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cher Richtung die Untersuchungen
anzusetzen sind.

6. Zusammenfassung
Mit den vorliegenden Ausführungen

sollte klargemacht werden, dass das
Problem der Toleranzen der amtlichen
Vermessungswerke wegen der Entwicklung

der Instrumente und Methoden,
aber auch den neuen Erkenntnissen der
mathematischen Statistik von Grund auf
neu studiert werden muss.

Als Leitgedanken für eine solche
«Reform» werden vorgeschlagen:
- Fehlergrenzen sollen vor allem durch

die Anforderungen an das
Vermessungswerk bestimmt sein.
Fehlergrenzen sind deshalb
grundsätzlich unabhängig von der Entwicklung

besserer Instrumente und
Methoden: sie hängen vielmehr von den
Genauigkeitsanforderungen der
Benützer an die Werke ab.
Der technische Fortschritt soll dazu
dienen, diese Genauigkeitsanforderungen

mit immer weniger Aufwand
einzuhalten.
Verifikationsmethoden, die unabhängig

von den Aufnahmemethoden
sind, sollen Unternehmer und
Aufsichtsbehörden anregen, neue, un¬

konventionelle, wirtschaftliche
Verfahren zu entwickeln, zu erproben und
einzuführen.
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Robuste Ausgleichung
A Carosio

La compensation selon la méthode
des moindres carrés conduit aux valeurs
les plus probables pour les inconnues
seulement si la distribution des erreurs
de mesure est normale. La présence
même d'une seule erreur grossière peut
fausser les inconnues jusqu a les rendre
inutilisables. Parmi les différents
procédés qui ont pour but de limiter
l'influence des erreurs grossières dans une
compensation, il y a le développement
de méthodes moins sensibles à de telles
erreurs que la compensation classique.

Le présent travail indique une voie
pour développer des estimateurs
robustes utilisables dans les applications
géodésiques.

I.Allgemeines
Seit mehr als hundert Jahren wird

über die statistischen Eigenschaften der
geodätischen Beobachtungen gesprochen

und über die Tatsache, dass das
für die Auswertung bereitgestellte Material

die Hypothese der Normalverteilung
nicht vollständig befriedigt. In jeder
Einführung in die Ausgleichungsreehnung
werden die groben Fehler erwähnt, die
nicht normalverteilt sind Die meisten
Definitionen solcher Fehler beziehen
sich auf ihren Betrag und ihre Ursache,
z. B. in Grossmann «Grobe Fehler sind
vorhanden, wenn die Messungswidersprüche

beträchtlich grösser sind
als...zu erwarten war. ...Sie beruhen
meistens auf fehlerhaften Ablesungen,

Unachtsamkeit oder Übermüdung».
Die Feststellung, dass die Beobachtungen

fast, jedoch nicht vollständig
normalverteilt sind, hat praktische
Folgen, die lange vernachlässigt worden
sind. Man hat sich darauf beschränkt,
ganz allgemein geeignete Messanord¬

nungen vorzuschreiben, die die
Entdeckung der groben Fehler erlauben
und danach zur Wiederholung der
«falschen» Messungen führen. Solche
allgemeinen, von jeher aktuellen Vorschriften

sind erst in den letzten Jahren
eingehender untersucht und die verschiedenen

Möglichkeiten in diesem Gebiet
systematisch dargestellt worden. Man
betrachte als erstes die Verfahren, die den
Messungen vorangehen

7.7 Verfahren a priori
Sie beziehen sich auf die Messanord-

nungskriterien und auf die entsprechenden

Beurteilungsmethoden. Ziel solcher
Verfahren ist, die Zuverlässigkeit des
vorgesehenen Messystems zu überprüfen.

