei-
chung sind die Globalkoordinaten
(alte Koordinaten) der Punkte (Pass-
punkte), die in den beiden Netzen
auftreten (pro Punkt Y und X, d.h. 2
Beobachtungen). Die Passpunkte
sind in der Regel zahlreich (10 bis
100 und mehr), so dass die Anzahl
Uberschussiger Beobachtungen gross
Ist.

- Vor allem in grossen Netzen wird
vermutet, dass die Lokalkoordinaten
(neue Koordinaten) einiger weniger
Punkte aus irgendeinem Grund von
den globalen (alten) abweichen. Ziel
der Analyse ist in diesen Féllen die
Identifikation solcher Punkte.

2.2 Das mathematische Modell

2.2.1 Ahnlichkertstransformation

Die Ahnlichkeitstransformation kann,
wie bekannt, mit den folgenden Formeln
berechnet werden:

y' =y, +mcos Wy +m-sin Wex
X' = X, = M-sin -y + m-cos W-x 3
und daher, wenn die Transformations-
parameter mit einer Ausgleichung nach
kleinsten Quadraten gesucht werden,
sind die Beobachtungsgleichungen:

Y4V, =y, +mcos-y +m-sinw-x

X+ v, =X, = msinG-y + m-cosw - x &

Wenn alle 4 Parameter (y,, X, M, @)
unbekannt sind (Helmert-Transforma-
tion) oder wenn nur y, und o zu finden
sind (d.h.m = 1und w = 0, Translation),
konnen die Beobachtungsgleichungen,
evtl. durch geeignete Substitutionen, in
Linearform geschrieben werden. Hinge-
gensind, wennm = 1eingesetzt wird und
Yo. Xo Und w als Unbekannte auftreten,
die Beobachtungsgleichungen keine
lineraren Funktionen mehr; man kann sie
nur in einem kleinen Intervall um die
gesuchte Losung linearisieren.

Da fur die Praxis alle Varianten von
Bedeutung sind, wurde fir die Program-
mierung die allgemeinere Ldsung mit
den nicht-linearen Beobachtungsglei-
chungen (4) gewahlt: Die Beobachtungs-
gleichungen werden vor jeder Iteration

durch numerische Differentiation um
den Naherungswert linearisiert. Damit
kann der Programmbentitzer jede belie-
bige Variante mit 2, 3 oder 4 Parametern
wahlen.

2.2.2 Robuste Transformation

Da der eine oder andere Passpunkt
moglicherweise keine gut Ubereinstim-
menden Koordinaten in beiden Syste-
men hat, schien es angebracht, die
Transformationsparameter mit einer «ro-
busten Ausgleichungy zu ermitteln,
welche wirklichkeitsnahe Resultate lie-
fert, auch wenn sich unter den Messun-
gen noch einige (wenige) grobe Fehler
befinden. Die theoretischen Grundlagen
dafiir wurden von P J. Huber erarbeitet
und in verschiedenen Publikationen
verdffentlicht [7, 8, 9]. Ein Losungsansatz
fir geodatische Anwendungen bei dem
Gauss-Markov-Modell (vermittelnde
Ausgleichung) ist in [1] beschrieben.
Hier wird nur das Grundprinzip der
robusten Ausgleichung wiederholt: Es
seien

+ L.

Vi = aiXe ¥ biVo + oo * Ly

5
i=12.....n (o)

die Verbesserungsgleichungen, die
durch Linearisierung der Beobachtungs-
gleichungen entstanden sind.

Die Unbekannten (x, v, z, ...) werden so
bestimmt, damit
YPV) =min (6)

Die Funktion p (v) ist fur die klassische
Ausgleichung nach der Methode der
kleinsten Quadrate wie bekannt

p\) = v (7)

Die Unbekannten werden so gewahlt,
dass die Summe der Quadrate der
Verbesserungen minimal wird. Wenn
grobe Fehler (im behandelten Fall Koor-
dinatenunstimmigkeiten) vorhanden
sind, fuhrt die klassische Ausgleichung
sehr rasch zu unbrauchbaren Unbe-
kannten.

