Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 80 (1982)

Heft: 2

Artikel: Etdue hydrologique de bassin versant de la Seymaz (GE)

Autor: Sautier, J.-L.

DOI: https://doi.org/10.5169/seals-231150

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Etude hydrologique du bassin versant de la Seymaz (GE)

J.-L. Sautier

L'urbanisation des zones rurales, comme l'extension des zones urbaines, affecte le microclimat et modifie l'hydrologie de surface et souterraine de leur bassin versant. Du point de vue hydrologique, l'urbanisation se caractérise par l'augmentation des surfaces imperméables.

Depuis 1977, l'Institut de Génie rural a entrepris avec le concours du Service des lac et cours d'eau (GE) l'étude hydrologique du bassin de la Seymaz. De nombreux pluviographes et limnigraphes équipent ce bassin versant d'une surface d'environ 38 km².

L'utilisation d'un modèle hydrologique a été nécessaire pour prédéterminer les débits de crue en de nombreux points du cours d'eau et en fonction du degré d'urbanisation. Les résultats, très satisfaisants, permettront d'élaborer des variantes. En complément et vu les problèmes rencontrés, des propositions sont faites pour l'élaboration d'un règlement des eaux.

Die Urbanisierung der ländlichen Zonen und die Ausdehnung der Bauzonen haben Auswirkungen auf das Mikroklima und verändern Oberflächen- und Bodenwasserregime der entsprechenden Einzugsgebiete. In hydrologischer Hinsicht zeichnet sich die Urbanisierung durch eine Vermehrung der wasserundurchlässigen Flächen aus.

Seit 1977 betreut das Institut für Kulturtechnik der ETHL unter Mitarbeit des kantonalen Wasserwirtschaftsamtes eine hydrologische Untersuchung des Einzugsgebietes der Seymaz. In diesem Gebiet von ca. 38 km² sind zahlreiche Regen- und Abflussmessstationen angebracht.

Dabei wurde ein hydrologisches Modell verwendet, das erlaubte, die Hochwassermenge in Funktion des Urbanisierungsgrades an beliebig vielen Punkten des Wasserlaufes vorauszubestimmen. Aufgrund der sehr befriedigenden Resultate können nun verschiedene Varianten ausgearbeitet werden. Zusätzlich werden in Anbetracht der dabei aufgetretenen Probleme Thesen für ein Wasserwirtschaftsreglement aufgestellt.

1. Introduction

L'urbanisation des zones rurales comme l'extension des zones urbaines affecte le microclimat et modifie l'hydrologie de surface et souterraine de leur bassin versant.

D'un point de vue hydrologique, l'urbanisation, par la création de surfaces imperméables, provoque:

- une augmentation de la vitesse de l'eau qui s'écoule vers les collecteurs, canaux et cours d'eau
- une réduction du temps de réponse du bassin versant
- une augmentation des débits de pointe
- une augmentation des volumes de l'écoulement superficiel
- une diminution de la recharge des aquifères
- une modification de la stabilité des cours d'eau
- un changement important de la qualité des eaux.

Les effets écologiques ne sont pas absents de cette transformation du milieu rural en milieu urbain. Dans les pays industrialisés comme dans les pays en voie de développement, les effets hydrologiques de l'urbanisation ne sont très souvent observés qu'à la suite d'inondations, alors qu'ils pourraient être prédéterminés. Les plans d'aménagement devraient tenir compte de ces effets. Les solutions aujourd'hui adoptées pourraient s'en trouver fortement modifiées.

Depuis quelques années, de nombreuses études sont entreprises particulièrement aux USA, mais également en Europe, pour prédéterminer les débits de pointe et les volumes d'écoulement en fonction de l'augmentation des surfaces imperméables. Toutefois, ces études s'attachent souvent au redimensionnement et à la gestion hydraulique de réseaux de collecteurs, au dimensionnement de réseaux dans des quartiers en cours de réalisation. Une étude d'impact au niveau des cours d'eau récepteurs est encore peu fréquente.

C'est au début de l'année 1977 que l'Institut de Génie rural de l'EPFL a entrepris, avec le précieux concours du Service des lac et cours d'eau du canton de Genève, une étude hydrologique du bassin de la Seymaz.