Sowohl die Triangulationsnetze als
auch die Aufnahmen der Katastervermessung

haben keinen sehr hohen
Überbestimmungsgrad (in günstigen
Fällen gibt es doppelt so viele Beobachtungen

wie Unbekannten), so dass die
Zuverlässigkeitsbetrachtungen eine
wichtige Rolle spielen. Die eingehende
Prüfung der graphischen Netzdarstellung

ist in der Geodäsie bis heute das
gebräuchlichste Vorgehen, um sich über
die Zuverlässigkeit einer Messanordnung

zu vergewissern Die Einführung
von Distanzmessungen und die Ausgleichung

immer grösserer Netze mit den
verschiedensten Unbekannten
(Lotabweichungen, Massstabsfaktoren usw.)
machen ein empirisches Urteil zunehmend

schwieriger und haben die
Entwicklung numerischer Verfahren begünstigt

(siehe auch die entsprechenden
Publikationen [4], [5], [7]).

7.2 Verfahren a posteriori
Es handelt sich hier um Methoden,

die die Eliminierung des Einflusses
allfälliger grober Fehler auf die Ergebnisse
bewirken sollen Sehr oft werden nicht
befriedigende Beobachtungen mittels
statistischer Tests, Gefühl oder Erfahrung

gesucht, daraufhin entfernt und

wenn möglich wiederholt. Diese Suche
basiert meistens auf einer Prüfung der
geometrischen Bedingungen (z. B.

Winkelsumme eines Dreiecks) oder auf
mehr empirischen aber rascheren
Methoden wie der Kontrolle der Grösse der
Verbesserungen, eventuell ergänzt
durch eine graphische Eintragung im
Netzplan. Eine Verfeinerung bedeutet
die Prüfung der standardisierten
Verbesserungen nach Baarda ([4], [13]), die
schon beträchtlichen Erfolg in der
praktischen Anwendung verbucht hat. Alle
diese Verfahren bezwecken, zu einer
Reihe von Messungen zu kommen, die
dem klassischen Modell entsprechen.
Die Aussortierung der «falschen
Messungen» enthält aber einige willkürliche
Komponenten, so dass die Verfahren an
mathematischer Strenge einbüssen.

Es gibt jedoch eine zweite Möglichkeit,

der bis heute in der Geodäsie wenig
Aufmerksamkeit geschenkt worden ist:
nämlich der Entwicklung von
Ausgleichungsverfahren, robuste Ausgleichungen

genannt, die weniger sensibel auf
grobe Fehler reagieren als die Methode
der kleinsten Quadrate, so dass
wirklichkeitsnahe Resultate erzielt werden können,

auch wenn sich unter den Messungen

noch einige grobe Fehler befinden,
das heisst, wenn die Normalverteilung
nicht ganz zutrifft. Den dazu nötigen
robusten Schätzfunktionen haben die
Statistiker in letzter Zeit ihre Aufmerksamkeit

gewidmet. Manche Autoren
verwenden die Bezeichnung «nicht
parametrische Schätzungen». Einige Überle-
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gungen zu diesen Möglichkeiten bilden
das Thema des vorliegenden Artikels.

2. Robuste Ausgleichungen
2.7 Historischer Überblick
2.11 Ursprung der Normalverteilung

Man werfe einen Blick auf den
Ursprung der Normalverteilungshypothese
für Messfehler [9]. Gauss [10] stellt fest,
dass die Bestimmung der wahrscheinlichsten

Werte der Unbekannten
unmöglich ist, ohne die Verteilungsfunktion

der Fehler zu kennen, und sagt aus,
dass er diese unbekannte Verteilung
durch den umgekehrten Weg gesucht
hat: das einfache arithmetische Mittel ist
im einfachsten Ausgleichungsfall allgemein

als gute Schätzung anerkannt. Eine
derartige Schätzung liefert das
wahrscheinlichste Resultat für Fehler X, dessen

Wahrscheinlichkeit proportional zu
einer Exponentialfunktion vom Typus
e-h2x2 jst Mjt ancjeren Worten: es wird
(als Axiom) angenommen, dass im Falle
von mehrfachen direkten Beobachtungen

(mit gleichem Gewicht) das
einfache arithmetische Mittel den
wahrscheinlichsten Wert für die gesuchte
Grösse liefert, und von dieser Annahme
ausgehend wird die Normalverteilungs-
funktion hergeleitet [11].

