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tenkarte (Eigen- und Schlagschatten)
von Abbildung 5, mit ihren 1000x 1500
Bildpunkten, betragt die Rechenzeit auf
dem Grosscomputer 400 Sekunden, d. h.
0,26 ms pro Punkt im Durchschnitt. Die
gewonnenen Daten werden via ein Ma-
gnetband auf den Minicomputer Uber-
tragen, wo dann die eigentliche fotogra-
fische Aufzeichnung stattfindet.

Die perspektivischen Schattenbilder
werden direkt auf dem Minicomputer
berechnet und auf einem Fernsehschirm
dargestellt. Der Rechenaufwand ist sehr
unterschiedlich. Normalerweise wird
von einem Gelandeausschnitt ausge-
gangen, der durch entsprechende
Transformationen in die Bildebene proji-
ziert wird. Dementsprechend steigt die
Rechenzeit mit der Anzahl Gelandestutz-
punkte einerseits und der der Bildele-
mente andererseits. Vor allem ist aber
die Rechenzeit sehr stark abhangig von
der Komplexitat der Bilder, welche z. B.
den Flachenverdeckungsfaktor oder den
Clippingverlust umfasst. Das Schatten-
bild der Abbildung 9 stutzt sich auf ein
11,25x11,25km grosses Geldnde mit
46x46 Stutzpunkten. Die Bildebene be-
steht aus einem Bildspeicher mit
256x256 Bildpunkten. Fir dieses typi-
sche Bild betragt die Rechenzeit auf
dem Minirechner500 s.

7. Zusammenfassung

Die Bildsynthese wurde an Hand
eines Geldandemodells der Schweiz de-
monstriert. Die erzeugten Schattenkar-
ten ergeben einen guten plastischen

Eindruck des reinen Reliefs, und zwar
unabhangig von der Bodennatur oder
Bodenbedeckung. Eine grosse Flexibili-
tat bietet die Moglichkeit, die Beleuch-
tungsrichtung beliebig zu wahlen. Auf
diese Weise konnen alle Sonnenlagen
aber auch kunstliche Lichtquellen simu-
liert werden. Ein anderer Aspekt der
Schattenkarte ist die physikalische Be-
deutung der dargestellten Helligkeit als
Bestrahlungsstéarke des Bodens. Selbst-
verstandlich konnen aus einem Gelan-
demodell auch viele andere Informatio-
nen gewonnen werden. Die Neigungs-
karte der Schweiz ist ein Beispiel daflr.

Aufwendiger ist die Synthese von per-
spektivischen Schattenbildern. Damit
wird aber die Mdéglichkeit geboten, be-
liebige Gelandeteile unter beliebigen
Blickrichtungen, Sichtwinkeln und Ent-
fernungen zu generieren. Die Beispiele
zeigen zwei Verfahren zur Darstellung
der Gelandeoberflache. Je nach Anwen-
dung wird man zwischen dem modell-
getreuen Facettenbild und dem realisti-
schen sanften Bild wéahlen mussen.

Fur die Bildsynthese eignet sich ein
Allzweck-Minicomputersystem mit der
Moglichkeit, Halbtonbilder darzustellen.
Damit kdonnen sowohl Schattenkarten
als auch perspektivische Schattenbilder
produziert werden. Die Bildsynthese ist
somit reif fir die Anwendung.

Der Verfasser dankt Herrn Prof. Dr. E.
Baumann fur die Unterstitzung dieser
Arbeit. Ebenfalls sei Herrn PD Dr. T. Ce-
lio fur viele wertvolle Anregungen ge-
dankt.

Adresse des Verfassers:

H. Hugli, dipl. El. Ing. ETH
Institut fur Technische Physik,
ETH-Honggerberg,

CH-8093 Ziirich
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Die Zentral- und Diagonalenbedingungen in
ebenen Streckennetzen

N. F. Danial

On peut obtenir les conditions dans
un réseau de distances en le divisant en
systemes centraux. Chaque systeme
central fournit alors une équation de
condition dont les coefficients peuvent
étre déterminés par construction géomé-
trique.

On peut simplifier et contréler les cal-
culs en appliquant la méthode du travail
minimum. On considére alors les dis-
tances mesurées comme les barres
droites et élastiques d'un treillis. Chaque
systéeme central contient une barre sur-
abondante. En coupant cette derniére,
on supprime une liaison etle treillis se dé-
tend. La déformation résultante est
I'écart de fermeture linéaire de |'équa-
tion de condition. Si I'on applique sur la

barre coupée une charge virtuelle de
+ 1, les autres barres sont mises sous
tension. L’article montre que les ten-
sions sont numériquement égales aux
coefficients de I'équation de condition.

La méthode est générale et ne s'ap-
plique pas qu’'aux systémes centraux.
Pour les réseaux de distances avec de
longues diagonales par exemple, on
peut obtenir les équations de condition
sans subdivision en systemes centraux
et sans introduire d'observations fic-
tives. Cette possibilité est montrée a l'ai-
de d’un exemple numérique.

Les distances entre points fixes recoi-
vent des poids infinis afin qu'elles ne
soient pas modifiées par la compensa-
tion.

Vermessung, Photogrammetrie, Kulturtechnik 10/79

Einleitung

Streckennetze kdnnen vermittelnd
oder bedingt ausgeglichen werden. Im
allgemeinen zieht man die Methode der
bedingten Beobachtungen vor, weil we-
niger Bedingungen auftreten als Unbe-
kannte in der vermittelnden Ausglei-
chung. Die Zahl der Bedingungen ist
sehr leicht zu ermitteln. Sie ist genau
dieselbe wie die Anzahl der Seitenglei-
chungen in einem entsprechenden
Triangulationsnetz. Jedes Streckennetz
kann in eine Anzahl von Zentralfiguren
zerlegt werden. Eine Zentralfigur stellt
eine einfach Uberbestimmte Konfigura-
tion von Strecken dar und liefert deswe-
gen eine Bedingung. Diese wird nor-
malerweise durch die Winkelsummen-
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bedingung im Zentralpunkt ausge-
drickt. Die Winkel kdnnen aus den ge-
messenen Strecken berechnet werden.

