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Kleinste Quadrate und andere Ausgleichungsverfahren
K. Kubik

Die Methode der kleinsten Quadrate verhält sich bei groben Fehlern ungünstig.
Es werden robuste Schätzungen gezeigt, die diesen Nachteil nicht haben,
insbesondere die sog. Dänische Methode.

En cas d'erreurs grossières, la méthode des moindres carrés se comporte de façons
défavorables. Les estimations robustes, qui sont présentées ci-après, ne possèdent
pas ce désavantage, tout particulièrement la méthode dite Danoise.

1. Einleitung
Wir möchten in dieser Abhandlung die
Allgemeingültigkeit der Methode der
kleinsten Quadrate in Frage stellen und
mögliche alternative Ausgleichungsverfahren

angeben. Diese Abhandlung
enthält nicht so sehr fertige Lösungen,
sondern vielmehr Anregungen für künftige

Forschung in Fehlertheorie und
Ausgleichungsrechnung.

2. Warum nicht die Methode der
kleinsten Quadrate?
Nennen wir zuerst die positiven
Eigenschaften der Methode der kleinsten
Quadrate: Sie hat sich seit vielen
Jahrzehnten in der Praxis bewährt, und
sie ist rechentechnisch einfach
durchzuführen.*

Die Nachteile: Die Methode ist ungeeignet,

Ausreisser (grobe Fehler) in den
Messdaten zu entdecken; die Resultate
der Ausgleichung (Schätzwerte) werden

durch die Ausreisser stark beeinflusst

(vgl. Abb.1 und 2).

Kleinste Quadrateschätzung
Gegeben:
5 Messwerte für eine Distanz:
10m,11m,12m,12m,20m
Gesucht:
Schätzwert für Distanz
Lösung:
Mit der Methode der kleinsten Quadrate
erhalten wir den Schätzwert aus dem
arithmetischen Mittel:
D 13m

Abb. 1 Schätzung des Mittelwertes

In vielen Fällen werden Ausreisser
durch die Methode der kleinsten
Quadrate so erfolgreich verborgen, dass
diese auch durch statistische Tests
nicht mehr entdeckt werden können
(vgl. Abb. 2).

* Mit Ausdrücken der Statistik: Wir erhalten
unverzerrte und effiziente lineare Schätzfunktionen.

Ausreisser sind allerdings wegen der
automatischen Registrierung ein
wesentlicher Anteil der Messdaten. So
berichtet das Geodätische Institut
Dänemark von 1% Ausreissern in den
Messdaten. Automatische Fehlersuch-
und Eliminationsverfahren sind daher
unerlässlich. Die Methode der kleinsten
Quadrate ist hierfür nicht geeignet.

Kleinste Quadrateschätzung
Gegeben:
11 Messwerte Z Z(X)
Gesucht:
Polynom 3. Grades mit Hilfe der Methode
der kleinsten Quadrate
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Im Punkt 1 wurde ein grober Fehler

eingeführt. Nach der Ausgleichung tritt
das grösste Residuum im Punkt 2 auf

Abb. 2 Polynom Regression

Ein weiterer Nachteil: Aufgrund der
verfeinerten Messmethoden sind die
verbleibenden Fehler in den Messdaten
nicht mehr normalverteilte Zufallsgrös-
sen, sondern zeigen ein kompliziertes
und verfahrenseigenes Verhalten. Mit
der Verwendung der Methode der
kleinsten Quadrate erhält man nicht
mehr optimale Genauigkeiten; ein Be¬

schreiben dieser Fehler durch (zufällige)
(normalverteilte) und (systematische)
Fehleranteile ist nicht mehr möglich.
Die Abbildungen 3 bis 5 zeigen Beispiele

für Fehlerverhalten. In allen Fällen ist
das Fehlerverhalten wohl aus dem
Messverfahren her verständlich, kann
aber nicht durch die uns vertrauten
einfachen Modelle beschrieben werden.

Auch das Konzept der Korrelation
ist hierfür nicht ausreichend.

