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Robuste Ähnlichkeitstransformation und Interpolation nach
dem arithmetischen Mittel
A. Carosio

Zwei Aufgaben werden in der geodätischen Praxis sehr oft mit Koordinatentransformationen

gelöst: der Vergleich mehrerer unabhängig gemessener Netze mit
gemeinsamen Punkten und die Einpassung neuer Netze in bestehende
Fixpunktsysteme. Vor kurzem wurde das Programm TRANSINT im Bundesamt für
Landestopographie entwickelt, das eine Lösung für die Ähnlichkeitstransformation

mit robuster Ausgleichung enthält, sowie ein Verfahren für die Interpolation
nach dem arithmetischen Mittel. Der vorliegende Bericht beschreibt die
mathematischen Grundlagen beider Aufgaben und weist Angaben über die Anwendung

der Computerprogramme auf.

Dans les applications pratiques de la géodésie, il y a deux problèmes qui sont
résolus très souvent par transformation de coordonnées: la comparaison de
réseaux géodésiques indépendants avec points communs et l'intégration de
nouveaux réseaux dans un système global préexistant. L'Office fédéral de topographie
a développé récemment le programme TRANSINT qui contient une solution pour
la transformation de Helmert par compensation robuste et un procédé pour
l'interpolation selon la moyenne arithmétique. Le présent travail décrit les modèles
mathématiques et donne des indications pour l'utilisation du logiciel.

1. Einführung
In der angewandten Geodäsie wird
man sehr oft mit Problemen konfrontiert,

die mathematisch mit einfachen
oder komplexen Koordinatentransformationen

gelöst werden können. Zwei
Aufgaben treten besonders oft in
Erscheinung: der Vergleich zweier
unabhängig gemessener Netze und die
Einpassung eines neuen Netzes in ein
bestehendes Fixpunktsystem.

1.1 Der Vergleich geodätischer Netze
In zwei verschiedenen Koordinatensystemen

(global und lokal) werden ganz
unabhängig die Koordinaten der
gleichen Punkte bestimmt (Y,, X, und y,, x,),
und nun möchte man feststellen, ob
tatsächlich die Werte in den beiden
Systemen zu den gleichen Punkten
gehören und wie gross die eventuellen
gegenseitigen Abweichungen sind.
Zur Lösung solcher Aufgaben werden
in den meisten Fällen die Koordinaten
des lokalen Systems ähnlich transformiert

(z. B. durch Helmert-Transforma-
tion):

y' y0 + m-cos coy + m-sin-OJx
x' xn - m-sin eo-y + m-cos-to x

(1)

Die unbekannten Transformationsparameter
werden mit einer Ausgleichung

nach der Methode der kleinsten
Quadrate bestimmt, damit die kleinstmögli-
che Summe der Quadrate der
Koordinatendifferenzen zwischen beiden
Systemen entsteht. Die Koordinatenverbesserungen

DY Y - y'
DX X - x'

(2)

geben dann Hinweise auf die gegenseitigen

Abweichungen der Koordinaten
der beiden Systeme.

1.2 Die Einpassung eines Netzes in
bestehende Fixpunkte
Diese zweite Aufgabenstellung ist z. B.

in [2] beschrieben: Gegeben sind zwei
Systeme, die die gleichen Punkte
enthalten. Im ersten System (globales
System) sind nur die Koordinaten einiger
Punkte (Passpunkte) bekannt, während
im zweiten System (lokales System) die
Koordinaten aller Punkte vorliegen.
Gesucht sind die Koordinaten aller Punkte
im globalen System.
Für die Lösung des Problems wird eine
geeignete mathematische Abbildung
(Interpolationsfunktion) zwischen den
Koordinaten im lokalen System und
jenen im globalen System benötigt. Nur
selten kann eine solche Abbildung eine
einfache geometrische Transformation
(Translation, Rotation) sein, da in den
meisten Fällen globale und lokale
Koordinaten verschiedene Ungenauigkeiten
zufälliger und systematischer Natur
aufweisen.
Für die Wahl einer geeigneten
Interpolationsfunktion müssen die funktionalen
und statistischen Eigenschaften der
vorhandenen Koordinaten (das
mathematische Modell) genügend genau
bekannt sein. Je nach Modell ist die
eine, die andere oder überhaupt keine
Interpolationsfunktion zweckmässig.
Es ist daher für diese Aufgabe nicht
möglich, eine allgemeine Lösung für
alle geodätischen Anwendungen zu
finden. In jedem einzelnen Fall muss
überprüft werden, welches Interpola-
tionsverfahren sich am besten eignet.

