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tenkarte (Eigen- und Schlagschatten)
von Abbildung 5, mit ihren 1000x1500
Bildpunkten, beträgt die Rechenzeit auf
dem Grosscomputer400 Sekunden, d h

0,26 ms pro Punkt im Durchschnitt. Die

gewonnenen Daten werden via ein
Magnetband auf den Minicomputer
übertragen, wo dann die eigentliche fotografische

Aufzeichnung stattfindet.
Die perspektivischen Schattenbilder

werden direkt auf dem Minicomputer
berechnet und auf einem Fernsehschirm
dargestellt. Der Rechenaufwand ist sehr
unterschiedlich. Normalerweise wird
von einem Geländeausschnitt
ausgegangen, der durch entsprechende
Transformationen in die Bildebene projiziert

wird. Dementsprechend steigt die
Rechenzeit mit der Anzahl Geländestützpunkte

einerseits und der der Bildelemente

andererseits. Vor allem ist aber
die Rechenzeit sehr stark abhängig von
der Komplexität der Bilder, welche z. B.

den Flächenverdeckungsfaktor oder den
Clippingverlust umfasst. Das Schattenbild

der Abbildung 9 stützt sich auf ein
11,25x11,25 km grosses Gelände mit
46x46 Stützpunkten. Die Bildebene
besteht aus einem Bildspeicher mit
256x256 Bildpunkten. Für dieses
typische Bild beträgt die Rechenzeit auf
dem Minirechner 500 s.

7. Zusammenfassung
Die Bildsynthese wurde an Hand

eines Geländemodells der Schweiz
demonstriert. Die erzeugten Schattenkarten

ergeben einen guten plastischen

Eindruck des reinen Reliefs, und zwar
unabhängig von der Bodennatur oder
Bodenbedeckung. Eine grosse Flexibilität

bietet die Möglichkeit, die
Beleuchtungsrichtung beliebig zu wählen. Auf
diese Weise können alle Sonnenlagen
aber auch künstliche Lichtquellen simuliert

werden. Ein anderer Aspekt der
Schattenkarte ist die physikalische
Bedeutung der dargestellten Helligkeit als
Bestrahlungsstärke des Bodens.
Selbstverständlich können aus einem
Geländemodell auch viele andere Informationen

gewonnen werden. Die Neigungskarte

der Schweiz ist ein Beispiel dafür.
Aufwendiger ist die Synthese von

perspektivischen Schattenbildern. Damit
wird aber die Möglichkeit geboten,
beliebige Geländeteile unter beliebigen
Blickrichtungen, Sichtwinkeln und
Entfernungen zu generieren. Die Beispiele
zeigen zwei Verfahren zur Darstellung
der Geländeoberfläche. Je nach Anwendung

wird man zwischen dem
modellgetreuen Facettenbild und dem realistischen

sanften Bild wählen müssen.
Für die Bildsynthese eignet sich ein

Allzweck-Minicomputersystem mit der
Möglichkeit, Halbtonbilder darzustellen.
Damit können sowohl Schattenkarten
als auch perspektivische Schattenbilder
produziert werden. Die Bildsynthese ist
somit reif fürdie Anwendung.

Der Verfasser dankt Herrn Prof. Dr E

Baumann für die Unterstützung dieser
Arbeit. Ebenfalls sei Herrn PD Dr T Celio

für viele wertvolle Anregungen
gedankt.

Adresse des Verfassers:
H.Hügli.dipl. El. Ing. ETH
Institutfürtechnische Physik,
ETH-Hönggerberg,
CH-8093 Zürich
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DieZentral- und Diagonalenbedingungen in
ebenen Streckennetzen
N. F. Damai

On peut obtenir les conditions dans
un réseau de distances en le divisant en
systèmes centraux. Chaque système
central fournit alors une équation de
condition dont les coefficients peuvent
être déterminés par construction géométrique.

On peut simplifier et contrôler les
calculs en appliquant la méthode du travail
minimum. On considère alors les
distances mesurées comme les barres
droites et élastiques d'un treillis. Chaque
système central contient une barre
surabondante. En coupant cette dernière,
on supprime une liaison et le treillis se
détend. La déformation résultante est
l'écart de fermeture linéaire de l'équation

de condition. Si l'on applique sur la

barre coupée une charge virtuelle de
+ 1, les autres barres sont mises sous
tension L'article montre que les
tensions sont numériquement égales aux
coefficients de l'équation de condition.

La méthode est générale et ne
s'applique pas qu'aux systèmes centraux.
Pour les réseaux de distances avec de
longues diagonales par exemple, on
peut obtenir les équations de condition
sans subdivision en systèmes centraux
et sans introduire d'observations
fictives. Cette possibilité est montrée à l'aide

d'un exemple numérique.
Les distances entre points fixes reçoivent

des poids infinis afin qu'elles ne
soient pas modifiées par la compensation.

Einleitung
Streckennetze können vermittelnd

oder bedingt ausgeglichen werden. Im

allgemeinen zieht man die Methode der
bedingten Beobachtungen vor, weil
weniger Bedingungen auftreten als
Unbekannte in der vermittelnden Ausgleichung

Die Zahl der Bedingungen ist
sehr leicht zu ermitteln. Sie ist genau
dieselbe wie die Anzahl der Seitengleichungen

in einem entsprechenden
Triangulationsnetz. Jedes Streckennetz
kann in eine Anzahl von Zentralfiguren
zerlegt werden. Eine Zentralfigur stellt
eine einfach überbestimmte Konfiguration

von Strecken dar und liefert deswegen

eine Bedingung. Diese wird
normalerweise durch die Winkelsummen-
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bedingung im Zentralpunkt ausgedrückt.

Die Winkel können aus den
gemessenen Strecken berechnet werden.