Mehrere Autoren haben verschiedene
Gleichungen abgeleitet, die diese Be-
dingung darstellen. In seiner Abhand-
lung hat Tarczy-Hornoch [4] solche Glei-
chungen aufgrund eines Streckenvier-
ecks hergeleitet. Er hat auch eine Me-
thode entwickelt, in der er die einfach zu
ermittelnden  Verbesserungsgleichun-
gen der vermittelnden Beobachtungen
in Bedingungsgleichungen umwandelt.
Die Koeffizienten dieser Gleichungen
sind eher kompliziert.

Bekanntlich besteht eine Analogie
zwischen Uberbestimmten Systemen in
der Statik und Uberbestimmten geome-
trischen Figuren in der Vermessung. Im
ersten Fall handelt es sich um Stabe und
Knoten, im zweiten Fall um Strecken und
Punkte. Ansermet [1] hat von dieser
Analogie Gebrauch gemacht, um die
wahrscheinlichsten Koordinaten einer
Fachwerkkuppel zu berechnen. Er ver-
wendete dazu die Methode der vermit-
telnden Ausgleichung.

In umgekehrter Weise konnen Satze
der Mechanik in der Ausgleichungs-
rechnung angewandt werden. Das Prin-
zip ist allgemein anwendbar. Die folgen-
de Untersuchung beschrankt sich aber
auf Figuren, die nur durch Strecken ver-
messen sind. In diesem Fall stellt man
sich vor, dass die in einer geometrischen
Figur gemessenen Strecken gerade ela-
stische Stabe in einem Fachwerk seien.
Fehlerhafte Uberschissige  Strecken
oder Stabe verursachen Spannungen in
sich selber und in allen anderen Stében.
Demzufolge erleiden alle Stabe kleine
Forméanderungen, die den Verbesserun-
gen der gemessenen Strecken entspre-
chen.

Die Zentralbedingung

Abbildung 1a zeigt ein Zentralsystem
mit n Umfangspolygonpunkten, indem
alle 2n Strecken gemessen worden sind.
Die gegenseitige Festlegung aller n+1
Punkte braucht 2n-1 Messungen. Wenn
keine Beobachtungsfehler vorliegen,
wird die Uberschissige Beobachtung
Ly, der Distanz P,P; gleich sein, die
durch Rechnung ermittelt wird. Andern-
falls entsteht ein Widerspruch, der zu
einer Bedingung fuhrt und durch Aus-
gleichung eliminiert werden muss. Die-
se Bedingung wird Zentralbedingung
genannt, da sie von einem Zentralsy-
stem stammt.

Nach der friher erwahnten Uberle-
gung stellt man sich vor, dass die ge-
messenen Strecken gerade elastische
Stabe seien. Setzt man die Stabe L,
Ly, ... Lyp—1 Zusammen, so entsteht ein
entspanntes Fachwerk. Stimmen die
Langen Ly, und P,P; nicht Uberein, so
wird es schwierig sein, den Uberschissi-
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gen Stab L,, im Fachwerk zu montieren.
Um diese Schwierigkeit zu Gberwinden,
belastet man ihn mit einer Zug- oder
Druckkraft C, je nachdem er kirzer oder
langer ist als P,P;. Damit spannen und
deformieren sich alle Stabe. Die ange-
wandte Kraft C muss voll gentigend sein,
um die deformierte Lange L', genau
gleich der Distanz P',P; zu machen, die
von allen anderen deformierten Langen
L'y, L, ... L'yh—1 berechnetwird.

Die Kraft C kann am besten bestimmt
werden, wenn man die Methode der vir-
tuellen Arbeit anwendet. Durchschnei-
det man den Gberschissigen Stab in der
Mitte, so entsteht eine Offnung W, und
das Fachwerk entspannt sich. Man bela-
stet nachher beide Teile des durch-
schnittenen Stabes mit einem virtuellen
Kraftepaar von +1. Diese dussere Bela-
stung verursacht eine kleine Verschie-
bung D in ihrer Richtung und die daraus
resultierende Aussenarbeit wird

=1.D (1)

A
aussen

Unter dieser Belastung entwickeln
sich Spannungen s;, Sp,... Sy, welche
der Reihe nach die Formé&nderungen
8L, By, ... dly, in diesen Staben verur-
sachen. Damit wird die ausgefiihrte In-
nenarbeit

= 28,81 (2)

A.
innen
Wenn das Hooksche Gesetz voraus-

gesetzt wird, so gilt

s..L.
i1

L, = F..5
b i 1

(3)

worin dL; der Zuwachs in der Lange L,
des Stabes i bedeutet, der von einer in
ihm wirkenden Spannung s; resultiert. f;
ist der Querschnitt des Stabes und E; ist
der Elastizitatskoeffizient. i = 1,2, ... 2n.

Nach dem Gesetz der Energiekonser-
vierung ist

Aaussen = Annnen

Demnach folgt aus den Gleichungen
(1) und (2)

Abb.1a

1 .1>=‘£si.SLi (4)

Setzt man Gleichung (3) in (4) ein, so
wird

D = 2
i

was folgendermassen formuliert werden
kann

2
1 s.
D=Zs§' T E; =Zi§f

L; (5)

s?.L.
i*7i

f-.E
i

(5

worin k; die Steifigkeit des Stabes i be-
deutet. :

y T, (6)

Die entstehende Offnung W im durch-
schnittenen Stab kann geschlossen wer-
den, wenn

C.DwW=0 (7)

Die Gleichungen (5) und (7) ergeben
zusammen
2
°i

c.p El- + W = 0 (7)

Somit ergibt sich die gesuchte Kraft C
aus

- W - W
rull

e

Ersetzt man die virtuelle Belastung
(+1) durch die eingefiihrte Kraft C, so
schliesst sich die Offnung W. Gleichzei-
tig entwickelt sich in jedem Stab i eine
Kraft