Die häufigste Anwendung in der
Landestriangulation ist die Einpassung von
zwangsfrei berechneten Netzen in ein
bestehendes übergeordnetes Fixpunktsystem.

Die Eigenart dieser Applikation
liegt in der Tatsache, dass das lokale
System, welches verändert werden
darf, aus einer modernen, sehr guten
Triangulation stammt (mittlerer Fehler
der Punkte ca. 1-2 cm). Das globale
System, das gegeben ist und vor allem
aus wirtschaftlichen Gründen nicht
modifiziert wird, enthält hingegen oft
Fehler, die wesentlich grösser sind als
die Ungenauigkeit der lokalen Punkte.
Diese Fehler können mit Hilfe des
lokalen Netzes genau bestimmt werden
und gelten daher als fest und bekannt.
Sie sind also keine zufälligen Fehler,
sondern Grössen mit funktionalem
Charakter.

1.3 Praktische Lösung
Zur Lösung beider Aufgaben, der
Ähnlichkeitstransformation und der Interpolation

von neuen Triangulationsnetzen
in bestehende Fixpunktsysteme, wurde
im Bundesamt für Landestopographie
das Computerprogramm TRANSINT
entwickelt, das mit geringem Aufwand
zu den gewünschten Resultaten führt.
Im folgenden wird über das mathematische

Modell und über die möglichen
Anwendungen in der Praxis berichtet.

2. Robuste
Ähnlichkeitstransformation

2.1 Allgemeines
Der Vergleich von Triangulationsnetzen
mittels Ähnlichkeitstransformation ist
ein klassisches und häufig verwendetes
Verfahren in der angewandten
Geodäsie.

Zur Veranschaulichung können
folgende mögliche Anwendungen dienen:

- Beispiel 1

Nach der Messung eines neuen
Operates 4. Ordnung wurden die
Beobachtungen in einem zwangsfreien

Netz ausgeglichen, um die
innere Genauigkeit zu prüfen.
Danach möchte man durch eine
Ähnlichkeitstransformation die
Übereinstimmung zwischen der neuen
Triangulation und dem übergeordneten
Fixpunktsystem kontrollieren.

- Beispiel 2
Bei Deformationsmessungen möchte
man die Koordinaten der Fixpunkte
der Ausgangsmessung mit denjenigen

einer Wiederholungsmessung
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vergleichen. Das Netz der Fixpunkte
wird für beide Epochen zwangsfrei
ausgeglichen und dann das neuere
Netz in das ältere ähnlich transformiert.

Bei beiden Anwendungen hat die
Transformation folgende Eigenschaften:
- Die Ähnlichkeitstransformation hat 2,

3 oder 4 Parameter (Translation,
Translation-Rotation, Helmert-Trans-
formation).

- Die Transformationsparameter müssen

so bestimmt werden, dass die
transformierten Lokalkoordinaten so
gut wie möglich in das globale
Koordinatensystem passen.

- Die Beobachtungen der Ausgleichung

sind die Globalkoordinaten
(alte Koordinaten) der Punkte
(Passpunkte), die in den beiden Netzen
auftreten (pro Punkt Y und X, d. h. 2

Beobachtungen). Die Passpunkte
sind in der Regel zahlreich (10 bis
100 und mehr), so dass die Anzahl
überschüssiger Beobachtungen gross
ist.

- Vor allem in grossen Netzen wird
vermutet, dass die Lokalkoordinaten
(neue Koordinaten) einiger weniger
Punkte aus irgendeinem Grund von
den globalen (alten) abweichen. Ziel
der Analyse ist in diesen Fällen die
Identifikation solcher Punkte.

