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Das Dynamische Nivellement
W. Embacher

Die Arbeit über das (Dynamische Nivellement) oder die Höhenbestimmung aus
Schweremessungen hat der Verfasser in folgende Abschnitte gegliedert:
1. Einleitung
2. Ergänzung zur Arbeit: Die Bestimmung der orthometrischen Korrektion des

geometrischen Nivellements aus Lotabweichungen und aus dem Störpotential
T mit den Untertiteln:
Der theoretische Schleifenschlussfehler
Die rohe Lattenhöhe
Die dreigliedrige orthometrische Korrektion

3. Definition der Gradienten
4. Bestimmung der Höhe über dem Niveausphäroid mit dem Bezugsgradienten
4. Bestimmung des Bezugsgradienten aus örtlichen Gravimetermessungen
6. Schlussfolgerung.
Es wird gezeigt, dass im allgemeinen für Punkte der physischen Erdoberfläche
durch zwei Schwere- und zwei relative Lagemessungen bei bekanntem Yo-Wert
die Höhe, bezogen auf die gewählte Ausgangsfläche, bestimmt werden kann. Ein

durchgerechnetes Beispiel soll dem besseren Verständnis der neuen Gedankengänge

dienen.

L'auteur a subdivisé son travail concernant le (nivellement dynamique) ou la
détermination de l'altitude à l'aide de mesures gravimétriques, de la manière
suivante:
1. Introduction
2. En complément à son travail: la détermination de corrections orthométriques

pour le nivellement géométrique à partir des déclinaisons de la verticale et de la
perturbation potentielle T, sous-titrée de la façon suivante:
L'écart de fermeture théorique des boucles de nivellement
L'altitude brutte mesurée au moyens de lattes
Les trois corrections orthométriques

3. Définition des gradients
4. La détermination de l'altitude au-dessus du sphéroïde de niveau à l'aide du

gradient de référence.
5. La détermination du gradient de référence à l'aide de mesures gravimétriques

locales
6. Conclusions finales.
L'auteur montre qu'en général il est possible de déterminer l'altitude d'un point de
la surface terrestre, se rapportant à une surface de référence choisie au préalable, à
l'aide de deux mesures gravimétriques et de deux mesures relatives de la position
du point connaissant la valeur de y0. Afin de mieux faire comprendre le sens des
idées nouvelles, l'auteur y a ajouté un exemple numérique.

1. Einleitung
Nach dem Prinzip der Einfachheit der
Natur und dem Prinzip der pragmatischen

Ordnung [E] ist es sinnvoll,
komplizierte Vorgänge oder Gebilde auf
einfachere zu beziehen oder in bezug
auf einfachere zu messen. Danach
scheint sich der Weg abzuzeichnen,
Punkte der gestörten Niveauflächen der
physischen Erdoberfläche, die verschiedenen

analytischen Flächen angehören,
auf eine gemeinsame ungestörte Fläche
zu beziehen, welche mathematisch und
physikalisch eindeutig definiert ist. Die
im Oberflächenpunkt gemessene
Schwerkraft, verglichen mit der normalen

Schwere auf der Bezugsfläche, und
die Gradienten im Oberflächenpunkt
bieten sich als Referenzgrössen an.
In jahrzehntelanger Arbeit hat der
Verfasser versucht, zunächst rein empirisch,

dann durch Modellrechnungen

und schliesslich mathematisch-physikalisch

Zusammenhänge zwischen den

genannten Parametern und dem
Abstand zwischen Oberflächenpunkt und
Bezugsfläche zu finden. In vorliegender
Arbeit sollen diese Erkenntnisse
veröffentlicht werden, um eine breitere Basis
für weitere Forschungen zu schaffen.

2. Ergänzung zur Arbeit: Die Bestimmung

der orthometrischen Korrektion
des geometrischen Nivellements aus
Lotabweichungen und aus dem Störpotential

T.

Der theoretische
Schleifenschlussfehler
Abb.1 zeigt Ausschnitte des österreichischen

Präzisionsnivellements mit dem
Stand des Jahres 1965. Die jeweils drei
Angaben in den einzelnen Schleifen
bedeuten in mm:

I.IAh
2. Theoretischer Schleifenschlussfehler

<TS> g-gm
gm

Ah

(wobei g den Mittelwert der Schwere
aus den beiden Standpunkten mit dem
Höhenunterschied Ah und gm einen
mittleren Schwerewert bedeutet).
3. Der sogenannte Messfehler <Mf>