Abb.1b -
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F, =C. 8, 9)
i i
welche einen endgiltigen Zuwachs
Fi’Li Si'Li Sy
L. = L= . s 10
Ay * T B = B-FF ™ G-% 1o
i1 i1 i
in seiner Lange L verursacht. Setzt man GlI. (6) in (7) ein, so erhalt man
. C.s1.L1 ‘e C.sz..‘[,2 o C's2n'L2n $ W= 8 O
1 f1 .E1 2 f2.E2 2n f2n‘E2n
welche unter Bericksichtigung von Gl. (10) zur folgenden Bedingung wird
Der Vergleich mit der folgenden bekannten Bedingungsgleichung
a.1.V1 + a2.V2 + ecececse + 8.2nV2n + W = 0 (13)

der Methode der kleinsten Quadrate
zeigt deutlich, dass Gleichheit zwischen
beiden Bedingungen besteht. Wichtig
ist zu erkennen, dass die in allen Stédben
wegen der im Uberschissigen Stab wir-
kenden virtuellen Belastung + 1 entste-
henden Spannungen s;, die Koeffizien-
ten a; der Bedingungsgleichung sind.
Selbstverstandlich entsprechen die end-
glltigen Zuwéchse AL; den Verbesse-
rungen v, der beobachteten Langen L;.

Die Losung der Bedingungsgleichung
(12) ist in GI. (10) angegeben, welche
ahnlich der Gleichung

(14)

der Methode der kleinsten Quadrate ist.
Aus der Analogie erkennt man, dass die
Kraft C, die genau die Offnung W
schliesst, dieselbe ist, wie die Korrelate
K und dass die Steifigkeit k; eines Stabes
dieselbe ist, wie das Gewicht p; der ent-
sprechenden Beobachtung.

Selbstverstandlich decken die hier fur
den Fall von nur einer Bedingung ermit-
telten Resultate auch den Fall von meh-
reren Bedingungen. Letzterer liegt aber
ausserhalb des Rahmens dieser Arbeit
und wird hier nicht behandelt. Der inter-
essierte Leser wird auf Danial [2] verwie-
sen.

Die Berechnung der Koeffizienten
eines Zentralsystems

In einem Zentralsystem treffen sich
drei Stabe an jedem Umfangspolygon-
punkt. Die Spannungen in diesen drei
Staben (oder Koeffizienten der drei
beobachteten Strecken) lassen sich
durch ein massstéblich gezeichnetes
Kraftedreieck graphisch bestimmen.

Man zeichnet zuerst eine Parallele zum
Uberschussigen Stab L, (Abb. 1a) und
misst darauf eine Distanz OD, (Abb. 1b)
ab, die der virtuellen Belastung (+ 1) ent-
spricht. An den Endpunkten D, und O
dieser Distanz werden zwei Parallelen
D,D; und OD; zu den zwei anderen Sta-
ben L; und L, gezeichnet. Sie schneiden
sich in Punkt D;. Damit entsteht das er-
ste Kraftedreieck OD,D;. Die Spannun-
gen s; und s; (oder die Koeffizienten a;
und a,) kénnen aus der Zeichnung ent-
nommen werden. Mit s, nun bekannt,
zeichnet man die Parallelen DD, und
0D, zu den Staben Lz und Ly, somit wer-
den die Spannungen s3 und s4 bekannt.
Verfahrt man ahnlicherweise, bis die
Spannung s;, im Uberschissigen Stab
erreicht wird, so entsteht ein Krafteplan.
Wenn keine Zeichenfehler unterlaufen
sind, sollte der Krafteplan genau schlies-
sen.

Man beachte, dass:

1. der Kréfteplan eines Zentralsystems
auch eine Zentralfigur ist,

2. die Spannungen in den Umfang-
spolygonstdben als radiale Linien und
solche in den radialen Staben als Um-
fangspolygonlinien im Kréafteplan darge-
stellt werden, und schliesslich

3. die Winkel a;, Bi-1 zwischen den an
irgendeinem Umfangspolygonpunkt i
des Zentralsystems wirkenden drei Sta-
ben in einem Kraftedreieck erscheinen,
welches die Spannungen in diesen drei
Staben ergibt.

Es kann gesagt werden, dass der Kréf-
teplan eines Zentralsystems dessen In-
verse ist.

Der Kréafteplan eines Zentralsystems
ist ein ausgezeichnetes Mittel zur nume-
rischen Berechnung der Spannungen s;
(oder der Koeffizienten a;). Lost man die
in Abb. 1b gezeigten Kraftedreiecke
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0D,D;, ODD,, ... OD,-1D, der Reihe
nach, so erhalt man die Koeffizienten der
vom Zentralpunkt ausgehenden Strek-
ken L, l_3, LG_y

sin(« 1* /3n)

4 =@y sin o
. s:.n(0<2+,81)
a3 2 sin cx2
X . sin(oti+ ﬁi-1)
Bed =T Bajup sino
n S Sim(c>(rx"'/3n—1)
2n-1 ~ 2n-2

sin
o(n

und der Strecken des Umfangpolygons.
L2, L4 L2n

aZn =4+ 1
a, =+ a __sn.n ﬁn
2 2n sin 0(1
.. sin /31
g T~ & sin o
2
sin Bi-1
8 =* %32 sin x; (15b)
sin [Sn_1
n =% %n.2 Sin .
=+ 1

Der lineare Widerspruch

Der lineare Widerspruch W ist die Dif-
ferenz zwischen der beobachteten L&n-
ge L, der Uberschissigen Strecke und
der durch Losung aller Dreiecke erhalte-
nen Lange P,P;. Die Reihenfolge dieser
Rechnungen ist

1. die Berechnung aller Zentralwinkel
v; der gemessenen Seiten. Wenn der
Kosinussatz angewandt wird, bekommt
man

2 2 2

\. = arc cos Loso1 * Losen = Loy
i 2" Loi 1" Loia

<(16)

worini=1,2,...(n—1)