Mehrere Autoren haben verschiedene
Gleichungen abgeleitet, die diese
Bedingung darstellen. In seiner Abhandlung

hat Tarczy-Hornoch [4] solche
Gleichungen aufgrund eines Streckenvierecks

hergeleitet. Er hat auch eine
Methode entwickelt, in der er die einfach zu
ermittelnden Verbesserungsgleichungen

der vermittelnden Beobachtungen
in Bedingungsgieichungen umwandelt
Die Koeffizienten dieser Gleichungen
sind eher kompliziert.

Bekanntlich besteht eine Analogie
zwischen überbestimmten Systemen in
der Statik und überbestimmten
geometrischen Figuren in der Vermessung. Im

ersten Fall handelt es sich um Stäbe und
Knoten, im zweiten Fall um Strecken und
Punkte Ansermet [1] hat von dieser
Analogie Gebrauch gemacht, um die
wahrscheinlichsten Koordinaten einer
Fachwerkkuppel zu berechnen. Er

verwendete dazu die Methode der
vermittelnden Ausgleichung.

In umgekehrter Weise können Sätze
der Mechanik in der Ausgleichungs-
rechnung angewandt werden. Das Prinzip

ist allgemein anwendbar. Die folgende

Untersuchung beschränkt sich aber
auf Figuren, die nur durch Strecken
vermessen sind. In diesem Fall stellt man
sich vor, dass die in einer geometrischen
Figur gemessenen Strecken gerade
elastische Stäbe in einem Fachwerk seien
Fehlerhafte überschüssige Strecken
oder Stäbe verursachen Spannungen in

sich selber und in allen anderen Stäben.

Demzufolge erleiden alle Stäbe kleine
Formänderungen, die den Verbesserungen

der gemessenen Strecken entsprechen.

Die Zentralbedingung
Abbildung 1a zeigt ein Zentralsystem

mit n Umfangspolygonpunkten, indem
alle 2n Strecken gemessen worden sind.
Die gegenseitige Festlegung aller n+1
Punkte braucht 2n-1 Messungen. Wenn
keine Beobachtungsfehler vorliegen,
wird die überschüssige Beobachtung
L2n der Distanz PnPi gleich sein, die
durch Rechnung ermittelt wird. Andernfalls

entsteht ein Widerspruch, der zu
einer Bedingung führt und durch
Ausgleichung eliminiert werden muss. Diese

Bedingung wird Zentralbedingung
genannt, da sie von einem Zentralsystem

stammt.
Nach der früher erwähnten Überlegung

stellt man sich vor, dass die
gemessenen Strecken gerade elastische
Stäbe seien. Setzt man die Stäbe Ll
L2,... L2n-i zusammen, so entsteht ein
entspanntes Fachwerk. Stimmen die
Längen L2n und PnPi nicht überein, so
wird es schwierig sein, den überschüssi¬

gen Stab L2n im Fachwerk zu montieren
Um diese Schwierigkeit zu überwinden,
belastet man ihn mit einer Zug- oder
Druckkraft C, je nachdem er kürzer oder
länger ist als PnPi- Damit spannen und
deformieren sich alle Stäbe. Die
angewandte Kraft C muss voll genügend sein,

um die deformierte Länge L'2n genau
gleich der Distanz P'nP'i zu machen, die

von allen anderen deformierten Längen
L'i, L'2,... L-2n-i berechnet wird.

Die Kraft C kann am besten bestimmt
werden, wenn man die Methode der
virtuellen Arbeit anwendet. Durchschneidet

man den überschüssigen Stab in der
Mitte, so entsteht eine Öffnung W, und
das Fachwerk entspannt sich. Man belastet

nachher beide Teile des
durchschnittenen Stabes mit einem virtuellen
Kräftepaar von +1. Diese äussere
Belastung verursacht eine kleine Verschiebung

D in ihrer Richtung und die daraus
resultierende Aussenarbeit wird

A 1 D
aussen

(1]

Unter dieser Belastung entwickeln
sich Spannungen s,, s2,... s2n, welche
der Reihe nach die Formänderungen
SL1# SL2. SL2n in diesen Stäben
verursachen. Damit wird die ausgeführte
Innenarbeit

innen
7s..SL. (2)

Wenn das Hooksche Gesetz
vorausgesetztwird, so gilt

s. .L.
(3)

worin 5L, der Zuwachs in der Länge L,

des Stabes i bedeutet, der von einer in

ihm wirkenden Spannung s, resultiert f,

ist der Querschnitt des Stabes und E, ist
der Elastizitätskoeffizient i 1, 2,... 2n.

Nach dem Gesetz der Energiekonservierung

ist

A A"aussen "innen

Demnach folgt aus den Gleichungen
(1)und(2)

1 D Is.. SL.*" i i •
(4)

Setzt man Gleichung (3) in (4) ein, so
wird

2
s. ,L.

fi.Ei
(5)

was folgendermassen formuliert werden
kann

D

1

.7l.
_1 1

L.i

2
s.-

- 2. si • f..E. ~ L- k.i
(5')

worin k, die Steifigkeit des Stabes i

bedeutet.

f..E.l l (6)

Die entstehende Öffnung W im
durchschnittenen Stab kann geschlossen werden,

wenn

C. D + W 0 (7)

Die Gleichungen (5) und (7) ergeben
zusammen

2
s.