ZAh -TS. Betrachten wir z. B. die Schleifen

Nr. 8 und Nr. 9, so sehen wir, dass
die lAh bei der einen -6,45 mm und
bei der zweiten + 7,22 mm beträgt,
Werte, die bei einer nivellierten Strecke
von ca. 250 km sehr gut und durchaus
möglich sind.
Der theoretische Schleifenschlussfehler
beträgt bei der Schleife Nr. 8
+ 12,23 mm und bei der Schleife Nr. 9

-27,58 mm. Diese Werte sind
unwahrscheinlich, da die nivellierten Wege bei
beiden Schleifen etwa die gleiche
Topographie aufweisen.
Fasst man alle Schleifen des oben
angeführten Nivellements in mehrere
Gruppen zusammen und berechnet den
mittleren Kilometerfehler dieser Gruppen

einmal aus lAh (in Tabelle 1 mit x

bezeichnet) und das zweitemal aus
dem Messfehler (xx), so erkennt man,
dass die Einführung des theoretischen
Schleifenschlussfehlers fehlertheoretisch

keine Verbesserung bringt.
Vielmehr sieht man aus der Zerlegung von
TS - ^fü - 1 Ah, dass der theoretische
Schleifenschlussfehler mit den
Höhenunterschieden Ah korreliert ist. Die

IgAh ist bei gleichem Anfangs- und
Endpunkt des Nivellements Null, da in

diesem Fall kein Potentialunterschied
vorhanden ist. Die Summe der Lattenlesungen

lAh bei einer Schleife bzw. der
mittlere Kilometerfehler ist das Kriterium

für die Güte des Nivellements.

Die rohe Lattenhöhe
Bringt man an die Summe aller
Lattenabschnitte die Normal- (oder Bessel-)
Reduktion an (z.B. nach Gleichung 3,2
[2]), so gibt diese den Abstand der
ungestörten Niveauflächen durch den
Anfangs- und Endpunkt des Nivellements.

Die dreigliedrige orthometrische
Korrektion
Es sei noch einmal darauf hingewiesen,
dass die dreigliedrige orthometrische
Korrektion (d.h. die dynamische
Wegkorrektion und die vertikale dynamische
Korrektion im Anfangs- und im
Endpunkt eines Nivellements) nicht Höhen
über dem Geoid, sondern die orthome-

Vermessung. Photogrammetrie, Kulturtechnik, 4/82 117



trische Korrektion mit Annahme einer
hypothetischen Dichte in bezug auf eine
ungestörte Niveaufläche ergibt ([1] Seite
21 ff.).

3. Definition der Gradienten
Unter Gradienten bezeichnen wir in der
Schweremessung die Änderung der
Schwerkraft in einer bestimmten Richtung.

Wir unterscheiden im speziellen
den Horizontal- (H) und Vertikalgradienten

(V). Je nachdem, ob wir von einer
Änderung der Schwerkraft in einem
Medium mit der Dichte Null oder einer
Dichte grösser als Null sprechen,
unterscheiden wir zwischen <Äusserem> und
<lnnerem> Gradienten (H,, Ha, V,, Va).
Unter der normalen Änderung der
Schwerkraft in vertikaler Richtung
verstehen wir den <Normalgradienten> (^

N) mit 308,56 mgaHO"3.
Für den Gradienten, welchen wir aus
gemessenen Schwere- und Lagedifferenzen

ableiten können, hat der Verfasser

die Bezeichnung <Trennflächengra-
dient> (HT, VT) eingeführt ([3] Seite 10
und [4] Seite 745).
Aus diesen Arbeiten übernehmen wir
folgende Gleichungen:

Hi + Ha
VT

Vi + Va

Ag + vAh T
As
-T--Hm -cosaAh Tx

As
-n- • Hm • sma 0Ah Ty

1.0

Wir legen die x-Achse in Richtung RT

(Abb. 2), dadurch erhalten wir aus Gig.
1,0 die Gleichung

A3 + v - AI
Ah T Ah HT 0 1,1

Wenn H, - Ha wird Hj 0 und wir
erhalten

VT
Vi+Va _ AS

Ah
1,11

das heisst, dass dort, wo der horizontale
Trennflächengradient Null ist oder wo

sich seine Wirkung durch geeignete
Messungsanordnung aufhebt, der vertikale

Trennflächengradient das Mittel
aus äusserem und innerem Vertikalgradienten

ist.