Um die Normalverteilung der Messfehler

zu begründen, werden oft zu
didaktischen Zwecken empirische
Versuche durchgeführt Sie haben jedoch
für die Ausgleichungsreehnung wenig
Bedeutung, da die aus einer begrenzten
Anzahl Beobachtungen erhaltenen
Histogramme keine signifikanten Angaben
über die Häufigkeit grösserer Fehler
erlauben. Diese aber ist gerade
ausschlaggebend für die Wahl der Ausglei-
chungsmethode.

2 72 Erste Versuche mit Alternativhypothesen

Das unten stehende Beispiel zeigt,
dass nicht immer das arithmetische Mittel

als beste Schätzung für eine mehrfach

beobachtete Grösse gegolten hat.
In gewissen französischen Gegenden
wurde, um den mittleren Ertrag einer
Liegenschaft zu bestimmen, folgende
Methode angewandt:

«Man betrachtet den Ertrag der letzten
zwanzig Jahre, subtrahiert das beste und
das schlechteste Jahr und teilt den Rest
durch 18» (Zitat eines Anonymen 1821

[9])-
Newcomb wich ebenfalls von der

klassischen Hypothese ab, indem er die
Verwendung der folgenden Dichtefunktion

anregte (1886):

1

VST (-
~X2

2o,2
+ ...+ — e

Om

~X2

2a,2

Diese Funktion bedeutet, dass die

dazu gehörigen statistischen Variablen X

aus m verschiedenen Untermengen Q,
stammen, in denen normalverteilte X,

mit Standardabweichung o, enthalten
sind. Die Konstanten p, ergeben die
Wahrscheinlichkeit, mit der eine
statistische Variable X aus O, stammt. Die
Konstanten p, sind so zu wählen, dass
Ip, 1 ist (i 1, 2 m). Eine solche
Dichtefunktion berücksichtigt die
Feststellung, dass grosse Fehler häufiger
sind, als dies die Normalverteilung
erwarten lässt. Wegen der sehr arbeitsintensiven

Rechnungen, die daraus
folgen, ist aber damit kein Fortschritt erzielt
worden.

213 Die neuesten Entwicklungen
Erst in den letzten dreissig Jahren

wurde das Problem wirksam erfasst und
wurden praktisch verwendbare Alternativen

entwickelt. Als Initiator gilt Tukey
mit seiner Statistiker-Forschungsgruppe
in Princeton, der das Problem populär zu
machen begann [9]. Im letzten Jahrzehnt
haben überdies die Studien von Peter J.

Huber in Zürich und Berkeley zu einem
bemerkenswerten Fortschritt der
Verfahrengeführt.

22 Allgemeine Bemerkungen über die
robusten Schätzungen
2 21 Das statistische Modell

Die Messfehler sind statistische Grössen

mit Verteilung

F (1-e)0+eH

<D ist die Normalverteilung, H die
unbekannte Verteilung der groben Fehler und
e die geringe Wahrscheinlichkeit, mit
der grobe Fehler auftreten.

Das heisst: Die Beobachtungen sind
fast normalverteilt, und die angenommenen

mittleren Fehler stimmen beinahe

für alle Messwerte. Es gibt jedoch
Beobachtungen, die dem Grundmodell
nicht entsprechen (grobe Fehler) Ihre
Verteilung ist unbekannt.

222 Die Schätzfunktionen
Sie sind die mathematischen

Abbildungen zwischen den beobachteten
Grössen L, und den ausgeglichenen
Werten.

Nach der Festlegung des funktionalen
Modells (z. B. der geometrischen
Beziehungen) und des statistischen Modells
(wie in 2.21 vorgeschlagen) geht es nun
darum, die Funktionen g, zu finden, die
die ausgeglichenen Beobachtungen
oder andere Unbekannten liefern,

Li gi(L1.L2,...Ln)

Die Schätzfunktion g, wird robust sein,
wenn sie gute Werte für L, (oder
allgemeiner für die Unbekannten) auch bei
nicht ganz normalverteilten Beobachtungen

ergibt. Solche robusten Schätz¬

funktionen werden hauptsächlich nach
drei Methoden aufgebaut [9].

a) M-Schätzungen (Maximum-Likeli-
hood-Typ)

Eine geeignete Funktion p(x) einer
reellen Variablen wird gewählt und die
Funktion L, g (L,) gesucht, so dass

Zp(L,-L,) min ist.