2.2 Das mathematische Modell
22.1 Ähnlichkeitstransformation
Die Ähnlichkeitstransformation kann,
wie bekannt, mit den folgenden Formeln
berechnet werden:

y' y0 + m-cos ü)-y + m-sin 0>x
x' x0 - m-sin to-y + m-cos 0>x (3)

und daher, wenn die Transformationsparameter

mit einer Ausgleichung nach
kleinsten Quadraten gesucht werden,
sind die Beobachtungsgleichungen:

Y + vy y0 +m-cosco-y + m-sintox
X + vx x0 - m-sinOJ-y + m-cosOJ-x

' '

Wenn alle 4 Parameter (y0, x0, m, co)

unbekannt sind (Helmert-Transforma-
tion) oder wenn nur y0 und x0 zu finden
sind (d. h. m 1 und co 0, Translation),
können die Beobachtungsgleichungen,
evtl. durch geeignete Substitutionen, in
Linearform geschrieben werden. Hingegen

sind, wenn m 1 eingesetzt wird und
y0, x0 und co als Unbekannte auftreten,
die Beobachtungsgleichungen keine
lineraren Funktionen mehr; man kann sie
nur in einem kleinen Intervall um die
gesuchte Lösung linearisieren.
Da für die Praxis alle Varianten von
Bedeutung sind, wurde für die Programmierung

die allgemeinere Lösung mit
den nicht-linearen Beobachtungsgleichungen

(4) gewählt: Die Beobachtungsgleichungen

werden vor jeder Iteration

durch numerische Differentiation um
den Näherungswert lineansiert. Damit
kann der Programmbenützer jede beliebige

Variante mit 2, 3 oder 4 Parametern
wählen.

2.2.2 Robuste Transformation
Da der eine oder andere Passpunkt
möglicherweise keine gut übereinstimmenden

Koordinaten in beiden Systemen

hat, schien es angebracht, die
Transformationsparameter mit einer
(robusten Ausgleichung) zu ermitteln,
welche wirklichkeitsnahe Resultate
liefert, auch wenn sich unter den Messungen

noch einige (wenige) grobe Fehler
befinden. Die theoretischen Grundlagen
dafür wurden von P. J. Huber erarbeitet
und in verschiedenen Publikationen
veröffentlicht [7,8, 9]. Ein Lösungsansatz
für geodätische Anwendungen bei dem
Gauss-Markov-Modell (vermittelnde
Ausgleichung) ist in [1] beschrieben.
Hier wird nur das Grundprinzip der
robusten Ausgleichung wiederholt: Es

seien

vt aiX0 + Diy0 + + L,

i 1,2 n
(5)

die Verbesserungsgleichungen, die
durch Linearisierung der Beobachtungsgleichungen

entstanden sind.
Die Unbekannten (x, y, z,...) werden so
bestimmt, damit

jp(v) =min (6)

Die Funktion p(v) ist für die klassische
Ausgleichung nach der Methode der
kleinsten Quadrate wie bekannt

p(v) (7)

Die Unbekannten werden so gewählt,
dass die Summe der Quadrate der
Verbesserungen minimal wird. Wenn
grobe Fehler (im behandelten Fall
Koordinatenunstimmigkeiten) vorhanden
sind, führt die klassische Ausgleichung
sehr rasch zu unbrauchbaren
Unbekannten.

Bei der robusten Ausgleichung wird für
die Bedingung

2p(v) ; min (8)

eine andere Funktion p (v) gewählt, damit
die Unbekannten von eventuellen groben
Fehlem weniger beeinflusst werden.
Gemäss einem Vorschlag von P J. Huber

wurde folgende Funktion für das
Programm TRANSINT verwendet

p(Vl) ;7V;
für |v,|-

k-rtij ¦ |yi

: k-m

l
(k-m,-)

(9)

für IvJ^k-nu

wo k eine Konstante und m, der mittlere
Fehler der entsprechenden Beobachtung
sind. Die Konstante k kann im Programm
frei gewählt werden; für übliche Anwendungen

sind k-Werte zwischen 2 und 3

zweckmässig. Für k —? °°erhält man die
gewöhnliche Ausgleichung nach der
Methode der kleinsten Quadrate (das
Programm berechnet diese Variante,
wenn k 0 eingesetzt wird).
Mehrere Versuche mit der robusten
Ausgleichung in verschiedenen geodätischen

Applikationen sind in [16]
beschrieben.