Bildfehler in der Photogrammetrie

RMK A 8.5/23

fVp0
5 um

Starke Ähnlichkeit der Bildfehler in den
Bildern des Bildfluges
(ref. Schilcher1980)

Abb 3

Fehler in der trigonometrischen
Höhenmessung
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(Unterschiede
gegenseitiger
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Histogramme über Winkelfehler Z in der
trig. Höhenmessung, gefunden für Testnetz

(ref. Winding 1981)

Abb 4
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Fehler in der Radionavigation

Apr (Z)

tb. J=L

Histogramme von Messung einer
Teststrecke mit Hilfe von Radioabstandsmes-
sung (Phasenvergleich. 400-MHz-Sy-
stem) (ref. Kubik1981)

Abb. 5

Eine Analyse der Messverfahren ist
notwendig, um eine Fehlertheorie
aufzustellen, und geeignete Ausglei-
chungsverfahren sind notwendig, um
diesem Fehlerverhalten Rechnung zu
tragen. Speziell für Zuverlässigkeitsaussagen

ist es notwendig, sich auf die
tatsächliche Fehlerverteilung und nicht
auf Normalverteilung zu beziehen, da
sonst ganz falsche Schlüsse gezogen
werden.

3. Was nun?
Ideal wären Ausgleichungsverfahren,
welche ungeachtet des tatsächlichen
Fehlerverhaltens nahezu optimale
Resultate erzielen. Wir möchten diese
Ausgleichungsverfahren (robuste
Verfahren» nennen. Für ein Beispiel einer
robusten Schätzung des Mittelwertes
vgl. Abb. 6.

Robuste Schätzung des Mittelwertes
Gegeben:
5 Messwerte für eine Distanz:
10m.11m.12m,12m.20m
Gesucht:
Robuster Schätzwert für Distanz
Lösung:
Der Median (zentraler Messwert nach
Rangordnung der Messwerte) ist unbe-
einflusst von der Grösse der Ausreisser.
Mediano 12 m

Abb. 6

Die robusten Schätzverfahren wurden
in den Siebzigerjahren besonders in der
Schweiz, und zwar in Zürich, gefördert.*
Hier sind besonders zu nennen die
Verfahren von Huber, 1972, und Ham-
pel, 1978. Für die Anwendung dieser
Verfahren innerhalb des Vermessungswesens

vgl. Carosio, 1979.

* Ich trage deshalb (Eulen nach Athen).
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Das Wesen dieser Methoden besteht
darin, dass nicht die Quadratsumme der
Residuen minimiert wird, sondern eine
geeignet gewählte Funktion

Zcp(r) — min.

Em einfaches Beispiel hiervon ist:

0(r)=!rl, welches Verfahren auf die
Schätzung des Mittelwertes mittels des
Medians führt (vgl. Abb. 6).* Gegenwärtig

gibt es viele verschiedene Vorschläge

für die Wahl der Funktion <D(r) (vgl.
Andrews et al., 1972), aber es fehlt eine
übergeordnete Theorie für Klassifikation
und Vergleich dieser Methoden. Nur
eines ist sicher, die Methode der
kleinsten Quadrate gibt die schlechtesten

Resultate bei Auftreten von Aus-
reissern oder Abweichungen von der
Normalverteilung (Andrews et al.,
1972).
Die numerische Lösung des
Ausgleichungsprinzips ZO(r) -» min. kann
iterativ geschehen, und zwar mittels
wiederholter Durchführung der Methode

der kleinsten Quadrate: Das
Gleichungssystem

^<r> ZiP(r) 0; x Unbekannte

kann auch wie folgt geschrieben werden:

Zp(r)-r=0
Wir)wobei p(r)=—f-2 ist. Es wird jeweils

eine gewichtete kleinste Quadrate-Ausgleichung

vorgenommen, wobei die
Gewichte p(r) aus obiger Formel und
den Residuen der vorhergehenden
Iteration berechnet werden. Als Startwerte

werden die gebräuchlichen Gewichte
verwendet.
Für unser Beispiel Zi rl -* min. ergibt sich
die numerische Lösung zu:

1) P 1

2) Gewichtete kleinste Quadrate-Ausgleichung

3) Berechnung neuer Gewichte

p rrT+^: e kleiner Wert

4) Zurück zu 2.