2. die Berechnung des der Uberschis-
sigen Strecke gegenulberliegenden Zen-
tralwinkels v,
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n-1

=360° - 2 Y. (17)
1 1

1

3. die Distanz P,P; kann von den radia-
len Seiten L; und Ly,-1 wie folgt be-
stimmt werden:

PnP1 =

4. Der lineare Widerspruch W ist die
Differenz zwischen den gemessenen
und gerechneten Strecken

- PF

T
¥ 2n n 1

= L (19)

Die Berechnung des linearen Wider-
spruches kann auf einfacherem Weg er-
folgen. Baut man das Fachwerk, begin-
nend vom ersten Stab L, in der Lage P;Py
(Fig. 2a) auf, so erhalt man Punkt P’y an-
statt Punkt P, am Ende des Zusammen-
setzens der fehlerhaften 2n—1 Stébe.
Der Winkelwiderspruch Ay ist somit der
eingeschlossene Winkel zwischen bei-
den Richtungen PoP’; und PoP;. Er lasst
sich numerisch bestimmen als Differenz
zwischen den gemessenen und gerech-
neten Zentralwinkelny, und y’,.

a¥= T -7}

(20)

W = W'cos(90° - _A_2£ - /3n)

Gleichungen (21) und (22) ergeben zu-
sammen

AT
W= L1 T Sinpn (23a)

oder

oY
0P

worin h, der senkrechte Abstand zwi-
schen dem Zentralpunkt Po und der
Uberschiussigen Strecke P,P; ist. Glei-

W= (23b)

2 2
/ Ly # Dopy = hydoge

n

1

cos )“r'l (18)

Y» kann aus den gemessenen Seiten Ly,
Lon-1. und Ly, gerechnet werden. v’ ist
der selbe Winkel, wie erin Gl. (17) ange-
gebeniist.

Nennt man die Distanz P';P; = W', so
wird im Dreieck P';PoP;
aY
W'= L, 2sin éi:L,‘ 5
(21)

da Ay ein kleiner Winkel ist. Wenn man
die Winkel

P PAP

n10 PPP

= P

annimmt, so wird der lineare Wider-
spruch W in der Richtung P,P;, wie die
sich im Fachwerk ergibt

-ﬁn)

chung (23a) oder (23b) zeigt, dass der li-
neare Widerspruch W in direktem Zu-
sammenhang mit dem Winkelwider-
spruch Ay steht. Dieser Zusammenhang
istin Abb. 2b graphisch dargestellt.

W'cos(90° (22)

Der Ubergang von der hier ermittel-
ten zur bekannten Bedingungsglei-
chung eines Zentralsystems

Setzt man die von Gl. (15a), (15b) und
Gl. (23a) erhaltenen Koeffizienten und
Widerspruch in Gl. (13) ein, so entsteht
die Bedingungsgleichung

sin(d1+,Bn) sin 8
= %o sin& "V * sin«, “Yg
sin(0(2+ﬂ1) s;n/?1
-8 O sin o "Wy * 8 sin o Y4
2 2
s:m(D‘ +/3n-1 sinﬁn 1
= 8ope2’ sinoc "Von-1 * @on.2" Sinoe *Von
AY
+ L.lsinﬁn. e = 0 (24)

worin der Koeffizient der Verbesserung der iiberschissigen Beobachtung v,,
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sin ﬁ n-1

%on-2 “sin x_ =+1

=a2n

ist wie zu Beginn angenommen und in
Gl. (15b) angegeben wurde.

Dividiert man Gl. (24) durch L; sinf,,
so erhalt man andere Koeffizienten a; fur
die Verbesserungen v;.

sin( °<1+,3n) 1
LA,
sin c(.‘cosﬁn + cos cx1sinﬁn

=-( L1

3 =<8y sin &

sin 0(1 sinﬂ n
cotg /Jn cotg o,
+
L L
sin/in 1

= a, - . -
2 2n sin X, L1 sin /Sn

ol

1
L1 sin oy

=+ 1%

Abb.3 Py
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Man erkenntvon Abb. 1a, dass

L2j_-1 sin uli = L21+1 sin/Qi = hi
(25)

worin h; der senkrechte Abstand zwi-
schen dem Zentralpunkt Py und der Um-

fangpolygonseite 2i ist. Damit wird
wenni=1
= N 1

a. =

2 h,

Analog wird
- cotg/i1 . cotg «,
3 L3 Ls
- _, 1 cothBi_1

4 B3 Loy

Im allgemeinen kann fir die Koeffi-
zienten der vom Zentralpunkt ausgehen-
den Strecken

a5 1= c;‘cg b, cztg =
2i-1 2i-1
(26a)
und der Strecken des Umfangpolygons

— 1 -4 1_,
L2i-1 sin °‘i hi

(26b)

geschrieben werden, wobeii=1,2, ... n,
und B =B,wenni=1.

Der neue Widerspruch wird unter Be-
ricksichtigung von Gl. (23a)

i W Xa

- : - (27)
L1 s;n/J % %

Die neuen Koeffizienten &, der Verbes-
serungen v; und der neue Widerspruch
W stimmen genau mit jenen Werten
Uberein, die Rinner [3] angegeben hat.