Ausschnitt der Skizze für das Präzisionsnivellement 1965
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Abb 1

Dazu ein empirisches Beispiel:
In den Messpunkten Planötzenhof und
Peerhof ist der Horizontalgradient sehr
klein. Die Summe aus dem gemessenen

äusseren Vertikalgradienten und
dem mit bekannter Dichte berechneten
inneren Vertikalgradienten ist dort etwa
doppelt so gross wie der nach ([2]
Seite 252) gemessene horizontale
Trennflächengradient und wie die
Messungsdifferenz ^. Schliesslich wurde
vom Verfasser noch der Begriff <Be-

zugsgradient) eingeführt:
Aus der Arbeit [1] des Verfassers
entnehmen wir die Gleichungen:

4,10h q - Yo + 3h ^

IS. - l^L
3h 3h

und

12
3h

g - Yo + ffc.„ 3Y
h 3h

4.11

6g.Den so definierten Gradienten ^nennen
wir Bezugsgradient, weil er, wenn wir
ihn kennen, die Höhe über dem Bezugs-
niveausphäroid angibt. Den Therm von
Bruns ^ l wollen wir als kleine Grösse
zunächst vernachlässigen. Der
Bezugsgradient ist die auf einen Höhenmeter
bezogene Differenz zwischen der
Schwerkraft im Messpunkt und der
zugehörigen theoretischen Schwere im
Fusspunkt der Lotlinie auf dem
(selbstverständlich ungestörten) Bezugsni-
veausphäroid, vermehrt um den
doppelten Normalgradienten.
Er liefert daher Höhen, die sich auf das
Nieveausphäroid beziehen, für welches
die Yo-Werte berechnet wurden.
Der Bezugsgradient ist definitionsge-
mäss eine konstante Grösse für die
jeweilige Lotlinie zwischen Null und der
Höheh.
Nachdem die Zunahme der Normal-
schwere^ auch als konstant anzusehen
ist, kann man bei der Integration über h

den anomalen Schweregradienten, d.h.
die Differenz aus dem Bezugsgradienten

und dem normalen Schweregradienten

(j^-^) als Konstante vor das
Integralzeichen setzen.
Der Ordnung halber soll hier erwähnt
werden, dass in der Arbeit [2] des
Verfassers der Bezugsgradient noch als
dnnerer Trennflächengradient)
angeführtwurde.

Abb. 2 zeigt den Querschnitt eines 45°-
Modells, welches in der y-Richtung eine
wesentlich grössere Ausdehnung hat
als in der x- und z-Richtung. Seine Höhe
beträgt 1000 m, und es wurden für eine
Höhe von 500 m die Vertikalanziehungen

in den 4 Punkten A. B, C, D für die
Dichte 1 berechnet ([3] Seite 8ff). Die
sich daraus ergebenden Gradienten
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wurden bestimmt und sind aus dieser
Abbildung zu ersehen.
Wir entnehmen der Arbeit [4] des
Verfassers die transformierte Grundgleichung

zur Berechnung der Vertikalanziehung

in den Punkten A, B, C, D
(Abb. 2).

P± 2k ¦ a ¦ (ßh+dln PT

PS
5,1

In unserem Beispiel ist für die Höhe von
500 m der zweite Ausdruck in der
Klammer gleich Null, und es bleibt

P 2k aß-h

bzw.

h
2k2aß

5,02

5,03

Nach unserer Definition ist also der
Nenner der Gleichung 5,03, 2k2oß der
Bezugsgradient. Es gilt nun zu untersuchen,

ob dieser Gradient der
Trennflächengradient ist. In der Arbeit des
Verfassers ([4] Seite 11 Off.) wurde dies
schon nachgewiesen, nämlich dass die

km Diff + T.S - M.f. Ah2 i \A.f. 2-1

1 161 -44.92 48,88 3,94 38,68 -40,39
2 191 - 6,24 30,21 -36,45 - 2.54 21,33 M f =iAh-TS
3 70 - 8.78 6.34 -15,12 -40.07 - 7,30
4 186 -48.85 26,43 -22,42 11.93 - 9,44
5 110 -36.92 5,06 -31,86 59.93 48.78 T.S.=
6 120 23,01 6,09 16,92 -45.29 -42.44
7 100 -22,28 3.24 -25,52 15,83 - 6,84
8 244 - 6,45 12.23 -18.68 13,67 53.48 =-g-gmAh
9 216 7,22 27.58 34.80 - 1,48 -19,17 9m

V 152 5,74 9,89 15.63 21,51 -23.77
VI 265 27,25 35.36 - 8.14 5,25 65,11 =-(— -1)Ah

VII 132 32,50 24.47 56,97 -15,93 -41.85 9m

Vili 137 32,57 1,45 15,12 6,23 - 3,42
IX+ X 191 22.80 11,10 11,70 67,72 - 7,76 x) xx)