C-Iv4 W 0 (71

Somit ergibt sich die gesuchte Kraft C

aus

C - W

2

ITi

- w
18)

Ersetzt man die virtuelle Belastung
(+1) durch die eingeführte Kraft C, so

schliesst sich die Öffnung W. Gleichzeitig

entwickelt sich in jedem Stab i eine
Kraft

Abb 1a

s

Abb. 1b-
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F. C s.i i
welche einen endgültigen Zuwachs

F..L. S..L. s.
*Li - f..E. - c ; f..E. - G • k^

in seiner Länge L, verursacht Setzt man Gl (6) in (7') ein, so erhält man

(9)

(10)

0• s. • L.
+ Br

C.s2.l2
*1 tyVe. "2 f2.B2

+ s
C,a2n,L2n

211 f2n-E2n
+ W 0 (11]

welche unter Berücksichtigung von Gl. (10) zurfolgenden Bedingung wird

s. AL. + s_. A Lp + + s„ AL„ + W 0

Der Vergleich mit der folgenden bekannten Bedingungsgleichung

a1-v1 + a2.v2 + + a2nV2n + W °

(12)

(13)

der Methode der kleinsten Quadrate
zeigt deutlich, dass Gleichheit zwischen
beiden Bedingungen besteht Wichtig
ist zu erkennen, dass die in allen Stäben
wegen der im überschüssigen Stab
wirkenden virtuellen Belastung + 1

entstehenden Spannungen s„ die Koeffizienten

a, der Bedingungsgleichung sind.
Selbstverständlich entsprechen die
endgültigen Zuwächse AL, den Verbesserungen

v, der beobachteten Längen L,

Die Lösung der Bedingungsgleichung
(12) ist in Gl. (10) angegeben, welche
ähnlich derGleichung

a.
v. K .-i

Pi
(14)

der Methode der kleinsten Quadrate ist.
Aus der Analogie erkennt man, dass die
Kraft C, die genau die Öffnung W
schliesst, dieselbe ist, wie die Korrelate
K und dass die Steifigkeit k, eines Stabes
dieselbe ist, wie das Gewicht p, der
entsprechenden Beobachtung

Selbstverständlich decken die hierfür
den Fall von nur einer Bedingung ermittelten

Resultate auch den Fall von
mehreren Bedingungen Letzterer liegt aber
ausserhalb des Rahmens dieser Arbeit
und wird hier nicht behandelt. Der
interessierte Leser wird auf Danial [2] verwiesen

Die Berechnung der Koeffizienten
eines Zentralsystems

In einem Zentralsystem treffen sich
drei Stäbe an jedem Umfangspolygon-
punkt. Die Spannungen in diesen drei
Stäben (oder Koeffizienten der drei
beobachteten Strecken) lassen sich
durch ein massstäblich gezeichnetes
Kräftedreieck graphisch bestimmen.

Man zeichnet zuerst eine Parallele zum
überschüssigen Stab L2n (Abb. 1a) und
misst darauf eine Distanz ODn (Abb. 1 b)
ab, die der virtuellen Belastung (+ 1

entspricht An den Endpunkten Dn und O

dieser Distanz werden zwei Parallelen
DnDi und ODi zu den zwei anderen Stäben

Li und L2 gezeichnet. Sie schneiden
sich in Punkt D^ Damit entsteht das
erste Kräftedreieck OD^. Die Spannungen

s-i und s2 (oder die Koeffizienten a-i

und a2) können aus der Zeichnung
entnommen werden Mit s2 nun bekannt,
zeichnet man die Parallelen D,D2 und
OD2 zu den Stäben L3 und L,, somit werden

die Spannungen s3 und s4 bekannt.
Verfährt man ähnlicherweise, bis die
Spannung s2n im überschüssigen Stab
erreicht wird, so entsteht ein Kräfteplan.
Wenn keine Zeichenfehler unterlaufen
sind, sollte der Kräfteplan genau schliessen

Man beachte, dass:
1. der Kräfteplan eines Zentralsystems

auch eine Zentralfigur ist,
2. die Spannungen in den Umfang-

spolygonstäben als radiale Linien und
solche in den radialen Stäben als Um-
fangspolygonlinien im Kräfteplan dargestellt

werden, und schliesslich
3. die Winkel a„ ß,-i zwischen den an

irgendeinem Umfangspolygonpunkt i

des Zentralsystems wirkenden drei Stäben

in einem Kräftedreieck erscheinen,
welches die Spannungen in diesen drei
Stäben ergibt.

Es kann gesagt werden, dass der
Kräfteplan eines Zentralsystems dessen
Inverse ist.

Der Kräfteplan eines Zentralsystems
ist ein ausgezeichnetes Mittel zur
numerischen Berechnung der Spannungen s,

(oder der Koeffizienten a,). Löst man die
in Abb. 1b gezeigten Kräftedreiecke

ODnD,. OD,D2, ODn_iDn der Reihe
nach, so erhält man die Koeffizienten der
vom Zentralpunkt ausgehenden Strek-
kenL1,L3,...L2n-i

sin(<x1+/9n)
*2n sin tx.

sin(oc2+ß^)
sm«,

a2i-1 " " a2i-2
sin(«i+/3.._.,)

sm «.i

sin(« + ß Tv n / n-1 '
*2n-1 2n-2 sm of

und der Strecken des Umfangpolygons
L2, U,... L2n

a2n + 1

a2 - + a2n sin «„

h
4 2 sin or.

sm
a„. + a„.

i-1
2i 2i-2 sin«.

sin

(15b)

inß' n-1
a2n + a2n-2 sin flf

+ 1

Der lineare Widerspruch
Der lineare Widerspruch W ist die

Differenz zwischen der beobachteten Länge

L2n der überschüssigen Strecke und
der durch Lösung aller Dreiecke erhaltenen

Länge PnP,. Die Reihenfolge dieser
Rechnungen ist

1. die Berechnung aller Zentralwinkel
Y, der gemessenen Seiten. Wenn der
Kosinussatz angewandt wird, bekommt
man

r<

T2 T2 T2
L2i-1 + L2i+1 " L2i

2'L2i-l'L2i+1
•(16)

worin i 1,2,... (n-1)
2. die Berechnung des der überschüssigen

Strecke gegenüberliegenden
Zentralwinkels Yn

Vermessung, Photogrammetrie, Kulturtechnik 10/79 251



n-1

% - 36o° - Z r. (17)

3. die Distanz PnPi kann von den radialen

Seiten L-, und L2n_i wie folgt
bestimmtwerden:

PP.»n 1 J2n-1 - 2L.L« ..cosP
1 2n-1 n

(18)

4 Der lineare Widerspruch W ist die
Differenz zwischen den gemessenen
und gerechneten Strecken

W L
2n - PF,n 1

(19)

Die Berechnung des linearen
Widerspruches kann auf einfacherem Weg
erfolgen Baut man das Fachwerk, beginnend

vom ersten Stab Li in der Lage PiP0

(Fig 2a) auf, so erhält man Punkt P'i
anstatt Punkt Pi am Ende des Zusammensetzens

der fehlerhaften 2n-1 Stäbe
Der Winkelwiderspruch Ay ist somit der
eingeschlossene Winkel zwischen
beiden Richtungen P0P'i und P0Pi Er lässt
sich numerisch bestimmen als Differenz
zwischen den gemessenen und gerechneten

Zentralwinkeln Yn und y'„.

--.f* T -n ' n (20)

Yn kann aus den gemessenen Seiten L),

L2n_i, und L2n gerechnet werden y'n ist
derselbe Winkel, wie er in Gl. (17)
angegeben ist

Nennt man die Distanz P'iPi W, so
wird im Dreieck P'iPqPi

At ~ AT
W'= L1'2sin ^f- V -j- (21)

da Ay ein kleiner Winkel ist Wenn man
die Winkel

P PJPn p p.p. /3n10 n10 /n
annimmt, so wird der lineare Widerspruch

W in der Richtung PnPi, wie die
sich im Fachwerk ergibt

W W»cos(90° - 4jp -y3n)S W'cos(90° -/3n) (22)

Gleichungen (21) und (22) ergeben
zusammen

sin ßn

oder

W h
n f

(23a)

(23b)

worin hn der senkrechte Abstand
zwischen dem Zentralpunkt P0 und der
überschüssigen Strecke P^Pi ist. Glei¬

chung (23a) oder (23b) zeigt, dass der
lineare Widerspruch W in direktem
Zusammenhang mit dem Winkelwiderspruch

Ay steht Dieser Zusammenhang
ist in Abb 2b graphisch dargestellt

Der Übergang von der hier ermittelten

zur bekannten Bedingungsgleichung

eines Zentralsystems
Setzt man die von Gl. (15a), (15b) und

Gl. (23a) erhaltenen Koeffizienten und
Widerspruch in Gl (13) ein, so entsteht
die Bedingungsgleichung

- a
sin(«1 + /3n) 3111

2n sina. + a,
ßn

2n

- r\r
sin(<X 2+ ß .j)

sin«, + Q.r

sin«1.,

sin/3.,
sin or n

• v,.

- a
sin(£* +ßv n / n-1 ' sin

2n-2 Sinuc

+ L1sin/ân

n

0

V2n-1 + a2n-2' sin oc

/>n-1
• v,

n
2n

(24)

worin der Koeffizient der Verbesserung der überschüssigen Beobachtung v2n

sin/4n-i
2n-2 sin « n

a2n=+ 1

ist wie zu Beginn angenommen und in
Gl. (15b) angegeben wurde

Dividiert man Gl (24) durch Li sin ßn.

so erhält man andere Koeffizienten ä, für
die Verbesserungen v.

aln(«1 + y8n)

2n sin«. ' L1sin/9n

-
sin öl. cos /3 + oosa.sin^

Lsin Cz.si.Ti ß

cotgßn cotg«1
—1 + —1

L1

sm *n
*2 2n sin«1

*
L^oinÄ

1

+ 1 *
L. sin rx1

,-s P.

p;p,pn • =^ - n

Abb 2a

* // A

zr

Abb 2b

Abb 3

252 Mensuration, Photogrammetrie, Génie rural 10/79



Man erkennt von Abb. 1 a. dass

L2i-1 8in"i L2.+1 sinA hi
(25)

worin h| der senkrechte Abstand
zwischen dem Zentralpunkt P0 und der
Umfangpolygonseite 2i ist. Damit wird
wenn i 1

a2 + !_
h„

Analog wird

:,.--(

a4 +

cotgß. cotgcv2

i_ g^gygj-i
h2

'

L2i-1

Im allgemeinen kann für die
Koeffizienten der vom Zentralpunkt ausgehenden

Strecken

'2i-i"< cotgß^ cotg«.

2i-1 J2i-1
(26a)

und der Strecken des Umfangpolygons

a2i=+L2i-13inoti
1_
h.i

(26b)

n.geschrieben werden, wobei i 1,2
und ßt_i =ßnwenn i 1,

Der neue Widerspruch wird unter Be
rücksichtigung von Gl. (23a)

W
w

Lisin/3n \ (*)

Die neuen Koeffizienten ä, der
Verbesserungen v, und der neue Widerspruch
w stimmen genau mit jenen Werten
überein, die Rinner [3] angegeben hat.

^

Abb 4

h-wH

Abb. 5

Strecke Nr. m Strecke Nr. m

P Pre h 454,250 P3P4 L8 762,390

p P12 L2 491,720 P4?6 L9 488,910

p p
2 8 b 569,140 P4P5 L10 449,530

P P2r7 L4 610,960 P5P6 *11 571,090

P P
23 S 525,700 P6P7 L12 786,640

P5P7 h 457,120 Ve L13 475,730

P5P6 L7 763,280 P1P5 L14 2098,780

Tab. 1 Die beobachteten Strecken

Nr. Winkel ß Nr. Winkel ß

Dreieck P.P0P0 Dreieck P^PrPy

1 73°51,22,756" 6 75°40'00,589"
2 50 03 18,147 13 34 15 52,715

18 56 03 19,097 14 70 04 06,696

I 180 00 00,000 I 180 00 00,000

Dreieck P0P-P0
d 1 a

Dreieck P,P.P^346
3 47 23 01,808 7 37 22 51,392

16 61 41 27,178 8 71 24 29,982

17 70 55 31,014 12 71 12 38,626

2 180 00 00,000 I 180 00 00,000

]Dreieck P?PtP? Dreieck P.Pc-P^4 5 6

4 46 41 02,923 9 74 50 16,776

5 76 31 06,425 10 55 43 13,493

15 56 47 50,652 11 49 26 29,731

Ï. 180 00 00,000 £ 180 00 00,000

Tab. 2 Die aus den gemessenen Seiten gerechneten Winkel
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Damit ist bewiesen, dass die hier
vorgeschlagene Methode zum selben Resultat

führt, wie in der Literatur bekannt ist.
Sie hat aber die folgenden Vorteile:

1. Die Berechnung der Koeffizienten
erfolgt in Schleifen. Sie muss mit dem
selben Wert (+ 1 enden, wie sie begonnen

wurde. Demzufolge hat man eine
Rechenkontrolle, die keinen besonderen
Aufwand erfordert. Diese Kontrolle ist
wichtig, wenn die Ausgleichung von
kleineren Streckennetzen manuell
durchgeführt wird.

2. Die Methode ist allgemein gültig. In
Streckennetzen mit langen Diagonalen
zum Beispiel können die Koeffizienten
der Bedingungsgleichungen direkt
ermittelt werden, ohne dass man fingierte
Beobachtungen einführt und das Netz in
Zentralfiguren teilt. Das Zahlenbeispiel
am Ende dieses Artikels erläutert diesen
Fall.

3. Für weniger anspruchsvolle Arbeiten

können die Koeffizienten graphisch
ermittelt werden.

4. Die Koeffizienten sind dimensions-
los. Die Verbesserungen und die
Widersprüche haben die selbe lineare Einheit.

Ein Spezialfall der Zentralfigur
Die in Abb. 1a gezeigte Konfiguration

von Strecken stellt den normalen Fall
des Zentralsystems dar Eine
abweichende Konfiguration dieses Systems
kommt vor, wenn der Zentralpunkt P0

ausserhalb des Umfangpolygons liegt.
Dieser Spezialfall braucht keine besonderen

Berechnungen, wie das im
folgenden Fall bei einem Streckenviereck
gezeigtwird.

Die Bedingungsgleichung eines
Streckenvierecks

Das Streckenviereck wurde in vielen
Publikationen als Grundfigur in Strek-
kennetzen angenommen und seine
Bedingungsgleichung geometrisch hergeleitet.

Betrachtet man eine seiner vier
Ecken (P0 in Abb. 3) als Zentralpunkt, so
verwandelt es sich in eine Zentralfigur
mit den drei Dreiecken PiP0P2, P2P0P3.
und P3P0Pi- Die in Gl. (15) abgeleiteten
Koeffizienten können hier angewandt
werden, wenn die drei Winkel a3, ß3. und
Y3 des ausserhalb des Umfangpolygons
liegenden Dreiecks P3P0Pi als negativ
betrachtet werden. Damit wird die Be-
dingungsgleichung (24) mit n =3zu

•>(<V(-/33))
6 sin cx

sin(o<2 +y31)
2 sintx-

sin(-y3;)
6 sincx

sinß,

sin((-°<5)+/32) sinyS2
a4 sin(-«3) v5 + a4 sln(-e<- ' v6

+ L., sin-<-/V- T °
(28)

Pkt. Stab Spanning Angle Aziaiuth &X AY

P1 1

14

2

S1

+ 1,000000

S2

44,290006°

29,566315

0,0

44,290006°

73,856321

+ S1

+ 0,715815

+ 0,278046 s2

0,0

+ 0,698290

+ 0,960567 s2

s1= -0,513687 s2= -0,726956

P8 15

1

S13

s3

- 0,513687

70,925282

56,088638

0,0

70,925282

127,013920

+ S13

+ 0,326801 s

+ 0,309244

0,0

+ 0,945093 S?

- 0,410173

s13=-0,451076 s}= +0,434003

P2 5

2

3

4

s5

- 0,726956

+ 0,434003

s4

215,876978

50,055041

47,383836

0,0

215,876978

265,932019

313,315855

+ 35

+ 0,589036

- 0,030788

+ 0,686020 s,' 4

0,0

+ 0,426030

- 0,432909

- 0,727583 s4

s5= -0,551762 s4= -0,009455

P7 12

6

4

13

S12

s6

- 0,009455

- 0,451076

70,068527

56,797403

61,690883

0,0

70,068527

126,865930

188,556813

+ s12

+ 0,340896 s6

+ 0,005672

+ 0,446055

0,0

+ 0,940101 Sg

- 0,007564

+ 0,067116

s12=-0,430133 Sg= -0,063346

P3 8

5

6

7

s8

- 0,551762

- 0,063346

37

170,433776

76,518452

75,666830

0,0

170,433776

246,952228

322,619058

+ s8

+ 0,544089

+ 0,024800

+ 0,794617 s?

0,0

- 0,091696

+ 0,058289

- 0,607112 s

s8= -0,525165 sy= -0,055025

P
"6 11

9

7

12

S11

s9

- 0,055025

- 0,430133

49,441592

71 ,210729

34,264643

0,0

49,441592

120,652321

154,916964

+ S11

+ 0,650223 s

+ 0,028053

+ 0,389569

0,0

+ 0,759744 s9

- 0,047337

- 0,182347

Sn=-0,614197 s +0,302318

P, 10

8

9

S10

- 0,525165

S9

213,753678

71,408328

0,0

213,753678

285,162007

+ 310

+ 0,436640

+ 0,261549 s?