2.2.3 Zuverlässigkeitsbetrachtungen
Die Ausgleichung nach der Methode der
kleinsten Quadrate, die für die Bestimmung

der Transformationsparameter
benötigt wird, ist in der Regel sehr
einfach, und die empirische Beurteilung der
Passpunktkonfiguration sollte normalerweise

keine Schwierigkeiten bereiten.
Trotzdem schien es angebracht, ein
numerisches Kriterium vorzusehen, um
die Zuverlässigkeit nachzuweisen. Bei
der Verwendung der robusten Ausgleichung

werden die Zuverlässigkeitsbetrachtungen

weniger einfach, und ein
numerisches Verfahren ist dann sehr
vorteilhaft.
Die gewählte Methode ist die Bestimmung

des Koeffizienten der (geometrischen

Zuverlässigkeit) für jede Beobachtung

der Ausgleichung, d. h. im
vorliegenden Fall wird für jede Globalkoordi-
nate:

GZ,

(ü)

a(il)H 11

berechnet, wo q^ und q'jj'die i-ten
Diagonalelemente der Kofaktorenmatrizen der
Verbesserungen und der Beobachtungen

sind (für die Berechnung siehe z. B.

[13]). GZ ist ein Mass für den
Überbestimmungsgrad der gemessenen Grössen

im Netz und erlaubt den Vergleich
mit bekannten einfachen Messanordnungen.

Hier einige Beispiele:

GZ

0.00

0.33

0,50

0,67

1,00

Beispiel

Messung ohne Überbestimmung

Drei gemessene Winkel in einem Dreieck (1 Freiheitsgrad)

Doppelmessung (2 unabhängige Bestimmungen der gleichen Grösse)

Dreifache Messung (3 unabhängige Bestimmungen der gleichen Grösse)

Totale Überbestimmung des Netzes (Messung einer Grösse, die schon
(unendlich genau) bekannt ist)
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Für die Berechnung von GZ bei robusten

Transformationen wurde die Näherung

verwendet, wie sie in [16] empfohlen
wird. Die daraus hervorgegangenen

GZ-Werte sind dann als Grenzwerte zu
verstehen, d. h. die entsprechende
Beobachtung ist mindestens so gut vom
Netz überbestimmt, wie der berechnete
Koeffizient der geometrischen Zuverlässigkeit

angibt.

2.3 Einsatz der robusten Ahnlichkeits-
transformation
Die robuste Transformation soll zum
Einsatz kommen, wenn man vermutet,
dass nicht alle Passpunkte fehlerfrei
sind, und wenn man schnell brauchbare
Resultate haben möchte. Für geodätische

Anwendungen sollte dann der
Parameter k der robusten Ausgleichung
zwischen 2,0 und 3,0 gewählt werden.
Kleine k-Werte stärken die Unempfind-
lichkeit der Ausgleichung gegen grobe
Fehler, erhöhen aber die Gefahr, dass
die Berechnung zu einer singulären
Matrix führt, wenn zu viele Beobachtungen

von den ausgeglichenen Werten
stark abweichen.
Das folgende Beispiel aus der
Deformationsmessung der Staumauer Rempen
zeigt eine mögliche Anwendung der
robusten Transformation. Aus dem
Vergleich mit der gewöhnlichen Helmert-
Transformation lassen sich die Vorteile
der robusten Version bei Netzverglei-
chen sehr gut ersehen.
Die Staumauer Rempen ist die kleine
Sperre eines Ausgleichsbeckens des
Kraftwerkes Wägital. Diese ältere Mauer

wurde in den Jahren zwischen 1973
und 1979 geodätisch neu untersucht,
damit ein neues Deformationsüberwa-
chungsnetz entworfen werden konnte.
Ein besonderes Problem stellte dabei
die grosse Unstabilität der Talflanken
dar. Ein Vergleich der Pfeilerbestimmungen

in den Jahren 1973 und 1979
zeigt zum Beispiel deutliche Zwänge.