2365 99,68 148.65 ±2,15 ±2,17
10 258 -46.15 11.15 -35,00 60,61 44,89
11 163 14.46 4,58 9,89 -45,49 -37,01
12 144 -31.03 3,91 -27,12 13,80 11,06
13 158 -17.23 1.17 -16,06 9.03 0,50
14 210 - 8,20 7,37 -15,56 - 2,44 12,18
15 235 -10.64 7,26 - 3,38 -12.01 -20,28
16 113 -22.65 1,01 -23,66 36,27 19,37
17 227 13.62 9,13 4,29 -17,35 - 5,12
18 172 - 3,73 2,90 - 0,83 32,39 46,37

19a 265 36,12 9,42 45.54 -31,39 -44.89
19b 140 4,73 4,08 0,65 35,35 6,80

20 272 40,08 32,64 7,45 -92,64 - 59,34
21 226 -52,56 0,67 -51,89 60,78 60,30
32 118 8,22 0,19 8.41 5,84 10,34
33 124 14,06 4,69 18.75 -47,75 -52.60
36 127 -33,69 0,16 -33.85 -12.46 - 1,15

2952 58,97 41,35 ±1,88 ±1,78
42 a 189 -37.72 1,32 - 36,40 58.35 51,80

43 181 20,63 5,23 15,40 15.59 21,67
48 105 36,22 0,85 37,07 -25.96 -28,86
24 153 10,26 2.05 8,21 -22.60 -18,68

42 c 164 -12,34 1,87 -10,47 12.13 - 0,79
42 b 133 - 0,21 11,05 -11,26 18.42 31,46

44 198 18,21 18.01 20,20 -51,90 - 54,05
37 127 -33,69 0.16 -33,85 1,27 11.93

38 a 238 -32.42 10,42 -21,92 55,67 61,65
39 197 23,25 16,48 39,73 -42,71 -49,01

38 b 182 -19,46 9,48 - 9,28 21,51 18,59
22 230 2,05 7,26 9.31 -39 77 -4571

2323 26,77 58,16 ±1.91 ±1.95
25 210 - 3.05 0.03 - 3,08 - 3,57 - 2,68
27 126 - 6.62 0,90 - 5,72 12.28 9,42
28 96 5,66 1,96 3,70 - 4,87 - 6,40
26 171 0,79 3,49 - 2,70 - 4.68 - 0,20
29 134 - 3,89 0,99 - 2,90 26,83 26,94
30 123 22,94 1,01 24,04 -11,26 -13.74
41 163 11,68 1,35 10,33 -13,14 -15.95
31 183 - 1.46 4,16 - 5.62 - 7,06 - 1.59

40 a 100 - 8.52 1.31 - 7,21 -14,61 -26,55
40 b 154 -23,13 9,63 -33,76 48,81 47,79
40 c 212 26,68 12,67 14,03 -37,99 - 26,46

34 226 -11,31 1,12 -12,43 67,01 54,55
35 392 55,70 13,58 42,12 -62,09 -49,71
47 170 - 6,39 1,20 - 7,59 10.58 11,44
23 193 4.19 0.34 3,85 -26.83 -28,98
46 143 -22,64 2.46 -25,13 19.59 22,05

2796 51.99 4.21 ±1.27 ±1.25

27341 252 37

Tab.1

Differenz der Vertikalkomponente der
Anziehungskraft auf Punkt A weniger
dieser auf Punkt C gleich 2k2oß ist. Da,
wie schon besprochen, dies auch die

Grösse des vertikalen Trennflächengradienten

ist, wurde also anhand dieses
Modelles gezeigt, dass für den Fall,
dass innerer und äusserer Honzontal-
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gradient entgegengesetzt gleich gross
sind, der Trennflächengradient auch
Bezugsgradient ist.
Lassen wir im Modell (Abb. 2) den
Winkel ß 180°, d.h. 2tt werden, so
erhalten wir die Bouguersche Platte,
deren Anziehung P auf einem
Oberflächenpunkt bekanntlich

P 211 k2CT-h 5,04

ist, dies stimmt auch mit Gig. 5,02
überein. Der Bezugsgradient ist in
diesem Fall 2n k2o. Auch hier ist

VT
Vi+Va

1.11

denn V, ist der <Prey-Gradient): 4tt k2o

und Va ist in diesem Fall Null. Auch hier
gilt wieder die Erkenntnis, dass dort, wo
der horizontale Trennflächengradient
Null ist, der vertikale Trennflächengradient

zugleich Bezugsgradient ist.