0,0

+ 0,291794

- 0,965190 s9

s10=-0,515711 s9= +0,302318

ne s
P5

enkor

14

11

10

trolle

S14

»11

- 0,515711

25,222297

304,279585

0,0

25,222297

329,501882

+ S14

+ 0,904661 s

- 0,444360

0,0

+ 0,426131 sn
+ 0,261728

s,,=+1,00000014 s^ =-0,614197

Tab. 3 Die Berechnung der Spannungen oder der Koeffizienten B nach der Methode der
minimalen Arbeiten
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worin

sin(-y33)
sin oc

siny31

und

aï

2 sin«.

r, + r2 (-r3)

Dividiert man Gl. (28) durch L, sin(-ß3)
und reduziert die Glieder, wie im vorletzten

Abschnitt gezeigt wurde, so
bekommt man die Bedingungsgieichung

- -, t"

~XT~

atgß2

ootg«1
~1T~
cotg«2
~TT~
cotg(-oc

>'1

h )v5 +
Lesini- *5)

AT
(29)

Diese Gleichung stimmt genau mit
der von Tarczy-Hornoch [4] abgeleiteten
überein. Man stellt sich vor, dass Punkt
A in Abb. 1 jener Publikation der Zentralpunkt

sei und ändert die Nummerierung
der Seiten c, a, b, f, e, und d in L,, L2....
Lg und die der Winkel ai,a2. a3, ß3, ßi. y,,
y2. S2. und S3. in y,, y2, y3, ß3, ai.ßi, a2, ß2.

und a3 der Reihe nach.

Die Diagonalenbedingung
Es gibt Fälle, wo lange Seiten in Strek-

kennetzen eine Vielzahl von Dreiecken
queren. Diese langen Seiten, Diagonalen

genannt, sind meistens überschüssig
und liefern deswegen Bedingungen.

Die Koeffizienten einer solchen
Bedingungsgleichung können nach dem
selben Prinzip gerechnet werden, wie im
Fall der Zentralsysteme Man
durchschneidet die Diagonale in der Mitte und
belastet beide durchschnittenen Teile
mit der virtuellen Belastung + 1. Wie
vorher bewiesen wurde, ergeben sich
die Koeffizienten der verschiedenen
Beobachtungen als die numerischen
Werte der in den entsprechenden Stäben

entwickelten Spannungen.
Wie Abb. 4 zeigt, treffen an manchen

Punkten mehr als drei Strecken zusammen.

Die Kräftedreiecke können daher
für die Berechnung der Spannungen in
den entsprechenden Stäben an diesen
Punkten nicht verwendet werden. Man
stellt deshalb am besten die
Gleichgewichtsbedingungen an jedem Punkt auf,
indem man die Summen der X- und
Y-Komponente deran diesem Punkt
wirkenden Spannungen gleich Null setzt.
Das rechtwinklige XY-Koordinatensy-
stem kann beliebig gewählt werden.

2 Ax= J s. cos &. 0 (30a)

Kr. Distance a b c B' B

1 454,250 - 0,331327 - 0,513473 - 0,513687

2 491,720 - 0,335878 + 0,599262 - 0,727132 - 0,726956

3 569,140 + 0,279931 + 0,433822 + 0,434003

4 610,960 + 0,305608 - 0,482686 - 0,009071 - 0,009455

5 525,700 - 0,883295 + 0,816701 - 0,552182 - 0,551762
6 457,120 - 0,306126 + 0,410773 - 0,063645 - 0,063346

7 763,280 + 0,211708 - 0,353663 - 0,055391 - 0,055025
8 762,390 - 0,695651 - 0,525381 - 0,525165

9 488,910 + 0,400461 + 0,302443 + 0,302318
10 449,530 - 0,683128 - 0,515923 - 0,515711

11 571,090 - 0,281166 - 0,440696 - 0,613995 - 0,614197

12 786,640 - 0,429616 - 0,429616 - 0,430133

13 475,730 - 0,290944 - 0,450889 - 0,451076

14 2098,780 + 1,000000 + 1,000000 + 1 ,000000

15 968,018 + 1,000000 - 1,549746
16 1163,275 - 0,755236 + 1,000000

w 0,0 + 0,0794 0,0 + 0,0974 + 0,0974 '

- hl
al5

+ 1,549746

-
bl6
C16

+ 0,755236

Tab. 4 Die Berechnung der Koeffizienten B' nach der konventionellen Methode

Kr. gemessene Koef-
Fall D Fall 2)

Verbesausgegl. | Verbes- ausgegl.
Distanz izient serung Distanz - serung Distanz

m r n m m m

1 454,250 - 0,5137 + 0,011 454,261 + 0,015 454,265

2 491,720 - 0,7270 + 0,016 491,736 + 0,021 491,741

3 569,140 + 0,4340 - 0,009 569,131 - 0,013 569,127

4 610,960 - 0,0095 + 0,000 610,960 + 0,000 610,960

5 525,700 - 0,5518 + 0,012 525,712 + 0,016 525,716
6 457,120 - 0,0633 + 0,001 457,121 + 0,002 457,122
7 763,280 - 0,0550 + 0,001 763,281 + 0,002 763,282

8 762,390 - 0,5252 + 0,011 762,401 + 0,016 762,406

9 488,910 + 0,3023 - 0,006 488,904 - 0,009 488,901

10 449,530 - 0,5157 + 0,011 449,541 + 0,015 449,545
11 571,090 - 0,6142 + 0,013 571,103 + 0,018 571,108
12 786,640 - 0,4301 + 0,009 786,649 + 0,013 736,653

13 475,730 - 0,4511 + 0,010 475,740 + 0,013 475,743
14 2098,780 + 1,0000 - 0,022 2098,758 00 + 0,000 2098,780

Tab. 5 Die Ausgleichung der beiden Fälle: (1 gemessen und (2) festen Diagonale

2^1 sin -fr. 0
1

(30b)

worin $, der Winkel ist, den die Richtung
der Spannung s, mit der X-Achse macht.