a) Die gewöhnliche Helmert-
Transformation
Die Einpassung der Koordinaten von
1979 in die Koordinaten 1973 durch
eine 4-Parameter-Ähnlichkeitstransfor-
mation (Helmert-Transformation) führt
zu den folgenden Restfehlern, wenn alle
4 Pfeiler als Passpunkte eingesetzt werden:

Ähnlichkeitstransformation
Passpunkte und Verbesserungen

Passpunkt VY VY
(mm) (mm)

PF.1 1.1 2.7
PF, 2 3,0 -1.0
PF,3 -0,2 -0.8
PF.4 -3,9 -0,9

Die graphisch dargestellten Restfehler
geben dann das folgende Bild und
können mit einem einfach berechneten
Konfidenzintervall (2 • mF) verglichen
werden:

PF PF4

PF

PF

2 4 6 B 1Umm
Verschiebung

•j: Plan

Abb.1 Restfehler bei der üblichen Helmert-
Transformation

Es ist leicht feststellbar, dass die 2

Netze (1973 und 1979) nicht gut
zusammenpassen. Es ist aber nicht sofort
ersichtlich, ob nur ein Punkt eine starke
Abweichung aufweist oder ob mehrere
Punkte ihre Lage geändert haben.

b) Die robuste Transformation
Die gleiche Transformation mit 4
Parametern wurde dann robust mit k 2,0
berechnet, um die Wirkung auf die
Resultate zu zeigen. Die robuste
Transformation führt in einem Rechenschritt
zu folgenden Restfehlern:

Ähnlichkeitstransformation Rempen
robuste Transformation (mit k 2,0)
Passpunkte und Verbesserungen

Passpunkt VY VX
(mm) (mm)

PF.1 0,6 1.8
PF, 2 1,7 -0,0
PR3 -0,3 -0,9
PF.4 -5.9 -0.9

/ ¦/ PF4

PF

PF

PF2

'0 irr

Plan

Verschiebung

Abb. 2 Restfehler bei der robusten
Transformation (k 2)

Das graphische Bild zeigt, dass die
Lageänderung von Pfeiler 4 sehr
wahrscheinlich die Ursache der Unstimmigkeit

ist.

Der Einsatz in grösseren Netzen mit
mehreren Passpunkten und im Verhältnis

weniger häufigen Abweichungen
(z. B. nur 10% der Passpunkte falsch)
führt zu noch besseren und leichter
interpretierbaren Resultaten.

3. Interpolation nach dem
arithmetischen Mittel
3.1 Allgemeines
Die Landestriangulation wird etappenweise

aufgebaut: Neue Netze werden in

die bestehende Triangulation höherer
Ordnung eingeführt und müssen mit
den älteren Nachbaroperaten verbunden

werden. Das Problem der Anpassung

wurde bis jetzt durch Einzwängen
des Netzes bei der Ausgleichung
gelöst: Die Koordinaten aller Punkte der
übergeordneten Netze wurden als fest
betrachtet. Diese Lösung hat sich in der
Praxis durchgesetzt, da sie weniger
Rechenaufwand erfordert als alle
Alternativmöglichkeiten. Im Zeitalter des
Computers wird der Rechenaufwand
immer unbedeutender, so dass die
Suche nach besseren Wegen hochaktuell

ist.
Das Einzwängen der Netze führt zu

befriedigenden Resultaten, wenn die als
fest angenommenen Punkte tatsächlich
mit den Messungen der Ausgleichung
übereinstimmen oder beim Vorhandensein

einiger Zwänge, wenn das
eingezwängte Netz sehr homogen ist und
somit eine regelmässige Verteilung der
Widersprüche entsteht. Da in der Praxis
diese Bedingungen nicht leicht
einzuhalten sind, haben explizite
Interpolationsverfahren im letzten Jahrzehnt an
Bedeutung gewonnen, weil sie die
Restzwänge unabhängig vom Netzaufbau

regelmässig verteilen [2].