Üblicherweise sind etwa 10 Iterationen
für die Konvergenz des Verfahrens
notwendig.
Abb. 7 zeigt die Anwendung dieser
Methode auf das in Abb. 2 genannte
Beispiel.
In den meisten hier genannten robusten
Schätzmethoden werden Ausreisser
nicht vollständig verworfen; sie erhalten
lediglich ein viel geringeres Gewicht als
in der Methode der kleinsten Quadrate.

* Diese Methode wurde von Edgeworth.
1887, vorgeschlagen, hat sich aber wegen
damaliger rechentechnischen Schwierigkeiten

nicht durchgesetzt.

Robuste Schätzung ZI rl ->¦ min.
Gegeben:
11 Messpunkte, wovon 1 Ausreisser
Gesucht:
Polynom 3. Grades
Lösung:

50

30Schat
ung

^>-
Ausreißer

Die Methode zeigt den Ausreisser in

Punkt 1 deutlich auf, kann ihn aber nicht
völlig eliminieren.

Abb. 7 Polynom Regression

4. Was ist die Dänische Methode?
In der Dänischen Methode (Krarup,
1967; Krarup et al., 1980) werden die
Unbekannten aus der grösstmöglichen
Anzahl miteinander konsistenter Messdaten

geschätzt. Ausreisser, welche in

der Minderzahl sind, werden verworfen.
Abb. 8 zeigt das Prinzip der Dänischen
Methode für die Berechnung des
Mittelwertes. Der Rechenalgorithmus für die
Dänische Methode ist wie folgt

Z(pr2)c^min.
Pa + 1 Pa-f(ra)

1furM^<c
f(r)

exp- (^) sonst

a =0,1. 2,

Schätzung des Mittelwertes
Dänische Methode
Gegeben:
6 Messwerte für eine Distanz.
10m.11m.12m.12m.20m.22m
Messgenauigkeit o ±1 m

Gesucht:
Schätzwert für Distanz.
Lösung:
Die Messwerte werden in Gruppen von
Werten eingeteilt, welche sich untereinander

um weniger als ±2o unterscheiden:

(10.11.12.12) und (20. 22).
Der Schätzwert für die Distanz wird aus
der grössten Gruppe als arithm. Mittel
berechnet: D 11,25 m

Abb.
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Es handelt sich also wieder um einen
iterativen Kleinste-Quadrate-Algorith-
mus mit Anpassung der Gewichte. Die
Konstante c wird üblicherweise 2 oder
3 gewählt, o bezeichnet die
Standardabweichung der Messung (mittlerer
Fehler der Gewichtseinheit) und p0 die
gebräuchlichen Gewichte. Üblicherweise

sind 6-10 Iterationen für die Konvergenz

des Verfahrens notwendig. Die
Konvergenzgeschwindigkeit ist abhängig

von der Konditionierung (Stabilität)
des Problèmes. Für verschiedene
Aufgabenklassen erwiesen sich daher auch
verschiedene Gewichtsfunktionen als
am besten geeignet (Kubik, 1982).
Ihnen allen gemeinsam ist das Verwerfen

von Messwerten ausserhalb eines
Vertrauensintervalles.
Das Verfahren wird seit 1967 als
Standard-Rechenverfahren vom Dänischen
Geodätischen Institut verwendet. Als
weiteres Beispiel zur Dänischen Methode

sei genannt, dass in der Polynom-
Regression von Abb. 2 der Ausreisser in

seiner vollen Grösse gefunden und
verworfen wird.

5. Vergleich der verschiedenen
Schätzverfahren
Wir betrachten als Beispiel eine lineare
Regression mit 4 Messpunkten (vgl.
Abb. 9). Als zulässige Lösungen
betrachten wir hier lediglich 10 Geraden
Z a + bx mit verschiedenen Konstanten

a und Neigungen b, und wir werden
untersuchen, welche Variante optimal
für verschiedene Ausgleichungskriterien

ist. Intuitiv werden wir wohl eine
Gerade, welche durch die ersten 3
Messpunkte geht, als die meist geeignete

Lösung empfinden.
Die Koeffizienten der 10 Lösungsmöglichkeiten

sind in Tabelle 1.1 zusammengestellt.