Cette étude, qui se veut pratique, implique la mise en place d'appareils de mesure des précipitations et des débits (en fonction depuis juin 1977) et l'utilisation de méthodes d'analyse et de calcul élaborées mais non sophistiquées.

2. Buts de l'étude

Vu les inondations de plus en plus importantes et fréquentes, en un

nombre croissant de régions du bassin de la Seymaz et dues à l'urbanisation, les Autorités devront prendre des mesures pour en réduire le nombre et le volume.

Ces mesures comprendront principalement des travaux de génie civil et l'élaboration d'un règlement de régulation des eaux.

Le choix d'une solution globale et adéquate se base sur une analyse de variantes qui peuvent comporter plusieurs options. L'une des données nécessaires à leur élaboration est le débit de projet.

La présente étude a donc pour but, d'une part, de déterminer des débits de projet en fonction de différents stades d'urbanisation et d'en évaluer la fiabilité et, d'autre part, de mettre à disposition des bureaux d'études un coutil de travail> (un modèle) qui permette de présenter aux Autorités de nombreuses variantes.

3. Le bassin de la Seymaz

3.1 Situation générale

Le bassin versant de la Seymaz se situe dans le canton de Genève, sur la rive gauche du lac Léman, entre Villette au sud et Gy au nord, le coteau de Cologny à l'ouest et la frontière à l'est. Il se divise en deux zones principales (cf. carte, fig. 1):

a) la zone urbaine, comprenant les communes ou parties de communes suivantes:

- Chêne-Bougerie
 Thônex
- Chêne-Bourg
 Vandœuvres
- b) la zone rurale, comprenant les communes ou parties de communes suivantes:
- Choulex
- Presinge
- GyJussy
- PuplingeVandœuvres
- Meinier

Cette division correspond à l'aménagement du territoire dont se dégagent assez nettement une zone rurale au nord et une zone urbaine au sud.

Sur le cours d'eau la Seymaz, le point de séparation de ces deux zones se situe au Pont Bochet.

3.2 Caractéristiques physiques a) Surfaces

• du bassin versant 38,43 km²

 des routes, toits, places
 des vignes
 1,43 km²

des vignes
des forêts
des champs, prés, jardins
1,43 km²
5,42 km²
14%
273%

9%

Situation générale

4Z

Appareils de mesure hydrométéorologique reproduit avec l'autorisation de l'Office Limites du bassin et des sous-bassins fédéral de topographie du 4.1.1982 Points de sondage Echelle : 1 : 50 000

Légende

Limite du bassin versant Limite des sous-bassins

Pluviomètre Pluviographe Limnigraphe

Pluviographe chauffé Pluviographe chauffé Pluviographe

Chêne-Bourg Chevrier Lullier Meinier (Essert)

Pluviographe Pluviomètre Limnigraphe

Jussy Villette

Limnigraphe

Limnigraphe Limnigraphe

Pont-Bochet Nant du Paradis Chambet

Points de sondage: exécutés par la Section agronomie du Laboratoire de techniques agricoles et horticoles.

■ ▲ sans granulométrie○ □ △ avec granulométrie

sols argileuxargile limoneuse Sols lourds

Sols mi-lourds

- limon argileux
- silt limono-argileux

- silt argileux

Sols moyens • O

- sols limoneux

Fig. 1

limon sableuxsilt limoneuxsols silteux

b) Forme

 longueur de la rivière 	14,85 km
 coefficient de forme 	5,7
• largeur moyenne du l	passin 2,6 km
 pente movenne du ba 	assin 190/00