Der Spezialfall p(x) x2 führt zum uns
bekannten Verfahren der Methode der
kleinsten Quadrate, wo die ausgeglichenen

Beobachtungen so bestimmt werden,

dass

Ip (Li - Li) Z (Li - Li)2 [vv] min

ist. Durch eine günstige Wahl von p(x)
erhält man die gewünschten
Eigenschaften bezüglich der Empfindlichkeit
auf grobe Fehler

b) L-Schätzungen (Linearkombinationen
von Ordnungsstatistiken [3])

Im einfachsten Fall, nämlich die mehrfach

direkt beobachtete Grösse, werden
die n Beobachtungen so geordnet, dass

L,^L2^L3^.. -CV..

ist. Die Schätzfunktion für L:g (L,) ist
vom Typ

L g(L,)-Za,-L, wo La, 1

Ihre Bedeutung zeigt sich in einigen
Beispielen:

Beispiel 1 : Es wird a, —
füralle i gewählt. Darausfolgt:

- "
i i

n

L=I^L,= ^IL,
i=1 i-1

das heisst, das einfache arithmetische
Mittel.

Beispiel 2: Wenn a, an V2 und
ansonsten a, 0 gewählt wird, ist

[.=
Li+Ln

Das heisst: L wird so gewählt, dass der
absolute Betrag der grössten Verbesserung

zu einem Minimum wird. Es ist eine
Ausgleichung nach Tschebyscheff [14].
L ist mit einer solchen Schätzung sehr
empfindlich auf grobe Fehler (wenig
robust).

Beispiel3: Furai =an 0und

(wenn 1 < i < n) erhält man ein robustes
arithmetisches Mittel

L=
L2+L3+...+Ln.,

n-2
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Kleinster und grösster Wert werden
nicht berücksichtigt

c) R-Schätzungen (aus dem Rang-Test
[6] abgeleitete Schätzungen). Die beiden

Folgen werden gebildet:
(L-L1),(L-L2) (L-Ln)
und

-(L-L1),-(L-L2) -(L-Ln).
Die Funktion L g (L,) wird so aufgebaut,

dass die Hypothese, beide Folgen
gehörten zur gleichen Grundgesamtheit,
durch einen Rang-Test mit dem besten
Resultat bestätigt wird.

223 Gemeinsame Eigenschaften
Alle drei Methoden führen, nach

Annahme von einigen sehr allgemeinen
Bedingungen, zu asymptotisch normalen

Schätzungen, so dass in der Praxis,
wenn der Freiheitsgrad genügend gross
und das Netz gut ist, die ausgeglichenen
Beobachtungen als normalverteilt
betrachtet werden können. Damit sind alle
üblichen Beurteilungsverfahren
verwendbar.

3. Die robuste vermittelnde Ausgleichung

3 1 Grundlagen
Als eine überaus interessante Anwendung

in der Geodäsie erweist sich die
robuste vermittelnde Ausgleichung, deren

Grundlagen P. J. Huberveröffentlicht
hat [2].

M-Schätzungen werden als besonders

geeignete Schätzfunktionen für die
Unbekannten der Ausgleichung
betrachtet, vor allem wegen der Ähnlichkeit

mit der Methode der kleinsten
Quadrate und wegen der ähnlichen
Wirksamkeit. Es handelt sich hierbei darum,
eine Funktion p(v) zu wählen und
danach die Unbekannten zu bestimmen,
sodass

Ip (v) Ip (Li - L,) min

ist. P. J. Huber schlägt vor, die folgende
stetige und konvexe Funktion zu
verwenden:

p(L-L) p(v)=iv2für|v|<k
k- |v|-^k2für|v|^k

wobei k eine Konstante ist. In geodätischen

Netzen mit nicht besonders grosser

Überbestimmung kann k 3-mFge-
wähltwerden (eventuell 2-mF).