Abb. 4

Abb. 5
Strecke Nr. m Strecke Nr. m
P, Py 454,250 P3P4 Lg 762,390
P1P2 L2 491,720 P4P6 L9 488,910
P,Pg L3 569,140 P4P5 Lo 449,530
P2P7 L 610,960 P5P6 L, 571,090
P2P3 L5 525, 700 P6P7 L12 786,640
PBPY L6 457,120 P7P8 L13 475,730
P3P6 L7 763,280 P1P5 L14 2098, 780
Tab.1 Die beobachteten Strecken
Nr. Winkel B Nr. Winkel ﬁ
Dreieck P1 P2P8 Dreieck P3P6P7
1 73°%51122, 756" 6 75%40100,589"
50 03 18,147 13 34 15 52,715
18 56 05 19,097 14 70 04 06,696
Z 180 00 00,000 > 180 00 00,000
Dreieck P2P7P8 Dreieck P3P4P6
3 47 23 01,808 37 22 51,392
16 61 41 27,178 71 24 29,982
17 70 55 31,014 12 71 12 38,626
z 180 00 00,000 > 180 00 00,000
Dreieck P2P3P7 Dreieck P4P5P6
4 46 41 02,923 9 74 50 16,776
5 76 31 06,425 10 55 43 13,493
15 56 47 50,652 11 49 26 29,731
> 180 00 00,000 > 180 00 00,000

Tab.2 Die aus den gemessenen Seiten gerechneten Winkel
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Damit ist bewiesen, dass die hier vorge- . , . &
schlagene Methode zum selben Resul- | |Fkt.|Stab| Spanmmng e Betmth
tat fihrt, wie in der Literatur bekannt ist. 00 s 0,0
Sie hat aber die folgenden Vorteile: B %1 44, 290006° ’ 1
1. Die Berechnung der Koeffizienten 14 | + 1,000000 44,290006° | + 0,715815 + 0,698290
erfolgt in Schleifen. Sie muss mit dem 29,566315
o 0,278046 0,960567 s
selben Wert (+ 1) enden, wie sie begon- 2 2 TA,ERE321 | +1G,27R045 By | % 05 2
nen wurde. Demzufolge hat man eine 2
: ; = -0,513687 | s,= -0,726956
Rechenkontrolle, die keinen besonderen *1 2
Aufwand erfordert. Diese Konftrolle ist Py | 13 513 0,0 + 843 0,0
ichti i i 70,925282
W|qhtlg, wenn die Ausgleichung von ; . — + 0,326801 s 4+ 0,945093 s
kleineren  Streckennetzen manuell 3 56,088638 2 5 3
durchgefihrt wird. 1| - 0,513687 ' 127,013920 | + 0,309244 - 0,410173
2. Die Methode ist allgemein giiltig. In
Streckennetzen mit langen Diagonalen s13=—0,451076 s3= +0,434003
zum Beispiel kdnnen die Koeffizienten
der Bedingungsgleichungen direkt er- 9 5 s 0,0 + Sg 0,0
mittelt werden, ohne dass man fingierte 215,876978
o : 0,589036 0,426030
Beobachtungen einfiihrt und das Netz in 2 | =B, 726950 — <lpaSicua | & Npinils *
Zentralfiguren teilt. Das Zahlenbeispiel 3 | + 0,434003 ’ 265,932019 - 0,030788 - 0,432909
am Ende dieses Artikels erlgutert diesen 47,38383%6
Fall. 4 5 513,315655 | + 0,686020 s, | - 0,727583 s,
3. Fur weniger anspruchsvolle Arbei-
R . iy \ = -0,551762 = -0,009455
ten konnen die Koeffizienten graphisch s %ot} % i
ermittelt werden. P, | 12 - 0,0 + 8., 0,0
4. Die Koeffizienten sind dimensions- 70,068527 - 8,800 =
los. Die Verbesserungen und die Wider- 6 s¢ &, 797403 70,068527 | + 0,340896 s¢ | + 0, 6
spriche haben die selbe lineare Einheit. 4 | - 0,009455 ’ 126,865930 | + 0,005672 - 0,007564
61,690883
13 | - 0,451076 188,556813 | + 0,446055 + 0,067116
Ein Spezialfall der Zentralfigur
g 5 . . = = -0,063346
Die in Abb. 1a gezeigte Konfiguration s,,==0,430133 | s.= -0,06534
von Strecken stellt den normalen Fall P 5 s 0,0 + s 0,0
. . 8 ’ 8
des Zentralsystems dar. Eine abwei- 3 170,433776 BB
chende Konfiguration dieses Systems 5 | - 0,551762 I — 170,433776 | + 0,544089 ~ Q05163
kommt vor, wenn der Zentralpunk_t Po 6 | - 0,063346 ’ 246,952228 | + 0,024800 + 0,058289
ausserhalb des Umfangpolygons liegt. 75,666830
Dieser Spezialfall braucht keine beson- 7 s 322,619058 | + 0,794617 s, | - 0,607112 s,
deren Berechnungen, wie das im fol-
genden Fall bei einem Streckenviereck 8g= —0,525165 | &= -0,035025
gezeigt wird.
Die Bedingungsgleichung eines ol 41 0,0 + S, 0,0
i 49,441592
Streckenvnereck_s o 9 4 49,441592 | + 0,650223 5o | + 0,759744 sg
Das Streckenviereck wurde in vielen 9 71,210729
Publikationen als Grundfigur in Strek- 7 | - 0,055025 120,652321 | + 0,028053 - 0,047337
kennetzen angenommen und seine Be- 54,264643
) : ) - 1 0,38956 - 0,182
dingungsgleichung geometrisch herge- e 0,430133 416960 | = 055560 sl
leitet. Betrachtet man eine seiner vier
, =-0,614197 | s = +0,302318
Ecken (Py in Abb. 3) als Zentralpunkt, so *11 9
verwandelt es sich in eine Zentralfigur
, X , P, | 10 0,0 + s 0,0
mit den drei Dreiecken P;PyP,, P,PyPs, < *10 213, 753678 10
und P3PoP;. Die in Gl. (15) abgeleiteten 8 | - 0,525165 213,753678 | + 0,436640 + 0,291794
Koeffizienten kénnen hier angewandt 7,408328
) S 285,16200 0,2615 - 0,965190
werden, wenn die drei Winkel ag, Bs, und o %9 . T 243 5 ? %
Y3 des ausserhalb des Umfangpolygon_s s, ==0,515711 | s_= +0,302318
liegenden Dreiecks P3PoP; als negativ 10 J
betrachtet werden. Damit wird die Be-
dingungsgleichung (24) mitn =3 zu Rezhenkontrolle
sin(x_+(=f.)) sin(-f,) B 14 s 0,0 + s 0,0
-%%ﬁt‘% ® B e % ’ b & L o "
sl | Sl 11 % 25,222297 | + 0,904661 s, | + 0,426131 s,,
in( o i 304,279585
-5 %ﬂ vy e s, % v, 10 | - 0,515711 ’ 329,501882 | - 0,444360 + 0,261728
2 2
. sin((-°(3)+/32) s s:‘mﬁ2 . s14=+1,000000 s11=—0,614197
4 sin(— ) 5 4 sini-(x ) 6
% 3
) INg Tab.3 Die Berechnung der Spannungen oder der Koeffizienten B nach der Methode der mini-
* Lysin(=f,). = = 0 (28) | malen Arbeiten
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a6 =4+ 1
sin(-f5)
- —_— 3
8, =+ 3¢ ainc(1 » und
sin/31