c) Altitudes

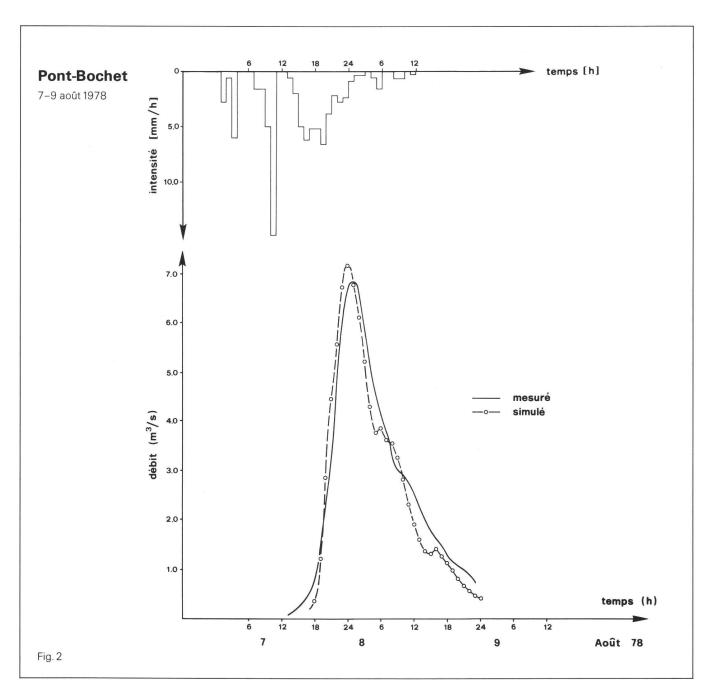
c) Allitudes	
 maximum topographique 	~511 m
 minimum topographique 	396,6 m
 radier Seymaz (Villette) 	393,11 m
 source du Chambet 	~481 m
 movenne du bassin 	443.9 m

4. Méthode de calcul

Il n'est pas inutile de rappeler que les méthodes suivantes sont inapplicables pour déterminer un débit de projet dans un bassin tel que celui de la Seymaz compte tenu des données à disposition. Méthodes Causes de l'inadéquation

a) empiriques

(formule rationnelle, ...)


- bassin hétérogène et complexe
- acheminement et volume des crues
- urbanisation différenciée
- évolution de la saturation du sol
- fonte des neiges
- etc....
- b) statistiques et stochastiques
- données chronologiques de débit insuffisantes
- c) modèles de simulation continue, type Standford
- complexes (trop de paramètres)
- manque de données
- coûteux
- difficile à utiliser

Le choix s'est donc porté sur un modèle de simulation des événements, basé sur la théorie de l'hydrogramme unitaire instantané. Les pertes par infiltration sont calculées par la méthode du Soil Conservation Service, qui est très sensible aux pluies antécédentes.

Le programme de calcul HYMO présente bien des avantages sans trop d'inconvénients et pourrait être mis facilement à disposition d'un bureau d'étude.

Ses principaux avantages sont:

- simplicité de conception
- facile à calibrer
- propagation et volume des crues pris en compte
- type de sol et taux de saturation introduits

- taux d'urbanisation (% imperméable) et sa variation spatiale utilisés et modifiables facilement
- distribution de la pluie introduite et modifiable
- simulation des écoulements, hydrogrammes (volume, pointe).

Les principaux paramètres qui interviennent sont:

- les paramètres hydrauliques (section transversale, pente et rugosité des cours d'eau, canaux)
- les paramètres qui caractérisent la forme de l'hydrogramme (tp: temps de montée, lag: temps de réponse du bassin)
- les paramètres agrohydrométéorologiques (pluies: hauteur, distribution; type de sol; conditions antérieures d'humidité; taux d'écoulement).

A l'aide d'événements mesurés et représentatifs du comportement du bassin, on a établi par calage:

- a) Une relation exprimant le taux d'écoulement, représenté par le paramètre CN*, en fonction du type de sol et des conditions antérieures d'humidité ou taux de saturation (IPA)
- b) Les paramètres de forme des hydrogrammes en différents points du cours d'eau (tp, lag).

Après le calage du modèle (cf. fig. 2), on en a vérifié la validité en effectuant des simulations d'événements connus mais non pris en considération lors du calage.