N. B. Die vorgeschlagene Schätzung
ist für k^oo identisch mit derjenigen der
Methode der kleinsten Quadrate.

32 Numerische Lösung
Ausgangsdaten dafür sind n

Verbesserungsgleichungen, die
Beobachtungen entstanden sind:

meare
aus n

v, a,x + b,y + c,z + + I, i-1,2,

und die Funktion p (v) nach Ziffer 3.1. Die
Unbekannten x, y, z sollen die Bedingung

2p(vi] mm

erfüllen. Weil v, Funktion der Unbekannten

ist, kann das Minimum-Problem
durch das Gleichungssystem

8£p(v.)
=0

Ox

8Sp(v.) =0
ôy

mit ebenso vielen Gleichungen wie
Unbekannten gelöst werden. Unter
Berücksichtigung, dass

5Ip(v,) 5p
=1 —

8x

ist, kann die Differenzierung für jede
Verbesserungsgleichung unabhängig
stattfinden. Sie bildet den entsprechenden

Normalgleichungsanteil.
Für die in 3 1 vorgeschlagene Funktion

p(v) müssen drei Fälle unterschieden

werden:

a)v^-k
dann ist

p(v) - kv - ^k2

- k(ax+ by + CZ + + D-^k2

Nach der Differenzierung nach x, y, z

entsteht folgender Anteil für das
Normalgleichungssystem

0,0 gk

bk

ck

anes nu

d. h. kein Anteil für die Koeffizienten der
Unbekannten und für die Absolutglieder
-ak, -bk, usw.

b)-k<v<k

istp(v) i \/2 ; ax+by+ +1)

Durch Quadrieren und Differenzieren
entsteht der bekannte
Normalgleichungsanteil wie bei der Methode der
kleinsten Quadrate.

aa ab ac... al

ba bb bc... bl

ca cb cc... cl

c)v^k

Analog zu a) wird folgender Anteil
gebildet:

ak0,0,

ok

ck

anes nu

Die Addition der Normalgleichungsanteile

ergibt das Normalgleichungssystem,

dessen Lösung die gesuchten
Unbekannten der robusten vermittelnden

Ausgleichung sind Weil man nicht
im voraus weiss, in welchem der drei
Intervalle die v, sich befinden, sind einige

Iterationen nötig. Begonnen wird mit
der Annahme, dass für alle Beobachtungen

-k< v< k ist. Nach einigen
Wiederholungen wird für jede Verbesserungs-
gleichung bekannt sein, zu welcher
Gruppe sie gehört. Die letzte Iteration
ergibt dann die gewünschten Unbekannten.

In der Ausgleichung grosser Netze
kann der Rechenaufwand für eine Iteration

bedeutend reduziert werden, wenn
bei Gruppenwechsel einer Beobachtung
nicht die ganze Normalgleichungsmatrix
neu gebildet und invertiert wird, sondern
nur die Austauschschritte der betreffenden

Matrixelemente vor und nach der
Anteilskorrektur wiederholt werden.

Die Varianz-Kovarianz-Matrix der
Unbekannten kann wie folgt geschätzt werden:

n(Iv2+Ik2)
a2Qxx= "" '

QID„
(n-r)(n-u)

wo o2Qxx die gesuchte Varianz-Kovarianz-Matrix,

n die Anzahl
Verbesserungsgleichungen, u die Anzahl
Unbekannten, r die Anzahl Verbesserungen,
die nicht im Intervall (-k, k) enthalten
sind, und Q& die Kofaktoren-Matrix der
entsprechenden Ausgleichung nach der
Methode der kleinsten Quadrate (1.
Iteration) sind.

33 Praktische Anwendungen
Die folgenden Beispiele zeigen mögliche

geodätische Anwendungen der
robusten vermittelnden Ausgleichung:

Vermessung, Photogrammetrie, Kulturtechnik 11/79 295



3.31 Bestimmung der Orientierungsunbekannten

durch einen Abriss
Von Station 45 aus werden drei

Richtungen beobachtet. Die Azimute sind

bekannt, worauf die Methode der kleinsten

Quadrate folgende Orientierungsunbekannte

ergibt:

Station Ziel Beobachtung Azimut Orientierung V

45 12

13

14

0

45 2618

152 3690

785039

123.7662

230.8732

785039

44

42

-3

+2

0

0 78.5042

Wenn zu der dritten Beobachtung ein
grober Fehler A addiert wird, so erhält
man als entsprechende Orientierung

0=78 5042- |
d.h.