Bei der robusten Ausgleichung wird fur
die Bedingung

YpW) = min (8)

eine andere Funktion p (v) gewahlt, damit
die Unbekannten von eventuellen groben
Fehlern weniger beeinflusst werden.
Gemaéss einem Vorschlag von P. J. Huber

wurde folgende Funktion fur das Pro-
gramm TRANSINT verwendet

p(vy) =l2v1~2
fir vyl < k-my
i : 1 , (9)
=km - v -7 km)
fur |vi = k-my

wo k eine Konstante und m; der mittlere
Fehler der entsprechenden Beobachtung
sind. Die Konstante k kann im Programm
frei gewahlt werden; fir Ubliche Anwen-
dungen sind k-Werte zwischen 2 und 3
zweckmadssig. Fur k —9 ocerhalt man die
gewdhnliche Ausgleichung nach der
Methode der kleinsten Quadrate (das
Programm berechnet diese Variante,
wenn k = 0 eingesetzt wird).

Mehrere Versuche mit der robusten
Ausgleichung in verschiedenen geodati-
schen Applikationen sind in [16] be-
schrieben.

2.2.3 Zuverlassigkeitsbetrachtungen

Die Ausgleichung nach der Methode der
kleinsten Quadrate, die fur die Bestim-
mung der Transformationsparameter
bendtigt wird, ist in der Regel sehr ein-
fach, und die empirische Beurteilung der
Passpunktkonfiguration sollte normaler-
weise keine Schwierigkeiten bereiten.
Trotzdem schien es angebracht, ein
numerisches Kriterium vorzusehen, um
die Zuverldssigkeit nachzuweisen. Bei
der Verwendung der robusten Ausglei-
chung werden die Zuverlassigkeitsbe-
trachtungen weniger einfach, und ein
numerisches Verfahren ist dann sehr
vorteilhaft.

Die gewahite Methode ist die Bestim-
mung des Koeffizienten der «geometri-
schen Zuverlassigkeit) fur jede Beobach-
tung der Ausgleichung, d.h. im vorlie-
genden Fall wird fur jede Globalkoordi-
nate:

(i)
9y

6Z; =

1 s
Rty

berechnet, wo q{}) und q(;;)diei-ten Diago-
nalelemente der Kofaktorenmatrizen der
Verbesserungen und der Beobachtun-
gen sind (fur die Berechnung siehe z. B.
[13]). GZ ist ein Mass fiir den Uberbe-
stimmungsgrad der gemessenen Gros-
sen im Netz und erlaubt den Vergleich
mit bekannten einfachen Messanord-
nungen. Hier einige Beispiele:

«wnendlich genauw bekannt ist)

Gz Beispiel

0,00 Messung ohne Uberbestimmung

0.33 Drei gemessene Winkel in einem Dreieck (1 Freiheitsgrad)

0,50 Doppelmessung (2 unabhdngige Bestimmungen der gleichen Grosse)
0.67 Dreifache Messung (3 unabhangige Bestimmungen der gleichen Grosse)
1,00 Totale Uberbestimmung des Netzes (Messung einer Grosse, die schon

Vermessung, Photogrammetrie, Kulturtechnik, 6/82

197



Fiur die Berechnung von GZ bei robu-
sten Transformationen wurde die Nahe-
rung verwendet, wie sie in [16] empfoh-
len wird. Die daraus hervorgegangenen
GZ-Werte sind dann als Grenzwerte zu
verstehen, d.h. die entsprechende Be-
obachtung ist mindestens so gut vom
Netz Uberbestimmt, wie der berechnete
Koeffizient der geometrischen Zuverlas-
sigkeit angibt.

2.3 Einsatz der robusten Ahnlichkeits-
transformation

Die robuste Transformation soll zum
Einsatz kommen, wenn man vermutet,
dass nicht alle Passpunkte fehlerfrei
sind, und wenn man schnell brauchbare
Resultate haben mochte. Fur geoda-
tische Anwendungen sollte dann der
Parameter k der robusten Ausgleichung
zwischen 2,0 und 3,0 gewahlt werden.
Kleine k-Werte starken die Unempfind-
lichkeit der Ausgleichung gegen grobe
Fehler, erhohen aber die Gefahr, dass
die Berechnung zu einer singularen
Matrix flhrt, wenn zu viele Beobachtun-
gen von den ausgeglichenen Werten
stark abweichen.

Das folgende Beispiel aus der Deforma-
tionsmessung der Staumauer Rempen
zeigt eine mogliche Anwendung der
robusten Transformation. Aus dem Ver-
gleich mit der gewohnlichen Helmert-
Transformation lassen sich die Vorteile
der robusten Version bei Netzverglei-
chen sehr gut ersehen.