+ a, =
2 sinot,

AF = Y+ Y, 4 (_TS)

Dividiert man Gl. (28) durch L sin(—s)
und reduziert die Glieder, wie im vorletz-
ten Abschnitt gezeigt wurde, so be-
kommt man die Bedingungsgleichung

cotg(~ A) cotge 1

= ( I + L ) vy + Lsinx, 72
cotg B, cotg x, 1

- ( L} + L} )v3+ L5sino(2 -\r4
cotg B, cotg(-ax,) 1

- i * L Vs * Lsin(-a5) 6

+ ATY = 0 (29)

Diese Gleichung stimmt genau mit
der von Tarczy-Hornoch [4] abgeleiteten
Uberein. Man stellt sich vor, dass Punkt
A'in Abb. 1 jener Publikation der Zentral-
punkt sei und &ndert die Nummerierung
der Seitenc, a, b, f,e,unddin L, Ly, ...
Le und die der Winkel oy, ap, a3, B3, By, v1,
Y2.82.und 83, in 1, Y2, 3, Ba. 1By, a2, Bo.
und a3 der Reihe nach.

Die Diagonalenbedingung

Es gibt Félle, wo lange Seiten in Strek-
kennetzen eine Vielzahl von Dreiecken
queren. Diese langen Seiten, Diagona-
len genannt, sind meistens Uberschiis-
sig und liefern deswegen Bedingungen.
Die Koeffizienten einer solchen Bedin-
gungsgleichung kénnen nach dem sel-
ben Prinzip gerechnet werden, wie im
Fall der Zentralsysteme. Man durch-
schneidet die Diagonale in der Mitte und
belastet beide durchschnittenen Teile
mit der virtuellen Belastung + 1. Wie
vorher bewiesen wurde, ergeben sich
die Koeffizienten der verschiedenen
Beobachtungen als die numerischen
Werte der in den entsprechenden Sta-
ben entwickelten Spannungen.

Wie Abb. 4 zeigt, treffen an manchen
Punkten mehr als drei Strecken zusam-
men. Die Kraftedreiecke kénnen daher
fir die Berechnung der Spannungen in
den entsprechenden Stiben an diesen
Punkten nicht verwendet werden. Man
stellt deshalb am besten die Gleichge-
wichtsbedingungen an jedem Punkt auf,
indem man die Summen der X- und
Y-Komponente der an diesem Punkt wir-
kenden Spannungen gleich Null setzt.
Das rechtwinklige XY-Koordinatensy-
stem kann beliebig gewahlt werden.

Z OX = z S; cos 19i = 0 (30a)

Kr Distam;e a b e B' B
1 454,250 | - 0,331327 - 0,513473 | - 0,513687
) 491,720 | - 0,855878 | + 0,599262 - 0,727132 | - 0,726956
3 569,140 | + ©,279931 + 0,433822 | + 0,434003
4 610,960 | + 0,305608 | - 0,482686 - 0,009071 - 0,009455
5 525,700 | - 0,883295 | + 0,816701 - 0,552182 | - 0,551762
6 457,120 | - 0,306126 | + 0,410773 - 0,063645 | - 0,063346
7 763,280 +0,21170e | - 0,353663 | - 0,055391 | - 0,055025
8 762,390 - 0,695651 | - 0,525381 | - 0,525165
9 488,910 + 0,400461 | + 0,302443 | + 0,3%02318
10 449,530 - 0,683128 | - 0,515923 | - 0,515711
11 571,090 - 0,28116€ | - 0,440696 | - 0,613995 | - 0,614197
12 786,640 - 0,429616 - 0,429616 | - 0,430133
13 475,730 | - 0,290944 - 0,450889 | - 0,451076
14 | 2098,780 + 1,000000 + 1,000000 | + 1,000000
U I N S I R S
15 968,018 | + 1,000000 | - 1,549746
16 | 1163,275 - 0,755236 | + 1,000000
W 0,0 + 0,0794 0,0 + 0,0974 + 0,0974
b,
- +1,549746
a.15
- 'ble- + 0,755236
%16
Tab.4 Die Berechnung der Koeffizienten B’ nach der konventionellen Methode.
Fall (1) Fall (2)
. gemessene Yoef- Verbes- ausgegl. _ ] Verbes- ausgegl.
Nz Distanz izient P serung Distanz & serung Distanz
m E ot m m m
1 454,25C | - 06,5137 1| + 0,011 454,261 1|+ 0,015 454,265
2 491,720 | - 0,7270 1|+ 0,016 491,736 1|+ 0,021 491,741
3 569,140 | + 0,4340 1| - 0,009 569,131 1| -0,013 569,127
4 610,960 | - 0,0095 1 | + 0,000 610,960 1| + 0,000 610,960
5 525,700 | - 0,5518 1|+ 0,012 525,712 1 | + 0,016 525,716
6 457,120 | - 0,0633 1 | + 0,001 457,121 1 | + 0,002 457,122
7 763,280 | - 0,0550 1 | + 0,001 763,281 1 | + 0,002 763,282
8 762,390 | - 0,5252 1 | + 0,011 762,401 1| + 0,016 762,406
9 488,910 | + 0,3023 1| - 0,006 488,904 1| - 0,009 488,901
10 449,530 | - 0,5157 1|+ 0,0m 449,541 1 | + 0,015 449,545
11 571,090 | - 0,6142 1| + 0,013 571,103 1| + 0,018 571,108
12 766,640 | - 0,4301 1| + 0,009 786,649 1]+ 0,013 786,653
13 475,730 | - 0,4511 1| + 0,010 475,740 1|+ 0,013 475,743
14 | 2098,780 | + 1,0000 1| - 0,022 | 2098,758 o | + 0,000 |2098,780

Tab.5 Die Ausgleichung der beiden Falle: (1) gemessen und (2) festen Diagonale.