14 152. 3690+&

0 78. 5042 - —

Hingegen ergibt das Verfahren der
robusten Ausgleichung nach Ziffer 3.1 mit
k 2mr 8CC im oben angegebenen
Beispiel für alle A ^ 12.5CC 0 78.50375,

0

(cc)

unabhängig von der Grösse von A.
Die Wirkung auf die Orientierungsunbekannte

kann graphisch wie folgt
dargestellt werden:

78 30 40

783035 -

10 15 A(cc)

Bei geeigneter Wahl von k kann die
Wirkung eines groben Fehlers einer
Richtung in annehmbaren Grenzen
gehaltenwerden.

332 Einzelpunkteinschaltung

202 *

- - •£ 203

900

201 d.

Gegeben sind die Punkte:

y X

201 521810.40 181 081.55

202 521 860.88 182 309.70

203 523 010 92 181 895 08

Auf dem Neupunkt 900 wurden folgende
Grössen gemessen:

Station Ziel Richtungen Distanzen

900 201

202

203

228.5810

345.22 70

82.03 70

869,40

672.78

717.24

angenommene mittlere Fehler: 7CC und
7 mm

Die Ausgleichung nach der Methode
der kleinsten Quadrate führt zu

y X

900 522 300 002 181 799.998

Falls die Distanz 900-202 um 1 m
verfälscht und in die Ausgleichung mit dem
Wert 673 78 eingeführt wird, ergibt
dieselbe nach der Methode der kleinsten
Quadrate

V X

900 522 300.275 181 799 686

Die Lage des Punktes 900 wird somit um
ca. 41 cm verfälscht

Ganz anders verhält sich die robuste
Ausgleichung (nach 3.2 mit k 15). Mit
den gleichen Beobachtungen wird

y X

900 522 300 007 181 799.993

Der grobe Fehler hat einen sehr kleinen
Einfluss auf das Resultat (weniger als
1 cm).

Die daraus berechneten Verbesserungen

lassen den hier künstlich erzeugten
Feh 1er sofort erkennen:

Station Ziel Richtungen Distanzen
(cc) (mm)

900 201 13 10

202 2 -999

203 -14 4

4. Schlussfolgerung
Der Leser sollte nicht erwarten, dass

das herkömmliche Ausgleichungsver-
fahren durch robuste Schätzfunktionen
ersetzt wird. Es gibt aber viele
Anwendungsmöglichkeiten in allen Fällen, in

denen man rasch zu korrekten, wenn
auch nicht sehr genauen Resultaten
kommen möchte. Bedingung hierfür ist
eine genügend grosse Überbestimmung.

Als Beispiele in der Geodäsie
können erwähnt werden: die provisorischen

Tnangulationsnetzausgleichun-
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gen (es handelt sich hier um ungefähr
neun Zehntel der elektronisch ausgeglichenen

Netze), die Berechnung der
Orientierung in den Näherungsabrissen
und die Helmerttransformation, wenn
zahlreiche Passpunkte vorliegen.

Adresse des Verfassers:
Alessandro Carosio, Hagwiesenstr. 6,
CH-3122 Kehrsatz
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VSVT/ASTG
Verband Schweizerischer Vermessungs¬

techniker
Association suisse des techniciens-

géomètres

Procès-verbal de la 49ème
assemblée générale du 26 mai
1979 à Lugano

Après les salutations d'usage du président
Jo Cochard, l'assemblée se lève pour honorer
les membres disparus:

Ami Meyer de Genève
Hans Brauchli de Zurich
André Nussbaum de Bienne

Puis le procès-verbal de l'assemblée générale

de 1978 est adopté ainsi que les rapports
du président, du rédacteur et des différentes
commissions. La cotisation pour 1979 est restée

inchangée Sont également adoptés les
comptes 1978, le budget et le rapport sur
Loèche-les-Bains