3.2 Anwendungen in der
Landestriangulation
Die häufigste Applikation ist die Einpassung

neuer Triangulationsnetze in das
bestehende Fixpunktsystem. Das neue
Netz (lokales System) ist mit den
heutigen genauen Messgeräten gemessen

und zwangsfrei ausgeglichen, die
Ungenauigkeiten betragen daher
wenige (1-2) cm. Die Fixpunkte (globales
System) hingegen sind eine Erbschaft
der Vergangenheit und enthalten oft
örtliche systematische Fehler (im Dezi-
meterbereich); sie dürfen aber oft aus
organisatorischen und wirtschaftlichen
Gründen nicht geändert werden.
Die Fixpunktfehler sind fest und
bekannt, da sie mit Hilfe des praktisch
fehlerfreien neuen Netzes ermittelt werden

können. Man darf sie daher nicht
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als stochastische Grössen interpretieren.

Für die Einpassung des lokalen Netzes
in das globale spielen dann nur die
funktionalen Eigenschaften der
Interpolationsmethode eine Rolle. Die
Interpolationsmethode sollte die folgenden
Bedingungen einhalten:

- die interpolierten Passpunkte müssen

die Sollkoordinaten (Globalkoordinaten)

behalten

- die Zwischenpunkte müssen möglichst

homogen und ohne Überkorrekturen

interpoliert werden
- die Berechnung muss möglichst

schnell und preisgünstig durchgeführt

werden können

- die Modellparameter sollten eine
möglichst anschauliche Bedeutung
haben.

Die meisten vorhandenen
Interpolationsprogramme halten die
obenerwähnten Bedingungen nicht ein, da sie
von einer eher statistischen Modellvorstellung

ausgehen (s.z. B. [4, 6, 10, 11,

14]).
Das Bundesamt für Landestopographie
hat daher für den Einsatz in der
Landestriangulation ein einfaches Verfahren
entwickelt, die sogenannte Interpolation
nach dem arithmetischen Mittel, die die
gewünschten Eigenschaften aufweist.
Dieses Verfahren ist im Programm
TRANSINT verwirklicht und wird bereits
in der Praxis eingesetzt.

3.3 Das mathematische Modell
3.3.1 Das Problem
Wenn ein neues Netz mit zahlreichen
Punkten zwangsfrei ausgeglichen wird,
erhalten die Netzpunkte im
Koordinatensystem der Berechnung (lokales
System) neue Koordinaten. Um das
neue Netz in eine bestehende Triangulation

einzupassen, werden geeignete
Punkte festgelegt, von denen man die
Koordinaten in der bestehenden
Triangulation (globales System) bereits
kennt und, meist aus wirtschaftlichen
Gründen, unverändert behalten will.
Diese Punkte werden Passpunkte
genannt. Da für die Passpunkte lokale und
globale Koordinaten vorliegen, sind die
entsprechenden Inkremente DX und DY
für welche

V + DY Y,

X
lok X,

(10)

gilt, mit den folgenden Formeln direkt
berechenbar:

DY

DX

'gl lok

Xgl " X lok
(11)

Die Interpolationsfunktion berechnet
darauf von den Inkrementen der Pass¬

punkte ausgehend passende Korrekturen

DY DX auch für die anderen
Punkte des lokalen Netzes und liefert
dann ihre gesuchten Globalkoordinaten

3.3.2 Die Wahl der Interpolations-
funktion
Man kann die Interpolationsfunktion für
die vorgesehenen Applikationen
weitgehend frei aufbauen, wie in Punkt 3.2
erklärt wurde. Nur die vier dort erwähnten

Bedingungen sollen eingehalten
werden. Es ist daher zweckmässig, mit
ganz einfachen Funktionen zu beginnen,
um dann durch sukzessive Verbesserungen

zu einer voll befriedigenden
Interpolationsfunktion zu gelangen.

Bereits das allgemeine arithmetische
Mittel

DY
2 Pi DYt

I Pi

2 Pi DXj

I Pi

(12)

liefert bei einem geeigneten Gewichtseinsatz,

wiez. B.

di
(13)

gute Koordinaten für die interpolierten
Punkte und befriedigt die gestellten
Bedingungen, wenn die Passpunktdichte

ungefähr konstant ist (d, ist die
Distanz zwischen Neupunkt und i-tem
Passpunkt).