28y 2 s; sin ¥, =0 (300)

worin 9; der Winkel ist, den die Richtung
der Spannung s; mit der X-Achse macht.

Mit Gl. (30a) und (30b) kann man in je-
dem Punkt zwei unbekannte Spannun-
gen ermitteln, wenn alle anderen an die-
sem Punkt wirkenden Spannungen be-
kannt sind. Einfachheitshalber wéhit
man eine der Achsen so, dass sie durch
eine unbekannte Spannung geht. Damit
wird es moglich, die zwei unbekannten

Spannungen in je einer Gleichung zu er-

Vermessung, Photogrammetrie, Kulturtechnik 10/79

mitteln, anstatt der zwei Gleichungen
mit zwei Unbekannten 16sen zu missen
(vgl. Tab. 3)

Man beginnt die Berechnung der Span-
nungen von einem Endpunkt des Uber-
schiussigen Stabes, in welchem eine vir-
tuelle Belastung + 1 wirkt. Das Gleichge-
wicht wird dann Punkt far Punkt herge-
stellt, bis der andere Endpunkt des lber-
schissigen Stabes erreicht wird. Eine
Rechenkontrolle ist vorhanden, wenn
man am letzten Punkt die Spannung + 1
erhélt, wie dies am Anfang der Rech-
nung angenommen worden ist.
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~ DerWiderspruch in einer Diagonalen-

bedingung ergibt sich als Differenz zwi-
schen der gemessenen und gerechne-
ten Lange der Diagonale. Letztere kann
ermittelt werden, wenn man die End-
punkte der Diagonalen durch einen aus
Netzseiten gebildeten Polygonzug ver-
bindet. Die Berechnung des Polygonzu-
ges ist ein Routineverfahren.

Zahlenbeispiel

Abbildung 5 zeigt ein freies Netz mit
acht Punkten, in welchem die Strecken
L, Lo, ...Lis gemessen worden sind. Die
Beobachtungen sind in Tabelle 1 ange-
geben. Da die gegenseitige Lage von n
Punkten nur (2n-3) Strecken braucht, so
wird mit n = 8 die Anzahl der Bedingun-
gen

-(2-8-3)=1.

Diese Bedingung ist leicht erkennbar.
Die gemessene Lange L4 der Diagonale
muss gleich der Distanz P,Pg sein, wie
sie sich im Fachwerk ergibt, oder mit an-
deren Worten, wie sie aus allen anderen
Distanzen errechnet werden kann.

Die Reihenfolge der Berechnung ist:

1. Die Winkel

Alle zwischen den gemessenen Strek-
ken eingeschlossenen Winkel missen
gerechnet werden. Zu diesem Zweck
verwendet man gewohnlich den Kosi-
nussatz. Die gerechneten Winkel wer-
den kontrolliert, indem man die Winkel-
summe in jedem Dreieck bildet und sie
mit 180° vergleicht. Die so erhaltenen
Winkel sind in Tabelle 2 aufgetragen.

2. Der Widerspruch

Die Berechnung der Diagonale P;Pg
erfolgt mittels eines offenen Polygonzu-
ges, der durch gemessene Seiten geht.
In diesem Beispiel wurden die Strecken
P1P,, P,P3, P3P4, und P4Ps als Polygonsei-
ten gewahlt. Die Polygonzugswinkel bil-
deten sich aus den Winkelsummen
(B2+Bs+Ba). (Bs+Be+B7). und (Bs+Bo). Die

Berechnung des Polygonzuges ergibt

P;Ps =2098,7006 m

und die Endwinkel an den Endpunkten
P1 und P5

Bio =29° 33'58,733"

B2o=30° 29'53,224"
DerWiderspruch wird damit

W = 2098,780 — 2098,7006 = + 0.0794 m
(31)

3. Die Koeffizienten
Die Ermittlung der Spannungen, oder
der Koeffizienten, erfolgte nach der Me-
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thode der Spannungskomponente, da
an manchen Punkten mehr als drei Sta-
be zusammentreffen. Die Berechnung
beginnt am Endpunkt Py, wo die Diago-
nale P;Pg mit einer virtuellen Kraft si4 =
a3 = + 1 belastet wird. Aus dem Gleich-
gewicht an diesem Punkt bekommt man

sy =a;=-0,513687
und
S)=ay=— 0,726956

Mit nun bekanntem s; analysiert man
die Krafte im Punkt Pg und erhalt dabei
die Spannungen s3 und s;3 der Stabe L3
und Ly3. Im folgenden Punkt P, werden
die Spannungen s; und sg in den Staben
Ly und Ls mit Hilfe der nun bekannten
Spannungen s, und s ermittelt. Man ver-
fahrt in ahnlicher Weise Punkt fur Punkt,
bis der Endpunkt Ps erreicht wird. Bei der
Wahl der Reihenfolge der Punkte wurde
darauf geachtet, dass die Zahl der unbe-
kannten Spannungen in keinem Punkt
grosser als zwei ist.

Da alle Spannungen ermittelt werden,
bevor der Endpunkt P erreicht ist, bietet
die Spannungsanalyse in diesem Punkt
eine Rechenkontrolle. Es wird hier ange-
nommen, dass s34 und s;; unbekannt
seien. Die Berechnungen ergeben fur
diese Spannungen + 1,000000 bzw.

—0,614197. Diese Werte sind genau die
selben, wie sie fir sy, angenommen und
fur sq; ermittelt worden sind (vgl. Tab. 3).