La révision des statuts est reportée à 1980
Dans un court rapport sur la convention sur

les salaires, le président évoque les difficultés
avec les employeurs ces deux dernières
années II mentionne l'échelle des salaires,
fonction des années de pratique et invite
l'assemblée à accepter la nouvelle convention. II

est suivi par H. Gysin de la Commission d'étude,

par E. Steinimann et Äberhard. Les principaux

opposants sont Petrozzi, Baumann et
Coquoz. Ce dernier voudrait un contrat collectif

plus complet.
Finalement la nouvelle convention sur les

salaires est adoptée par 59 oui, 52 non et 23
abstentions(l)

Au chapitre des élections, H. Gysin est
remplacé par L Lyss à la Commission du
contrat de travail: H Keiser de la Commission
«Image de la profession» cède sa place à
H. P. Stählin' c'est M Jöhri qui succède à
P Barrachi à la Commission professionnelle
tandis que B Beetschmann reprend de
W. Frick la place à la Commission du registre
des ingénieurs, architectes ettechniciens

H. Àberhard de la section Rätia est nommé
réviseur des comptes Reçoivent le diplôme
de vétérans, les membres suivants

Biéler Albert, Vevey
Brogli Alfons, Zurich
Buser Walter, Aarau
Chabbey Albert, Ayent
Gemperle Jakob. Coire
Léger Robert. Plan-les-Ouates
Schenkel Jakob, Zurich
Sidler Jakob, Berne
Stoffel Armin, Coire
Stucki Bernhard, Wabern
Thommen Walter, Uster
Trautmann Willy, Zurich

La prochaine assemblée générale sera
organisée par la section vaudoise. celle de 1981

parla section Ratia
Le président clot rassemblée en invitant

les participants à se retrouver pour les fêtes
du Jubilé

Lugano, le 25 mai 1979

Le Secrétaire ad hoc: Martin Oggier
Adaptation française B Jacot

Bankett zum Anlass des
50jährigen Jubiläums der
Sektion Zürich
Samstag, 24 November 1979, im Stadtcasino
Winterthur

Zu diesem Anlass konnten die
bestbekannten Alder-Buebe und Willy Valotti
gewonnen werden Für Stimmung und
Unterhaltung ist somit bestens gesorgt. Die Kosten
pro Person werden sich auf etwa Fr. 35-
belaufen. Die Bankettkarte mit detaillierten
Angaben wird nach erfolgter Anmeldung zugestellt.

Wir hoffen, dass dieser Anlass den
sonst mageren Teilnehmerkreis sprengen
wird Nebst allen Mitgliedern sind auch
Freunde und Gönner herzlich willkommen

Anmeldung bis 15. November 1979 an:
H. R. Göldi, Am Luchsgraben 61,8051 Zürich

Sektionen Ostschweiz, Rätia,
Zürich: Einladung zu einem
Informationsnachmittag
Thema: Planerstellung - Zeichentisch - Inter¬

aktive Graphische Systeme (IGS)
Zeit: Samstag, 8. Dezember 1979,14.00
Ort: Wild Heerbrugg AG, Hauptgebäude

(Reception)

Programm:
- Begrüssung
- Dr. J. Höhle gibt eine Einführung zum Thema

«Autonomische Planerstellung» und
demonstriert uns anhand von Beispielen
die Arbeit eines Zeichentisches.

- Dr. T. Schenk erläutert uns den Begriff
«Interaktive Graphische Systeme (IGS)» und
erklärt uns, was darunter zu verstehen ist

- Diskussion
- anschliessend kleiner Imbiss

Der Vorstand freut sich, dass sich zwei
kompetente Referenten für diese Veranstaltung

zur Verfügung gestellt haben und hofft
auf eine grosse Beteiligung

Iriacca SA

GRANITSTEINBRÜCHE
CH-6799 PERSONICO
Tel. 092 72 24 52

MARKSTEINE
BORNES
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