Die Staumauer Rempen ist die kleine
Sperre eines Ausgleichsbeckens des
Kraftwerkes Wégital. Diese altere Mau-
er wurde in den Jahren zwischen 1973
und 1979 geodatisch neu untersucht,
damit ein neues Deformationsiberwa-
chungsnetz entworfen werden konnte.
Ein besonderes Problem stellte dabei
die grosse Unstabilitdt der Talflanken
dar. Ein Vergleich der Pfeilerbestim-
mungen in den Jahren 1973 und 1979
zeigt zum Beispiel deutliche Zwange.

a) Die gewohnliche Helmert-
Transformation

Die Einpassung der Koordinaten von
1979 in die Koordinaten 1973 durch
eine 4-Parameter-Ahnlichkeitstransfor-
mation (Helmert-Transformation) fuhrt
zu den folgenden Restfehlern, wenn alle
4 Pfeiler als Passpunkte eingesetzt wer-
den:

Ahnlichkeitstransformation
Passpunkte und Verbesserungen

Passpunkt VY VY
(mm) (mm)
PF1 1.1 2,7
PF2 3.0 -1.0
PE3 -0,2 -0.8
PF4 -3.9 -0;9
198

Die graphisch dargestellten Restfehler
geben dann das folgende Bild und
kénnen mit einem einfach berechneten
Konfidenzintervall
werden:

(2-mg) verglichen

[
. _/ / ,/‘/"//
!

10mm

o] 2 4 6 8

v .+ \Verschiebung
‘?_‘, 80 pigp
Abb.1 Restfehler bei der tblichen Helmert-

Transformation

Es ist leicht feststellbar, dass die 2
Netze (1973 und 1979) nicht gut zusam-
menpassen. Es ist aber nicht sofort
ersichtlich, ob nur ein Punkt eine starke
Abweichung aufweist oder ob mehrere
Punkte ihre Lage gedndert haben.

b) Die robuste Transformation

Die gleiche Transformation mit 4 Para-
metern wurde dann robust mit k = 2,0
berechnet, um die Wirkung auf die
Resultate zu zeigen. Die robuste Trans-
formation fihrt in einem Rechenschritt
zu folgenden Restfehlern:

Ahnlichkeitstransformation Rempen
robuste Transformation (mit k = 2,0)
Passpunkte und Verbesserungen

Passpunkt VY VX
(mm) (mm)
PE1 0.6 1.8
PE2 1,7 -0,0
PE3 -0.3 -0.9
PF4 -5,9 -0.9

10mm
L

Verschiebung

o ~0

100m
1

- Plan

Abb. 2 Restfehler bei der robusten Trans-
formation (k=2)

Das graphische Bild zeigt, dass die
Lagednderung von Pfeiler 4 sehr wahr-
scheinlich die Ursache der Unstimmig-
keit ist.

Der Einsatz in grosseren Netzen mit
mehreren Passpunkten und im Verhalt-
nis weniger haufigen Abweichungen
(z.B. nur 10% der Passpunkte falsch)
fuhrt zu noch besseren und leichter
interpretierbaren Resultaten.

3. Interpolation nach dem
arithmetischen Mittel

3.1 Alilgemeines

Die Landestriangulation wird etappen-
weise aufgebaut: Neue Netze werden in
die bestehende Triangulation hoherer
Ordnung eingefthrt und missen mit
den alteren Nachbaroperaten verbun-
den werden. Das Problem der Anpas-
sung wurde bis jetzt durch Einzwéngen
des Netzes bei der Ausgleichung ge-
l6st: Die Koordinaten aller Punkte der
Ubergeordneten Netze wurden als fest
betrachtet. Diese Losung hat sich in der
Praxis durchgesetzt, da sie weniger
Rechenaufwand erfordert als alle Alter-
nativmoglichkeiten. Im  Zeitalter des
Computers wird der Rechenaufwand
immer unbedeutender, so dass die
Suche nach besseren Wegen hochak-
tuell ist.

Das Einzwangen der Netze fuhrt zu
befriedigenden Resultaten, wenn die als
fest angenommenen Punkte tatsachlich
mit den Messungen der Ausgleichung
Ubereinstimmen oder beim Vorhanden-
sein einiger Zwange, wenn das einge-
zwéngte Netz sehr homogen ist und
somit eine regelméssige Verteilung der
Widerspriiche entsteht. Da in der Praxis
diese Bedingungen nicht leicht einzu-
halten sind, haben explizite Interpola-
tionsverfahren im letzten Jahrzehnt an
Bedeutung gewonnen, weil sie die
Restzwange unabhédngig vom Netzauf-
bau regelmassig verteilen [2].