4. Bestimmung der Höhe
über dem Niveausphäroid mit dem
Bezugsgradienten
Wendet man die Gleichung 4,10 auf
zwei Punkte an und bildet ihre Differenz,
so erhalten wir

h2-h1 _ q2-qi+AYQ
3g2

3h

,!SLL

2*1
3h

iS2_
3h )hi

i£2
3h ,ll

il3h

3h

C2 - Cl

3g2
3h

.11
'3h 4,12

Auch hier können wir zunächst den
letzten Ausdruck wegen seiner Kleinheit
vernachlässigen. Man erhält den
Höhenunterschied zweier Punkte in Funktion

der gemessenen Schwere- und y0-
Werte der beiden Bezugsgradienten
und der Höhe des Ausgangspunktes, h,
lässt sich aus Gleichung 4,12 eliminieren,

und wir erhalten folgende
Gleichungen zur Bestimmung des
Bezugsgradienten des Folgepunktes:

_ g2-Y20
gi-yio

1

3g2
3h ,ll-3h

B

agi
3h -

A921 + Ayo2i
Ah 21

Bd+A2|j)

2 Û
3h

3h
1 + A.B

iSjL
3h

4,14

Wenn in einem Punkt der physischen
Erdoberfläche der Schwerewert und
der Bezugsgradient bekannt sind, kann
mit Hilfe des bekannten Höhenunter-

Punkt g-Yo 5h H-Hs

Aldrans
Arzl
Planötzen
Patscherkofi
Hafelekar
Vols
Kranebitten
Mentelberg
Peerhof
Hochtor
Badgastem
Iselsberghöhe
Gutenbrunn

759.20 539,00 280,78 247,28 +¦0,01
673,08 542,00 280,41 200.51 0
777.60 526,00 295,58 237.00 0

2246,55 213,00 602,72 348,83 + 0,03
2333,56 198,00 627.10 348,39 -0,01

665,15 551,47 267.61 214,79 + 0,16
683,97 546.14 275,11 214,90 -0,01
622,65 561,39 257.91 202,91 -0,01
619,32 561,34 260.14 197,08 0

2515,20 156,67 647.66 359,63 -0,08
1089.09 417,17 388,90 260,04 -0.02
1207,12 441,77 339.99 335,14 + 1.40
1228,02 406,48 389,58 299,88 -0.01

Tab. 2

schiedes zum Folgepunkt der
Bezugsgradient dieses Punktes und somit mit
Gleichung 4,10 aus dem gemessenen
Schwerewert die Höhe des Punktes
über der Bezugsfläche gerechnet werden.

Zur Steigerung der Genauigkeit eines
ganzen Netzes von Höhen, welche aus
Schweremessungen abgeleitet wurden,
kann man die einzelnen Punkte mit Hilfe
der Formelgruppe 4,14 verbinden.
Tabelle 2 zeigt die Anwendung dieser
Formelgruppe auf verschiedene Punkte
im Gebirge. Die ersten 8 Punkte wurden
an den Messpunkt <Planötzenhof> des
Innsbrucker Testnetzes [2] und die
restlichen Punkte an die Station <Em-

bachkapelle> [6] angeschlossen. Bis auf
den Punkt <lselsberghöhe>, dessen
Schwerewert fehlerhaft sein dürfte,
zeigen die abgeleiteten Höhen
Übereinstimmung auf Zentimetergenauigkeit
mit den bekannten Höhen. Diese
angeführte Genauigkeit ist hier deshalb
möglich, weil die beiden Bezugsgradienten,

von denen ausgegangen wurde,

nicht gemessen, sondern rechnerisch

(Gleichung 4,14) bestimmt wurden.

5. Bestimmung des
Bezugsgradienten aus örtlichen
Gavimetermessungen
Im Abschnitt 3 wurde anhand eines
einfachen Modelles und auch mit Hilfe
der Bouguerschen Platte gezeigt, dass
man dort, wo der horizontale
Trennflächengradient Null oder sehr klein ist,
erwarten kann, dass der mit Hilfe der
bisher üblichen Gradientenmessung
([2] Seite 252) bestimmte Trennflächengradient

Bezugsgradient ist.
Wir schreiben nochmals die Gleichung
für den Bezugsgradienten an:

IS
3h

g - y o + 2 11
3h

4,111

Für einen Punkt einer benachbarten
Lotlinie mit einer Höhe h + Ah und einer
Schwere g + Ag beträgt die Änderung
des Bezugsgradienten

A (|f)Ag,Ah A3.
h crii2

*fl- Ah

4,112

Wir sehen, dass sich die Änderung des
Bezugsgradienten auf einem schrägen
Hang in bezug auf den Zentralpunkt
vergrössert, während diese Änderung
auf einem Kuppenpunkt als Zentralpunkt

gegen Null gehen kann. Wir
schliessen daraus, dass man auch auf
einem Kuppenpunkt bei geschickter
Messungsanlage aus der üblichen
Gradientenmessung ([2] Seite 252) einen
brauchbaren Bezugsgradienten erhalten
kann. Darüber soll in einer andern
Arbeit berichtet werden.
Der allgemeine Fall zur Bestimmung
des Bezugsgradienten ist also der
schräge Hang. Wir gehen auf das
Beispiel <Hochtor> zurück:
Der Messpunkt liegt auf einem schrägen