Für jede Gerade ergeben sich

Das betrachtete lineare Regressionspro-
blem und die zulässigen Lösungen

z

2 k

¦ Messpunkt
O Nummer der Lösungsvariante

Abb. 9 Vergleich verschiedener
Ausgleichungsmethoden

Residuen an den 4 Messpunkten (vgl.
Tabelle 1.2). Aus diesen Residuen werden

die Werte für die verschiedenen
Schätzkriterien ausgerechnet und die
optimale Gerade ermittelt (vgl. Tabelle
1.3).
Wir sehen, dass das Kriterium Ziri —

min. keine eindeutige Lösung besitzt.
Nicht weniger als fünf Geraden ergeben
den niedrigsten Funktionswert 3. Die
horizontale Gerade © ist optimal für die
Methode der kleinsten Quadrate. Die
Gerade © ist optimal für alle anderen
Kriterien. Diese Gerade entspricht unserer

intuitiven Lösung.

6. Eine Parabel und abschliessende
Empfehlungen
Nehmen wir an, dass Galilei und Newton

erst jetzt lebten und nun die Ptole-
mäische Theorie der Planetenbewegungen

mit der Erde als Zentrum umstos-
sen mussten. Diese Theorie ist
inzwischen durch Hinzufügen von
Korrektionsgliedern (Korrektur für systemati-

Tab. Nr. Gerade Nr.

Zulässig 3 Geraden d jrch d e Messpun <te

1 2 3 4 5 6 7 8 9 10

1.1 Koeffizient a 1 2 3 0.5 1 1.5 0 -1 -2 -3
Koeffizient b 0 0 0 05 05 05 1 1 1 1

1.2 Residuen
1 0 -1 -2 0 05 -1 0 -1 -2 -3
2 1 0 -1 05 0 -0.5 0 -1 -2 -3
3 2 +1 0 1 05 0 0 -1 -2 -3
4 0 -1 -2 -1.5 -2 -2.5 3 + 2 + 1 0

1.3 Schätzkriterien
Ziri -?min 3 3 5 3 3 4 3 5 6 9
Ilr2l -mm 5 3 9 35 45 75 9 7 13 27
Ilry'l —min 2.4 3 38 3 28 33 1 7 44 52 5.1

Ilr^l —min 2.2 30 34 29 29 3 1 1 3 42 46 3.9
Dänische
Methode 0.9 1 1 1 5 1 0 09 1 8 04 1 6 20 1.3

N(r,>0.5)-min* 2 3 3 3 3 3 1 4 4 3

N(r>1 )-min 2 3 3 2 1 2 1 4 4 3

Tabelle 1 Beispiel einer linearen Regression; *N (r; > a) bedeutet: Anzahl der Residuen
kleiner oder gleich a

sehe Fehler) in Computerprogrammen
so verfeinert worden, dass die
Planetenbewegungen genügend gut
beschrieben werden. Etwaige Abweichungen

in Beobachtungen werden als
Ausreisser klassifiziert (dies ist tatsächlich

zur Zeit von Ptolemäus mit richtigen
Beobachtungen von arabischen
Astronomen geschehen). Haben nun Galilei
und Newton eine Chance, mit ihren

ganz andersartigen Ideen durchzudringen?

Sie hätten es jedenfalls sehr
schwer - (Wir mussten ja alle unsere
Computerprogramme ändern) und (Wir
mussten alle Ptolemäischen Ingenieure
umschulen). Und doch ist es wesentlich,

diese Theorien von Galilei und
Newton einzuführen.
Ich sehe die Fehlertheorie und die
Ausgleichungsrechnung in einer ähnlichen

Situation. Viele Konzepte liegen
aus praktischen Gründen fest. Und
doch ist es wesentlich, dass man es

wagt, neue Wege einzuschlagen, um
ein tieferes Verständnis zu erreichen. In

meinen Augen ist eine erneute Analyse
der Messprozesse für die verschiedenen

geodätischen Aufgaben notwendig,

um darauf die Entwicklung von
neuen Ausgleichungsmethoden
aufzubauen. Diese kleine Abhandlung möge
dafür als Anregung dienen.
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