3.2 Anwendungen in der
Landestriangulation

Die haufigste Applikation ist die Einpas-
sung neuer Triangulationsnetze in das
bestehende Fixpunktsystem. Das neue
Netz (lokales System) ist mit den
heutigen genauen Messgerdten gemes-
sen und zwangsfrei ausgeglichen, die
Ungenauigkeiten betragen daher we-
nige (1-2) cm. Die Fixpunkte (globales
System) hingegen sind eine Erbschaft
der Vergangenheit und enthalten oft
ortliche systematische Fehler (im Dezi-
meterbereich); sie durfen aber oft aus
organisatorischen und wirtschaftlichen
Grinden nicht gedndert werden.

Die Fixpunktfehler sind fest und be-
kannt, da sie mit Hilfe des praktisch
fehlerfreien neuen Netzes ermittelt wer-
den kdonnen. Man darf sie daher nicht
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als stochastische Grossen interpretie-
ren.

Fir die Einpassung des lokalen Netzes
in das globale spielen dann nur die
funktionalen Eigenschaften der Interpo-
lationsmethode eine Rolle. Die Interpo-
lationsmethode sollte die folgenden
Bedingungen einhalten:

- die interpolierten Passpunkte mus-
sen die Sollkoordinaten (Globalkoor-
dinaten) behalten

- die Zwischenpunkte mussen mog-
lichst homogen und ohne Uberkor-
rekturen interpoliert werden

- die Berechnung muss maoglichst
schnell und preisglnstig durchge-
fuhrt werden kénnen

- die Modellparameter sollten eine

moglichst anschauliche Bedeutung

haben.

Die meisten vorhandenen Interpola-
tionsprogramme halten die obener-
wahnten Bedingungen nicht ein, da sie
von einer eher statistischen Modellvor-
stellung ausgehen (s.z.B. [4, 6, 10, 11,
14]).

Das Bundesamt fiur Landestopographie
hat daher fir den Einsatz in der Landes-
triangulation ein einfaches Verfahren
entwickelt, die sogenannte Interpolation
nach dem arithmetischen Mittel, die die

gewdiinschten Eigenschaften aufweist.

Dieses Verfahren ist im Programm
TRANSINT verwirklicht und wird bereits
in der Praxis eingesetzt.

3.3 Das mathematische Modell

3.3.1 Das Problem

Wenn ein neues Netz mit zahlreichen
Punkten zwangsfrei ausgeglichen wird,
erhalten die Netzpunkte im Koordina-
tensystem der Berechnung (lokales
System) neue Koordinaten. Um das
neue Netz in eine bestehende Triangula-
tion einzupassen, werden geeignete
Punkte festgelegt, von denen man die
Koordinaten in der bestehenden Trian-
gulation (globales System) bereits
kennt und, meist aus wirtschaftlichen
Grunden, unverandert behalten will.
Diese Punkte werden Passpunkte ge-
nannt. Da fur die Passpunkte lokale und
globale Koordinaten vorliegen, sind die
entsprechenden Inkremente DX und DY,
fur welche

Yiok + DY =Yg

Xio *+ DX =Ygy (10

gilt, mit den folgenden Formeln direkt
berechenbar:

DY = Yg1 - Y]Ok

n
DX:Xg]—X]Ok ( )

Die Interpolationsfunktion berechnet
darauf von den Inkrementen der Pass-

punkte ausgehend passende Korrek-
turen DY, DX auch fir die anderen
Punkte des lokalen Netzes und liefert
dann ihre gesuchten Globalkoordinaten.

3.3.2 Die Wahl der Interpolations-
funktion

Man kann die Interpolationsfunktion fur
die vorgesehenen Applikationen weit-
gehend frei aufbauen, wie in Punkt 3.2
erklart wurde. Nur die vier dort erwéhn-
ten Bedingungen sollen eingehalten
werden. Es ist daher zweckmé&ssig, mit
ganz einfachen Funktionen zu beginnen,
um dann durch sukzessive Verbesse-
rungen zu einer voll befriedigenden
Interpolationsfunktion zu gelangen.

Bereits das allgemeine arithmetische
Mittel

_oxp Yy
DY, = —2 b:
. (12)
_ 2P DK
DX, = S5,

liefert bei einem geeigneten Gewichts-
einsatz, wie z. B.

Pi = (13)

|
By

gute Koordinaten fur die interpolierten
Punkte und befriedigt die gestellten
Bedingungen, wenn die Passpunkt-
dichte ungeféhr konstant ist (d; ist die
Distanz zwischen Neupunkt und i-tem
Passpunkt).