\
\\

PP3 \
\

XT
y

PP1 PP2

Abb 3 Gegebene Inkremente für die
Passpunkte und interpolierte Werte fur die
Zwischenpunkte

Das allgemeine arithmetische Mittel
kann wie eine vermittelnde Ausgleichung

in Matrizenform dargestellt werden:

DYp (ATPA)"'
-

ATP DY

DXp
(ATPA)_1 ATP DX

(14)

wo AT (1, 1, 1) ein Vektor mit
Einheitskomponenten,
P die Diagonalmatrix der Gewichte und
DY bzw. DX die Vektoren der
Inkremente aller Passpunkte sind.
Ein Schönheitsfehler entsteht, wenn
mehrere Passpunkte sich an einem Ort
treffen (z.B. wenn mehrere Exzentren
vorliegen). Diese mehrfachen
Passpunkte würden dann ein Übergewicht
bekommen und die Homogenität der
Interpolation stören. Um dies auch zu

berücksichtigen, kann man eine
Korrelationsmatrix R zwischen den Passpunkten

einführen:

R
21

nl

12

22

"n 2

2n
(15)

Zur Berechnung der einzelnen Korrela-
tionskoeffizienten r,, wurden zahlreiche
Netze untersucht, um eine geeignete
Korrelationsfunktion zu bilden. Die
folgende Formel hat sich als gute Näherung

für die üblichen Applikationen
erwiesen:

0-9-e
-in (l-8)(di0-/do

(16)

wobei d|j die Distanz zwischen dem i-

ten und j-ten Passpunkt und die
Konstante d0 die Distanz zwischen zwei
Passpunkten ist, für welche die Korrelation

r 0,5 gesetzt wird. Aus der
Formel können die Werte der folgenden
Tabelle berechnet werden, die das
Variieren der Korrelation in Funktion der
Distanz zeigen:

d.j/do ru

0 0,90
0,5 0,78
1 0,50
2 0,09
3 0,005
4 0,001

Da in Triangulationsnetzen mit
Maschenweite d0 in der Praxis festgestellt

werden kann, dass die Werte der
Tabelle eine recht gute Näherung für die
Korrelation zwischen den ausgeglichenen

Koordinaten darstellen, bekommt
der Parameter d0 eine anschauliche
Bedeutung. Er kann als mittlere
Maschenweite der Netze angesehen werden,

aus welchen die Passpunkte
ursprünglich bestimmt wurden.
Selbstverständlich gilt diese Bedeutung
nur unter der Voraussetzung, dass die
Herkunftsnetze keine wesentlichen
systematischen Fehler enthalten, was z. B.

bei neuen Netzen der Fall ist. Bei der
Interpolation von neuen Triangulationen
in alten, systematisch verfälschten
Fixpunktnetzen muss d0 einfach als
Distanz zwischen den Passpunkten gel-
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ten, bei welchen die Korrelation 0,5 ist.
Sie muss empirisch durch die Betrachtung

der graphischen Darstellung der
Koordinatenänderungen der
Passpunkte bestimmt werden. d0 wird
dann so klein gewählt, dass d0
entfernte oder nähere Passpunkte tatsächlich

sehr ähnliche Änderungsvektoren
aufweisen. Ganz unterschiedliche
Änderungsvektoren dürfen nur zwischen
Passpunkten, die mehr als 2 d0 voneinander

entfernt sind, auftreten.
Die Korrelationsmatrix ist nach der
Festlegung von d0 bestimmt, und daraus

berechnet man aus [17] die
entsprechende vollständige Gewichtsmatrix:

Pd,/2 -
R"1 1/2

(17)

Pd ist die Diagonalmatrix der Gewichte,
die für das allgemeine arithmetische
Mittel verwendet wurde.
Die Matrizenformeln des allgemeinen
arithmetischen Mittels (14) können für
diese allgemeinere Lösung unverändert
übernommen werden:

DYp
(ATPA)" ATPDY

DXn (ATPA)_1 ¦ ATP DX
(18)

Zu bemerken ist nur, dass im vorliegenden
Fall die Matrix P keine Diagonalmatrix

mehr ist
Die gesuchten Korrekturen für die
interpolierten Punkte sind, wie aus der
Formel (18) ersichtlich ist, lineare
Funktionen der Koordinateninkremente der
Passpunkte, d. h.:

DYp Ci-dy, + c2-dy2 + --- cn-dyn

DX crdx1 + c2-dx2 + ••• cn-dxn

in jedem Fall mit Ic, 1

(19)