Hang mit einem Geländewinkel 5

23973, der gemessene Schwereunterschied

zu yo beträgt - 647 660 mgal 10"3

und der Schwereunterschied in der
Fallinie pro m ist

Ag
-217.0010~3mgal.

h

[m]
2700

i

P5|

2600 K t/
2500 Ps,/
2400 P2,Z
2300 p^/
2200 y/
2100 / '

2000
Po

[ mgal • 10 j
1 —

il3h

Abb. 3
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Wir wissen, dass der Punkt eine Höhe
von 2515,20 m hat, doch wir wollen
diese Höhe aus den oben gemessenen
Grössen erhalten!
In Abb. 3 wurden die Höhen von 5
Punkten von 2300 m bis 2700 m als
Ordinaten und die Bezugsgradienten
dieser 5 Punkte nach Gleichung 4,111

berechnet, bzw. deren Ergänzung auf
2 |^ (da dies nur eine konstante
Nullpunktverschiebung bedeutet) als
Abszissen aufgetragen. Der Punkt, dessen
Bezugsgradient der Höhe von <Hochtor>
entspricht, muss auf dem Linienzug P,
bis P5 liegen, dessen mittlere Steigung

tana.
tìS.) _ (iS)

\ - h.i
5,0

beträgt. Für die Punkte zwischen h

2400 und h 2600 m beträgt tan am
0,1038. Damit haben wir den geometrischen

Ort aller Endpunkte der
Bezugsgradienten für den vorgegebenen
Schwereunterschied und die angenommenen

Höhen.
Wir wissen ferner, dass der horizontale
Trennflächengradient durch die
Gleichung

HT
AS + iS > Èh

v Ah 3h ' As

AS + iS^
Ah 3h ;

5,1

tana

bestimmt ist.
Wir haben bereits weiter oben für den
Normalgradienten die Bezeichnung N

festgelegt. Mit AN bezeichnen wir die
Grösse, um die der Bezugsgradient
kleiner oder grösser als N ist, und
nennen AN den <Störgradienten>.

Es ist damit

IS _ 2 ll3h 3h
-N + AN

und 12 N+AN
3h

In Abb. 4 liegt wieder dasselbe
Koordinatensystem vor wie in Abb. 3.

Der Punkt Ph hat von einer Linie mit der
Abszisse 2N den Abstand -N + AN und
entspräche der Höhe von <Hochtor>.

Wir können auf dieser Abbildung die
Gleichung 5,1 wie folgt ablesen:

HT (N + AN + AS,

und

h SZOo
-N+AN

tanfi 5.10

5,2

tancfm ist die Steigung der Geraden
PrjPh, solange wir diese Verbindung
genähert als Gerade annehmen.
Der Bezugsgradient des Punktes Prj

ergibt sich mit

(jS)u N+AN

ASi- (N+AN+ -t£) tanfitanaAh m

5,11

und die Höhe hu ergibt sich mit

h 2_^_L2
U -N+AN-(N+AN+AS)tanfitanaAh'

Nach Abb. 4 gilt die Gleichung

h - h Hm

m

5,21

6,0

HOCHTOR : H 25l5.20m

g-Xo

Ag_
Ah

647660 mgallO

-2l7.00mgall0

-3

-3

h

[m]

hu

AN

33 ÓR'

|f [mgal-IO-3]
00
oro

3h

denn man sieht aus der transformierten
Gleichung 5.10

N +AN + A2
ih

Ah
AS tanfi 6,1

dass der Höhenunterschied Ah
zwischen den Punkten Ph und Pu zahlen-
mässig dem horizontalen Trennflächengradienten

entspricht.
In Abb. 4 bezeichnen wir die Strecke
vom Koordinatenursprung bis Pu mit u.

Dann können wir aus Abb. 4 die beiden
Gleichungen

(N+AN) +|2
(N+AN) - U

HTcOSfi e
62

HTtanam= 6

ablesen. Sie würden [bei bekanntem u

die Grössen AN und Ht ergeben.
Aus Gleichung 6.2 sehen wir, dass der
Bezugsgradient für die Höhe h

(|2) =N+AN=u+ HTtanam

5,21

vom Einfluss des Horizontalgradienten
Ht auf u abhängt, während der
Bezugsgradient u von diesem Einfluss
unabhängig ist.
In Abb 5, bei welcher das selbe
Koordinatensystem vorliegt wie in Abb. 4,
bezeichnen wir nach Gleichung 4,10 die
Höhe im Punkt R mit

H 2Z1£
N -N

und den Winkel on mit

tana., Ah
N

6,3

6,4
H.