\ PP3 %
X -

—
e
L

Oy
‘—QPP1 - PP2

-— »

hel
bl
»

Abb. 3 Gegebene Inkremente flr die Pass-
punkte und interpolierte Werte fur die Zwi-

schenpunkte

Das allgemeine arithmetische Mittel
kann wie eine vermittelnde Ausglei-
chung in Matrizenform dargestellt wer-
den:

DY, = AP . AP DY

g (14)
DX, = AP . ATP DX
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wo AT = (1,1, .... 1) ein Vektor mit
Einheitskomponenten,

P die Diagonalmatrix der Gewichte und
DY bzw. DX die Vektoren der Inkre-
mente aller Passpunkte sind.

Ein Schonheitsfehler entsteht, wenn
mehrere Passpunkte sich an einem Ort
treffen (z.B. wenn mehrere Exzentren
vorliegen). Diese mehrfachen Pass-
punkte wiirden dann ein Ubergewicht
bekommen und die Homogenitat der
Interpolation stéren. Um dies auch zu
beriicksichtigen, kann man eine Korre-
lationsmatrix R zwischen den Passpunk-
ten einfihren:

M1 e o Min

R = r r
81 Ton wus Iy (15)
rnl rn2 rnn

Zur Berechnung der einzelnen Korrela-
tionskoeffizienten rjj wurden zahlreiche
Netze untersucht, um eine geeignete
Korrelationsfunktion zu bilden. Die fol-
gende Formel hat sich als gute Néhe-
rung fur die Ublichen Applikationen
erwiesen:
2
-ln (1-8)(d;;/dy) (16)
I’U- = 098
wobei dj; die Distanz zwischen dem i-
ten und j-ten Passpunkt und die Kon-
stante d, die Distanz zwischen zwel
Passpunkten ist, fir welche die Korrela-
tion r=0b gesetzt wird. Aus der
Formel kdnnen die Werte der folgenden
Tabelle berechnet werden, die das
Variieren der Korrelation in Funktion der
Distanz zeigen:

djj/do Tij

0,90
5 0.78
0.50
0,09
0.005
0.001

rwN—OO

Da in Triangulationsnetzen mit Ma-
schenweite =d, in der Praxis festge-
stellt werden kann, dass die Werte der
Tabelle eine recht gute Naherung fur die
Korrelation zwischen den ausgegliche-
nen Koordinaten darstellen, bekommt
der Parameter d, eine anschauliche
Bedeutung. Er kann als mittlere Ma-
schenweite der Netze angesehen wer-
den, aus welchen die Passpunkte ur-
sprunglich bestimmt wurden.

Selbstverstandlich gilt diese Bedeutung
nur unter der Voraussetzung, dass die
Herkunftsnetze keine wesentlichen sy-
stematischen Fehler enthalten, was z. B.
bei neuen Netzen der Fall ist. Bei der
Interpolation von neuen Triangulationen
in alten, systematisch verfalschten Fix-
punktnetzen muss d, einfach als Di-
stanz zwischen den Passpunkten gel-

199



ten, bei welchen die Korrelation 0,5 ist.
Sie muss empirisch durch die Betrach-
tung der graphischen Darstellung der
Koordinatendnderungen  der  Pass-
punkte bestimmt werden. d, wird
dann so klein gewahlt, dass d, ent-
fernte oder nahere Passpunkte tatsach-
lich sehr ahnliche Anderungsvektoren
aufweisen. Ganz unterschiedliche An-
derungsvektoren dirfen nur zwischen
Passpunkten, die mehr als 2 d_ vonein-
ander entfernt sind, auftreten.

Die Korrelationsmatrix ist nach der
Festlegung von d, bestimmt, und dar-
aus berechnet man aus [17] die ent-
sprechende vollstdandige Gewichtsma-
trix:

p=p,/? R .p,/? (17)
Pq ist die Diagonalmatrix der Gewichte,
die fur das allgemeine arithmetische
Mittel verwendet wurde.