Die Koeffizienten c, sind in der Regel,
wie es auch sinnvoll ist, positiv und
führen daher zu keinen Überkorrek-
ren. Nur in Spezialfällen, wenn man
stark korrelierte Passpunkte sehr
unterschiedlich gewichtet, werden einige c,
negativ. Um dies zu vermeiden, werden
die dazugehörigen Passpunkte bei der
Interpolation nicht berücksichtigt. Die
übrigen c, erhalten nach Neubildung
der inversen Korrelationsmatrix und
anschliessender Neuberechnung, die
gewünschten positiven Werte (c,=£0).
So bleiben auch in extremen Fällen die
geforderten funktionalen Eigenschaften
der Interpolation erhalten.

3.4 Die numerische Lösung
Die numerische Lösung, die für die
Programmierung gewählt wurde, ist
relativ einfach, so dass hier nur in
Stichworten die Reihenfolge der Operationen

angegeben wird.

a) Nur einmal für die ganze
Interpolation
- Bilden der Korrelationsmatrix ge-

mäss Formel (16)

- Inversion der Korrelationsmatrix
- Bilden der Vektoren der Passpunktin-

kremente (DY und DX) für Y und X

getrennt aus Formel (10)

b) Für jeden zu interpolierenden Punkt
- Bilden des Gewichtsvektors Pd

gemäss Formel (13)

- Berechnen des Vektors C aus

P P,

und

1/2 R" 1/2

c (ATPA)_1
•

ATP

Prüfen, ob kein c, negativ ist. Wenn
mindestens ein c, negativ ist, wird für
den Passpunkt, bei welchem c, am
kleinsten ist, das Gewicht auf Null
gesetzt und die Inverse der
Korrelationsmatrix durch einen Austauschschritt

[15] entsprechend reduziert.
Das Verfahren wird wiederholt, bis
alle c, die Bedingung c, =£0 erfüllen.
Dann folgt die Berechnung von

DYp C -DY und DXn CT-DX

4. Das Programm TRANSINT
Geometrische Transformationen und
Interpolationen sind organisatorisch
sehr ähnliche Verfahren, so dass es
zweckmässig schien, beide Operationen

in einem einzigen Programm zu
kombinieren. Es wird so möglich sein,
eine Ähnlichkeitstransformation oder
eine Interpolation oder beide Berechnungen

hintereinander einfach durch
entsprechende Angaben in den
Programmoptionen auszuführen.
Die genauen Angaben für die
Programmbedienung sind der Benützeran-
leitung zu entnehmen. Die Einfachheit
des Modells erlaubt, die Anzahl
erforderlicher Erklärungen auf ein Minimum
zu reduzieren.
Gemeinsame Eingabedaten sind lediglich:

- das File der Globalkoordinaten
(Passpunkte)

- das File der Lokalkoordinaten
(Passpunkte und Neupunkte)

- die Liste der Passpunkte
Die Berechnung erfolgt dann vollautomatisch,

und es wird ein File der
transformierten oder interpolierten Punkte
erzeugt zur Weiterverwendung in anderen

Computerprogrammen. Ein
Papierausdruck mit den notwendigen Angaben

wird ebenfalls bereitgestellt.
Für die Ähnlichkeitstransformation sind
zusätzlich einige Modellparameter
anzugeben. Die wichtigsten:
- Anzahl Unbekannte (um zu wählen

zwischen Translation, Translation-Rotation

und Helmert-Transformation)

- Die Transformationsparameter, wenn
man sie vorgeben will, sonst werden
sie durch Ausgleichung berechnet
(Normalfall)

- Der Parameter K für die robuste
Ausgleichung (für K 0 wird eine
gewöhnliche Ausgleichung nach der
Methode der kleinsten Quadrate
durchgeführt).

Für die Interpolation wird ein einziger
Modellparameter benötigt: Die
Netzmaschenweite d0 des globalen Netzes
(für neue Netze 3. Ordnung
ca. 3000-5000 m, für 4. Ordnung
ca. 500-1000 m, für Polygonnetze
50-100 m usw.), welche bei der
Bildung der Korrelationsmatrix verwendet
wird (Formel 16).
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