5. Resultats5.1 Situation actuelle

Bassin de la Seymaz

Temps de	Débit de projet (m³/s)
retour, années	Villette
30	39
50	44
100	55
Zone rurale	Pont Bochet
30	30
50	34
100	42
	Nant du Paradis
30	8,8
50	10,1
100	12,4
	Chambet
30	7,1
50	8,2
100	9,9
Zone urbaine	
seule	Villette
30	24
50	27
100	33

^{*}CN: paramètre qui s'apparente à la notion traditionnelle du coefficient de ruissellement utilisé dans la formule rationnelle; valeur maximale = 100

5.2 Confiance dans les résultats

Il n'a pas été calculé d'intervalle de confiance au sens statistique du terme, car nous ne possédons pas une longue série de débits max. simulés.

Néanmoins la confiance dans les résultats est représentée par l'intervalle compris entre les débits calculés avec des hypothèses maximales et minimales et se situe à \pm 25% du débit de projet calculé.

5.3 Effets de l'urbanisation

Afin de démontrer l'influence de l'urbanisation sur les débits de projet en zone urbaine, nous avons considéré le développement en villas de toute la zone comprise en Bel-Air et la limite supérieure de la région urbaine potentielle (Pont Bochet). C'est un cas critique, mais très explicite. De très nombreuses autres hypothèses sont évidemment possibles que nous pourrions facilement simuler sur la base d'un plan d'aménagement.

 a) Réponse du bassin de la Seymaz: Les débits sont calculés à Villette et représentent la réponse de la totalité du bassin

Temps de retour, années		de projet (m³/s) ban. après urban.
30 50	39 44	48 55
100	55	63

b) Réponse de la zone urbaine:

On admet que le débit provenant de la zone rurale est dérivé par un tunnel vers le lac. Seul le débit de la zone urbaine est calculé.

Temps de retour, années	Débits de avant	projet (m³/s) après	
	Petit Bel-Air		
30	13	38	
50	16	46	
100	19	50	
	Amont voie chem. de fer		
30	18	38	
50	20	44	
100	24	51	
	Aval Chêne-Bourg		
30	20	42	
50	24	48	
100	28	55	
	Villette		
30	24	43	
50	27	49	
100	33	57	

6. Conclusions

Dans le cadre de l'étude hydrologique de la Seymaz on peut conclure en disant que:

- a) les modèles de simulation devraient être utilisés pour fournir les bases hydrologiques à l'étude de nombreuses variantes
- b) une analyse coût-bénéfice serait souhaitable pour chaque variante
- c) le dimensionnement des ouvrages pourrait être calculé pour un temps de retour de 30 ans, avec un gabarit d'espace libre pouvant évacuer à la limite le débit centenaire
- d) dans l'état actuel de l'urbanisation, la construction de bassins ou d'étangs de rétention des eaux n'est pas envisageable vu le volume considérable des crues.
 - Le développement de l'urbanisation pourrait justifier leur construction pour limiter l'augmentation des débits
- e) les effets de l'urbanisation sur les débits de projets se calculent aisément et pour des situations très différentes de sorte qu'il faudrait les analyser.

Par ailleurs, l'urbanisation est suffisamment critique dans le canton de Genève pour qu'un règlement des eaux soit élaboré qui pourrait prévoir:

- a) une division du territoire en bassin et sous-bassins homogènes
- b) un débit maximum à l'exutoire de ces bassins et sous-bassins
- c) des valeurs pour les pluies de projet et les taux de saturation du sol par bassin et sous-bassins
- d) une limitation des débits aux frais de ceux qui urbanisent le sol ou qui le rendent plus imperméable
- e) des méthodes de calcul des débits différenciées en fonction du type d'aménagement
- f) une assistance technique aux bureaux d'étude, afin d'unifier les analyses hydrologiques
- g) la constitution d'une banque de données agrohydrométéorologiques centralisée.

Afin de compléter le présent rapport et de mieux connaître l'hydrologie du bassin de la Seymaz, les études suivantes sont prévues en 1981–1982:

- a) effets de l'urbanisation sur les débits de projet en zone rurale et urbaine. Distribution spatiale et intensité de l'urbanisation
- b) écoulement en conditions hivernales.

Adresse de l'auteur: Jean-Luc Sautier

Institut de Génie rural En Bassenges, CH-1024 Ecublens Service fédéral des améliorations foncières Mattenhofstr. 5, CH-3003 Berne

> Bitte Manuskripte im Doppel einsenden