N

Abb. 4

Weder die Höhe Hn noch der Winkel
on ist vom Horizontalgradienten abhängig.

Der geometrische Ort aller
Peripheriewinkel mit der Grösse on ist der Kreis
über die drei Punkte R, S, T.

Wir wissen aus der Geophysik [7]
(Abb. 6), dass zwischen einer kleinen
horizontalen ebenen Flächenbelegung
und dem Winkel Y, unter dem sie vom
Aufpunkt aus gesehen wird, die Beziehung

besteht

3g(P) 2fah1 6,5

wobei 5g(P) die Wirkung eines unendlich

langen Trapezbalkens von der Dicke
h n-dh und o die Dichte ist. In unserem

Fall entspricht ög(P> dem (g-yo).
die Grössen h und o sind zwar
unbekannt, aber pro Standpunkt konstant.
Der Winkel Y ist gleich dem Winkel on,
dessen Tangente durch Gleichung 6,4
festgelegt wurde.
Damit können wir den Kreis über den
Punkten RST als geometrischen Ort
aller Punkte definieren, deren Winkel
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Ag 2N
Ah

\ \\ \
\ \\\\\

Abb 5

über der Sehne ST konstant ist. Die
Höhe dieser Punkte über der Sehne ST
wird aus der konstanten Schweredifferenz

(g-yo) ur|d dem Bezugsgradienten
berechnet. Die Schweredifferenz (g - y0)

entspricht dem konstanten Winkel W

bzw. on, und der Bezugsgradient ist
vom zugehörigen horizontalen
Trennflächengradienten Ht unabhängig.
Im Punkt Pu gilt nach Gleichung 4,10

(g-yo) h„ (U-2N) 6,31

Wir sehen, dass der Bezugsgradient u

vom Einfluss des Horizontalgradienten

p

I

i

L -^dh h

Abb. 6

122

Ht unabhängig ist, denn Ht tan a ist
dort Null. Nachdem der Kreis mit dem
Peripheriewinkel V bzw. c<n der geometrische

Ort aller Scheitelpunkte ist,

muss der Schnitt dieses Kreises mit
dem Linienzug P, - P5 den Punkt Pu

ergeben.
Die Massstäbe in der Abszissenrichtung
und in der Ordinatennchtung sind
willkürlich gewählt. Damit der Kreis mit
dem Peripheriewinkel V c<n tatsächlich

ein Kreis ist, soll der Längenmassstab

durch den Faktor I verändert
werden, so dass die beiden Schnittgleichungen

2^2x + y
xtana'

e

+ d
6,6

einen Bezugsgradienten u liefern, dessen

zugehörige Höhe hu mit der aus der
Höhe h und dem Horizontalgradienten
Ht abgeleiteten Höhe hu (Gleichung
6,0) übereinstimmt.

Am Beispiel Hochtor soll die
Höhenbestimmung gezeigt werden.
Dazu folgende Angaben:

(g-Yo) -647 660mgal10"3
tan 5 0,391, cot 5 2,55754
^=-217,00 mgaMO"3.

1. Durchrechnung mit c 4:
Nach Gleichung 5,0 wird tanam
0,1038 mit den Höhen h 2400 m und
h 2600 berechnet.
Nach Gleichung 6.3 wird HN 2098.98
bestimmt. Hn dividiert durch c 4 gibt
HN 524,75. tan am 0,4152, erhalten
aus der Strecke MnQ und der verkürzten

Strecke QR. Aus der Gleichungsgruppe

6,6 erhalten wir den Horizontalabstand

des Punktes Pu vom Mittelpunkt

MN mit 76,74; 417,06 ist der
Abstand des Mittelpunktes vom
Ursprung. Wir erhalten u mit 340,32, den
Gradienten AN mit 31,76 und den
Bezugsgradienten (2N-u) mit 276,80;
dieser gibt die Höhe hu 2339.81. Mit
Hilfe der Gleichungsgruppe 6,2 erhalten
wir Ht mit 50,26 und die Grösse
(N+AN) 345,54, welche die Höhe
h 2384,78 und aus Gleichung 6,0 die
Höhe hu 2334,52 ergibt. Wir erkennen

eine Klaffung von + 5,29.
Mit c 5 klaffen nach dem analogen
Rechnungsvorgang die beiden hu um
+ 0.35.
Mit c 6 wieder um -4,12 Einheiten.
Die gesuchte Höhe h 2516,85 scheint
mit dem Faktor 1 der Lösung der Aufgabe

am nächsten zu kommen. Eine
weitere Verengung des Resultates liesse

sich durch Wahl entsprechender
Faktoren erzielen.