Mit Gl. (30a) und (30b) kann man in
jedem Punkt zwei unbekannte Spannungen

ermitteln, wenn alle anderen an
diesem Punkt wirkenden Spannungen
bekannt sind. Emfachheitshalber wählt
man eine der Achsen so, dass sie durch
eine unbekannte Spannung geht. Damit
wird es möglich, die zwei unbekannten
Spannungen in je einer Gleichung zu er¬

mitteln, anstatt der zwei Gleichungen
mit zwei Unbekannten lösen zu müssen
(vgl. Tab. 3)
Man beginnt die Berechnung der
Spannungen von einem Endpunkt des
überschüssigen Stabes, in welchem eine
virtuelle Belastung + 1 wirkt. Das Gleichgewicht

wird dann Punkt für Punkt hergestellt,

bis der andere Endpunkt des
überschüssigen Stabes erreicht wird Eine
Rechenkontrolle ist vorhanden, wenn
man am letzten Punkt die Spannung + 1

erhält, wie dies am Anfang der Rechnung

angenommen worden ist.
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Der Widerspruch in einer Diagonalenbedingung

ergibt sich als Differenz
zwischen der gemessenen und gerechneten

Länge der Diagonale Letztere kann
ermittelt werden, wenn man die
Endpunkte der Diagonalen durch einen aus
Netzseiten gebildeten Polygonzug
verbindet Die Berechnung des Polygonzuges

ist ein Routineverfahren.

Zahlenbeispiei
Abbildung 5 zeigt ein freies Netz mit

acht Punkten, in welchem die Strecken
Li, L2. Lu gemessen worden sind. Die
Beobachtungen sind in Tabelle 1

angegeben. Da die gegenseitige Lage von n
Punkten nur (2n-3) Strecken braucht, so
wird mit n 8 die Anzahl der Bedingungen

14- (2 • 8-3) 1.

Diese Bedingung ist leicht erkennbar
Die gemessene Länge L,4 der Diagonale
muss gleich der Distanz PiP5 sein, wie
sie sich im Fachwerk ergibt, oder mit
anderen Worten, wie sie aus allen anderen
Distanzen errechnet werden kann.

Die Reihenfolge der Berechnung ist:

1 Die Winkel
Alle zwischen den gemessenen Strek-

ken eingeschlossenen Winkel müssen
gerechnet werden. Zu diesem Zweck
verwendet man gewöhnlich den
Kosinussatz. Die gerechneten Winkel werden

kontrolliert, indem man die Winkelsumme

in jedem Dreieck bildet und sie
mit 180° vergleicht Die so erhaltenen
Winkel sind in Tabelle 2 aufgetragen

2 Der Widerspruch
Die Berechnung der Diagonale PiP5

erfolgt mittels eines offenen Polygonzuges,

der durch gemessene Seiten geht
In diesem Beispiel wurden die Strecken
P1P2. P2P.3. P.3P4. und P4P5als Polygonseiten

gewählt. Die Polygonzugswinkel
bildeten sich aus den Winkelsummen
(ß2+ß3+ß4). (ß5+ß6+ß7). und (ßs+ßg). Die
Berechnung des Polygonzuges ergibt

P7fÇ 2098,7006 m

und die Endwinkel an den Endpunkten
P, und P5

ß,9 29° 33'58,733"
ß2o 30° 29'53,224"

Der Widerspruch wird damit

W 2098,780 - 2098,7006 + 0.0794 m
(31)

3. Die Koeffizienten
Die Ermittlung der Spannungen, oder

der Koeffizienten, erfolgte nach der Me¬

thode der Spannungskomponente, da
an manchen Punkten mehr als drei Stäbe

zusammentreffen Die Berechnung
beginnt am Endpunkt Pi, wo die Diagonale

P1P5 mit einer virtuellen Kraft Su
a-i4 + 1 belastet wird. Aus dem
Gleichgewicht an diesem Punkt bekommt man

Si=a, -0,513687

und

s2 a2 - 0,726956

Mit nun bekanntem Si analysiert man
die Kräfte im Punkt P8 und erhält dabei
die Spannungen s3 und si3 der Stäbe L3

und L13. Im folgenden Punkt P2 werden
die Spannungen s4 und S5 in den Stäben
U und L5 mit Hilfe der nun bekannten
Spannungen s2 und s3 ermittelt Man
verfährt in ähnlicher Weise Punkt für Punkt,
bis der Endpunkt P5 erreicht wird Bei der
Wahl der Reihenfolge der Punkte wurde
darauf geachtet, dass die Zahl der
unbekannten Spannungen in keinem Punkt
grösser als zwei ist

Da alle Spannungen ermittelt werden,
bevor der Endpunkt P5 erreicht ist, bietet
die Spannungsanalyse in diesem Punkt
eine Rechenkontrolle. Es wird hier
angenommen, dass s14 und Sn unbekannt
seien. Die Berechnungen ergeben für
diese Spannungen + 1,000000 bzw.

- 0,614197 Diese Werte sind genau die
selben, wie sie für s14 angenommen und
fürsn ermittelt worden sind (vgl. Tab. 3)

Die Berechnung der Koeffizienten nach
der konventionellen Methode

Bei konventioneller Methode teilt man
das Streckennetz in Zentralfiguren, welche

alle gemessenen Strecken enthalten

Nicht komplette Figuren können mit
Hilfe fingierter Beobachtungen ergänzt
werden. In unserem Zahlenbeispiei wurden

die drei folgenden Zentralfiguren
gewählt, in denen die Strecken PiP3 L15

und P3P5= Li6fingiert sind.

1. P2-P1P3P7P8 mit Zentralpunkt_P2 und
der fingierten Beobachtung P,P3 als
überschüssige Strecke (Abb. 6a). Die
Winkel des Dreiecks P2PiP3 sind negativ

2. P3-PiP5P6P7P2 mit Zentralpunkt P3

und der ursprünglichen Diagonale P^
als die überschüssige Strecke (Abb 6b)
Die Winkel der Dreiecke P3P1P5 und
P3P2P1 sind negativ.