Die Matrizenformeln des allgemeinen
arithmetischen Mittels (14) konnen fur
diese allgemeinere Losung unverandert
Ubernommen werden:

DY, = (P AP DY

18
DX, = (A'PW - AP DX "
Zu bemerken ist nur, dass im vorliegen-
den Fall die Matrix P keine Diagonalma-
trix mehr ist.

Die gesuchten Korrekturen fir die inter-
polierten Punkte sind, wie aus der
Formel (18) ersichtlich ist, lineare Funk-
tionen der Koordinateninkremente der
Passpunkte, d. h.:

DY,

DXp = cq-dxy + cpedxp + --- ¢

= Cy-dyy * Cpedy, * --- Cp-dyy

i, W9

n n

in jedem Fall mitZcj =1

Die Koeffizienten c; sind in der Regel,
wie es auch sinnvoll ist, positiv und
fihren daher zu keinen Uberkorrek-
ren. Nur in Spezialfdllen, wenn man
stark korrelierte Passpunkte sehr unter-
schiedlich gewichtet, werden einige ¢;
negativ. Um dies zu vermeiden, werden
die dazugehorigen Passpunkte bei der
Interpolation nicht beriicksichtigt. Die
Ubrigen c; erhalten nach Neubildung
der inversen Korrelationsmatrix und
anschliessender Neuberechnung, die
gewdlnschten positiven Werte (c;=0).
So bleiben auch in extremen Féllen die
geforderten funktionalen Eigenschaften
der Interpolation erhalten.

3.4 Die numerische Losung

Die numerische Losung, die fir die
Programmierung gewahit wurde, ist
relativ einfach, so dass hier nur in
Stichworten die Reihenfolge der Opera-
tionen angegeben wird.
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a) Nur einmal fir die ganze

Interpolation

- Bilden der Korrelationsmatrix ge-
mass Formel (16)

- Inversion der Korrelationsmatrix

- Bilden der Vektoren der Passpunktin-
kremente (DY und DX) far Y und X
getrennt aus Formel (10)

b) Fur jeden zu interpolierenden Punkt

- Bilden des Gewichtsvektors Py ge-
mass Formel (13)

- Berechnen des Vektors C aus

PR .0 . B
und
c=@Pp . AP

- Prifen, ob kein ¢; negativ ist. Wenn
mindestens ein ¢, negativ ist, wird fir
den Passpunkt, bei welchem c¢; am
kleinsten ist, das Gewicht auf Null
gesetzt und die Inverse der Korrela-
tionsmatrix durch einen Austausch-
schritt [15] entsprechend reduziert.
Das Verfahren wird wiederholt, bis
alle ¢; die Bedingung c¢; 20 erfillen.
Dann folgt die Berechnung von

DY, = c"-DY und DX, = CT-DX

4. Das Programm TRANSINT
Geometrische Transformationen und
Interpolationen  sind  organisatorisch
sehr &hnliche Verfahren, so dass es
zweckmadssig schien, beide Operatio-
nen in einem einzigen Programm zu
kombinieren. Es wird so moglich sein,
eine Ahnlichkeitstransformation oder
eine Interpolation oder beide Berech-
nungen hintereinander einfach durch
entsprechende Angaben in den Pro-
grammoptionen auszufihren.
Die genauen Angaben fiur die Pro-
grammbedienung sind der Benutzeran-
leitung zu entnehmen. Die Einfachheit
des Modells erlaubt, die Anzahl erfor-
derlicher Erklarungen auf ein Minimum
zu reduzieren.
Gemeinsame Eingabedaten sind ledig-
lich:
- das File der Globalkoordinaten (Pass-
punkte)
- das File der Lokalkoordinaten (Pass-
punkte und Neupunkte)
- die Liste der Passpunkte
Die Berechnung erfolgt dann vollauto-
matisch, und es wird ein File der trans-
formierten oder interpolierten Punkte
erzeugt zur Weiterverwendung in ande-
ren Computerprogrammen. Ein Papier-
ausdruck mit den notwendigen Anga-
ben wird ebenfalls bereitgestellt.
Fir die Ahnlichkeitstransformation sind
zusatzlich einige Modellparameter an-
zugeben. Die wichtigsten:
- Anzahl Unbekannte (um zu wéhlen
zwischen Translation, Translation-Ro-
tation und Helmert-Transformation)

- Die Transformationsparameter, wenn
man sie vorgeben will, sonst werden
sie durch Ausgleichung berechnet
(Normalfall)

- Der Parameter K fur die robuste
Ausgleichung (fur K=0 wird eine
gewohnliche Ausgleichung nach der
Methode der kleinsten Quadrate
durchgefihrt).

Fir die Interpolation wird ein einziger

Modellparameter benétigt: Die Netzma-

schenweite d, des globalen Netzes

(far  neue Netze 3. Ordnung

ca. 3000-5000m, fur 4. Ordnung

ca. b00-1000m, fur Polygonnetze
50-100m usw.), welche bei der Bil-
dung der Korrelationsmatrix verwendet

wird (Formel 16).
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