Dazu wieder das Beispie/ Hochtor:
(Aufstellung siehe gegenüberliegende
Seite)
In gleicher Weise wurde die Höhe für
weitere Punkte, wie für Patscherkofi und
Hafelekar, für welche 2 Schweremessungen,

die entsprechenden y0-Werte
und der Schwereunterschied ^ in der
Fallinie vorlagen, berechnet; auch diese
Ergebnisse stehen mit der
Messgenauigkeit in Einklang.
Zur Berechnung der Höhe von Punkten,
deren HN>h ist, muss der Bezugskreis
zu Hn gespiegelt aufgetragen werden.

6. Schlussfolgerung
Ohne speziell auf Genauigkeitsüberlegungen

einzugehen, wurde in den
vorangehenden Abschnitten gezeigt,
dass der Bezugsgradient auf allen
Punkten der physischen Erdoberfläche,
auf denen überhaupt Vermessungen
durchgeführt werden können, bestimmt
werden kann. Damit wurde auch
gezeigt, dass es möglich ist, überall
Höhen, bezogen auf das gewählte
Niveausphäroid, abzuleiten, es gilt nur
noch, die Messgenauigkeit zu steigern
und die Messanlage dem Verfahren
anzupassen. Weiter geht aus vorliegender

Arbeit hervor, dass für einen Punkt,
der bestimmten topographischen
Verhältnissen entspricht, und bei bekannter
Höhe dieses Punktes sein absoluter
Schwerewert aus Gradientenmessungen

abgeleitet werden könnte.
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c 4
HN 2098,98 524,75

1 + tan2 a'm

H

2400
2600

200
0,1038
0,4152
1,17239

209,98 + 0,4152 V 329,952 ¦ 1,17239 - 209.982

1,17239

/-» 2339,81 «

Gradient

38,70
59,46
20,76

329,95

417,06

76,74

340,32
31,76

— 276,80
HT 50,26
N + AN 345,54 ¦ - 2384,78

\ 50,26
2334,52

0,519
1,26936

c=5
419,80

209,98 + 0,519 V 290.012- 1,26936 - 209.982

1,26936

Hz 55,83
N + AN 359,79 C

2461.37

2516,85
55,83

2461,02

r 290,01

417,06

63,07

353,99
45,43

263,13

c=6
349,83 0,62286

1,38788

Ï209,98 + 0,62286 V 265,792 ¦ 1,38788-209,98"
1,38788

/-» 2620,93 *

r 265,79

_ 417,06

47,05

370,01
61,45

¦247,11
Hz 66,36
N + AN 376,48 2691,41

V 66,36
^» 2625,05

Es wurden in dieser Arbeit einige
Gradienten neu definiert, daher schlägt
der Verfassser vor, in der Gradientenforschung

einen neuen
Forschungsschwerpunkt zu setzen, da auf diesem
Gebiet die Brunsschen Formeln erst
einen Beginn darstellen.
Aus Abschnitt 2 erkennt man, dass die
Höhenbezeichnungen und Reduktionen
neu zu überdenken wären.
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Der Topomat
H. Matthias

Mit <Topomat> wird die nächste Generation geodätischer Instrumente bezeichnet,
die ausserordentliche Schritte in der Automation einzuleiten verspricht. Der
Autor ist überzeugt, dass derartige Entwicklungen schon sehr bald bevorstehen.

Le nom (Topomat) désigne la prochaine génération d'instruments géodésiques qui
promet de nous lancer d'un pas accéléré dans /'automation. L'auteur est convaincu
que de tels développements se présenteront dans un avenir très proche.

1. Einleitung
Die beiden z. Z. am Lehrstuhl für Amtliche

Vermessung und Ingenieurvermessung
laufenden Forschungsprojekte, die

der Instrumentenentwicklung gewidmet

sind, nähern sich dem Abschluss Deshalb

beschäftigen wir uns mit der
Einleitung eines nächsten Vorhabens.
Dabei sollte es um die sehr genaue
Aufnahme von Sohlenprofilen von ste¬

henden und fliessenden Binnengewässern

gehen. Bei der gedanklichen
Auseinandersetzung mit möglichen Lösungen

reifte die Konzeption des Topoma-
ten. Ein derartiges System wird natürlich

auch für Stückvermessungen aller
Art, für die Ingenieur-Vermessung und
in der Industrie von ausserordentlicher
Bedeutung sein.
Eine Umschau in der Literatur, jedoch
ohne Anspruch auf Vollständigkeit [1],
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