3. P4"P3PeP5 mit Zentralpunkt P4 und
der fingierten Beobachtung P3P5 als die
überschüssige Strecke (Abb. 6c). Die
Winkel des Dreiecks P3P4P5 sind negativ

Die Längen der fingierten Strecken
wurden aus den beobachteten Strecken
und den früher ermittelten Winkeln wie
folgt gerechnet

1P5= £F.

und

P* + P2Pj - 2-P1P2-P2P5-cos(/32+/r35+^4) 968,0176 m

P3P5 |/p~pj + P4p2 - 2.P3P4.P4P5.cos(/)8+/39) 1163,2750 m

Die erste und die dritte der durch die
fingierten Beobachtungen ergänzten
Zentralfiguren (Abb 6a und Abb 6c)
liefern zwei Bedingungsgieichungen (32a)

und (32c) ohne Widersprüche Dagegen
liefert das zweite Zentralsystem (Abb.
6b), mit der ursprünglichen Diagonale
L14, eine Bedingungsgleichung (32b) mit

r-o-i

Abb 6a Abb 6c

KWH

Abb. 6b
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demselben Widerspruch, welcher in (31

angegeben ist Man erhält auch denselben

Widerspruch, wenn man die Gl. (16),

(17), (18), und (19) für dieses Zentralsystem

anwendet Die drei Bedingungsgleichungen

sind

Vi + a2v2 + + ai4vl4 + ai5vl5 0

Ml + b2v2 + + bi4V14 + b15V15+bl6vl6 + W °

C1V1+C2V2+ + C14V14 + C16V16 =0

(32a)

(32b)

(32c)

Die Koeffizienten a, b, und c wurden
mit Hilfe von Gl. (15) ermittelt und sind in
Tabelle 4 aufgetragen.

Da die fingierten Strecken Li5 und L16

nicht gemessen wurden, erhalten sie
keine Verbesserungen. Die Verbesse¬

rungen v15 und v16 müssen deshalb aus
allen drei Bedingungsgieichungen
eliminiert werden Man rechnet sie als
Funktion aller anderen Verbesserungen
und erhält aus den Gleichungen (32a)
und (32c)

v15 -
a1 a2 *U

V _ y - - -1

al5 al5 al5

V16 -
c1 c2 c14

C16 C16 ó C16

'14

'14

(33a)

(33b)

Setzt man diese Gleichungen in (32b)
ein, so erhält man die endgültigen
Koeffizienten B' der einzigen Bedmgungs-
gleichung wie folgt

b. 15.
1 al5

a. -i 516
c.i (34)

worin i 1.2....14. Diese Koeffizienten
sind in der zweitletzten Kolonne der
Tabelle 4 angegeben. Sie unterscheiden
sich wenig von den Koeffizienten B, die
durch die Methode der minimalen
Arbeiten erhalten wurden und in der letzten

Kolonne der Tabelle angegeben
sind. Die kleinen Unterschiede liegen
ausserhalb der bedeutenden Dezimalstellen

und haben keinen Einfluss auf
die Ausgleichung Normalerweise
reichen vier Dezimalstellen vollständig aus
fürsolche Berechnungen.

Netze mit festen Strecken
Ein Streckennetz kann an einem

bestehenden Netz beginnen oder an ein

solches anschliessen Dann werden
manche Strecken nicht gemessen, und
ihre Längen dürfen in der Ausgleichung
nicht geändert werden Da diese Strek-
ken aber notwendig für die Berechnung
der Koeffizienten sind, werden ihnen
unendliche Gewichte zugeteilt, was sehr
steifen Stäben in einem mechanischen
Fachwerk entspricht. Nimmt man in

unserem Beispiel an, dass die Endpunkte
Pi und P5 der Diagonale fest sind, so
erhält die Distanz P-|P5 das Gewicht p14

oo. Die Koeffizienten und der Widerspruch

bleiben unverändert.
Die Ausgleichung der beiden Fälle

der gemessenen und der festen Diagonale

ist in Tabelle 5 enthalten.

Zusammenfassung
Die Bedingungen in einem Streckennetz

werden ermittelt, indem man das
Netz in Zentralsysteme teilt Jedes
Zentralsystem liefert eine Bedingungsgleichung,

deren Koeffizienten normalerweise

geometrisch ermittelt werden.
Man kann diese Berechnungen ver¬

einfachen und kontrollieren, wenn die
Methode der minimalen Arbeiten
verwendet wird. Bei dieser Methode stellt
man sich vor, dass die gemessenen
Strecken gerade, elastische Stäbe in

einem Fachwerk seien. In jedem Zentralsystem

befindet sich ein überschüssiger
Stab. Durchschneidet man diesen in der
Mitte, so entsteht eine Öffnung und das
Fachwerk entspannt sich. Die entstehende

Öffnung ist der lineare Widerspruch

in der Bedingungsgleichung.
Belastet man den durchschnittenen Stab
mit einer virtuellen Belastung +1, so

spannen sich demzufolge die anderen
Stäbe. Es wird hier bewiesen, dass diese
Spannungen numerisch gleich sind wie
die Koeffizienten der Bedingungsgleichung

und dass sie zu den selben
bekannten Koeffizienten führen.

Die beschriebene Methode ist nicht
nur für Zentralsysteme gedacht, sondern
ist allgemein gültig. Für Streckennetze
mit langen Diagonalen zum Beispiel
kann man die Bedingungsgieichung
direkt ermitteln, ohne das Netz in
Zentralsystemen zu zerlegen und ohne dass
fingierte Beobachtungen geführt werden
müssen. Anhand eines Zahlenbeispiels
wurde dies bestätigt.

Feste Strecken erhalten unendliche
Gewichte, damit sie in der Ausgleichung
ungeändert bleiben.
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