Die Berechnung der Koeffizienten nach
der konventionellen Methode

Bei konventioneller Methode teilt man
das Streckennetz in Zentralfiguren, wel-
che alle gemessenen Strecken enthal-
ten. Nicht komplette Figuren knnen mit
Hilfe fingierter Beobachtungen ergénzt
werden. In unserem Zahlenbeispiel wur-
den die drei folgenden Zentralfiguren
gewidhlt, in denen die Strecken PPz = Lys
und P3Ps = Lyg fingiert sind.

1. P,-P;1P3P;Pg mit Zentralpunkt P, und
der fingierten Beobachtung P;P; als
Uberschissige Strecke (Abb. 6a). Die
Winkel des Dreiecks P,P;P3 sind negativ.

2. P3—P;PsPgP,P, mit Zentralpunkt P3
und der urspriinglichen Diagonale P;Pg
als die Uberschissige Strecke (Abb. 6b).
Die Winkel der Dreiecke Ps;PPs und
P3P,P; sind negativ.

3. P4—P3PgPs mit Zentralpunkt P4 und
der fingierten Beobachtung PsPs als die
Uberschissige Strecke (Abb. 6c). Die
Winkel des Dreiecks PsP4Ps sind negativ.

Die Langen der fingierten Strecken
wurden aus den beobachteten Strecken
und den friher ermittelten Winkeln wie
folgt gerechnet

T —2 ——2 PP P T . -—
1>1P3 - /P1P2 + 1>21>3 2:P, 2 cos(p2+/33+/34) = 968,0176 m
und
= = 1163,2
1>31>5 P3 4 P4 5 -2 P3P4 P4P5 cos(/38+/39) 3,2750 m
Die erste und die dritte der durch die | und (32c) ohne Widerspriche. Dagegen
fingierten Beobachtungen ergénzten | liefert das zweite Zentralsystem (Abb.

Zentralfiguren (Abb. 6a und Abb. 6¢) lie-
fern zwei Bedingungsgleichungen (32a)

P

6b), mit der urspringlichen Diagonale
L14. eine Bedingungsgleichung (32b) mit

U

Abb. 6b
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demselben Widerspruch, welcher in (31)

angegeben ist. Man erhalt auch densel-

ben Widerspruch, wenn man die Gl. (16),
v L L )

a,vy + 8V, + +a14v14

+ b, ,Vv

b1v1 +b2v2+  @ie-a # 14V14

C,V, + C,V,. &+

19 g%  Sqav

14714

Die Koeffizienten a, b, und ¢ wurden
mit Hilfe von GI. (15) ermittelt und sind in
Tabelle 4 aufgetragen.

Da die fingierten Strecken Lig und Lig
nicht gemessen wurden, erhalten sie
keine Verbesserungen. Die Verbesse-

R . B
15 a.‘]5 1 a15 2
s E
16 16 1 6 2

Setzt man diese Gleichungen in (32b)
ein, so erhalt man die endgultigen Koef-
fizienten B’ der einzigen Bedingungs-
gleichung wie folgt

b b
Bf = bi.._15. a, - 186 (3
%5 %16

worin i =1, 2,...14. Diese Koeffizienten
sind in der zweitletzten Kolonne der Ta-
belle 4 angegeben. Sie unterscheiden
sich wenig von den Koeffizienten B, die
durch die Methode der minimalen Ar-
beiten erhalten wurden und in der letz-
ten Kolonne der Tabelle angegeben
sind. Die kleinen Unterschiede liegen
ausserhalb der bedeutenden Dezimal-
stellen und haben keinen Einfluss auf
die Ausgleichung. Normalerweise rei-
chen vier Dezimalstellen vollstandig aus
fur solche Berechnungen.

Netze mit festen Strecken
Ein Streckennetz kann an einem be-
stehenden Netz beginnen oder an ein

(17), (18), und (19) fur dieses Zentralsy-
stem anwendet. Die drei Bedingungs-
gleichungen sind

+ a, 5V15 =0 (32a)
+ b, .V,.+b,,Vv,, + W=20

15715 16716 (32b)

* C16V16 = 0(32c)

rungen vis und vig missen deshalb aus
allen drei Bedingungsgleichungen eli-
miniert werden. Man rechnet sie als
Funktion aller anderen Verbesserungen
und erhéalt aus den Gleichungen (32a)
und (32c)

a.

ese - aj:J; V1 4 (338)
c
1
ceees = 'a]—:" V1 4 (33b)

solches anschliessen. Dann werden
manche Strecken nicht gemessen, und
ihre Langen dirfen in der Ausgleichung
nicht geandert werden. Da diese Strek-
ken aber notwendig fur die Berechnung
der Koeffizienten sind, werden ihnen un-
endliche Gewichte zugeteilt, was sehr
steifen Staben in einem mechanischen
Fachwerk entspricht. Nimmt man in un-
serem Beispiel an, dass die Endpunkte
Py und Pg der Diagonale fest sind, so er-
halt die Distanz P;P; das Gewicht ps =
. Die Koeffizienten und der Wider-
spruch bleiben unverandert.

Die Ausgleichung der beiden Félle
der gemessenen und der festen Diago-
nale istin Tabelle 5 enthalten.

Zusammenfassung

Die Bedingungen in einem Strecken-
netz werden ermittelt, indem man das
Netz in Zentralsysteme teilt. Jedes Zen-
tralsystem liefert eine Bedingungsglei-
chung, deren Koeffizienten normaler-
weise geometrisch ermittelt werden.

Man kann diese Berechnungen ver-

einfachen und kontrollieren, wenn die
Methode der minimalen Arbeiten ver-
wendet wird. Bei dieser Methode stellt
man sich vor, dass die gemessenen
Strecken gerade, elastische Stabe in
einem Fachwerk seien. In jedem Zentral-
system befindet sich ein Uberschissiger
Stab. Durchschneidet man diesen in der
Mitte, so entsteht eine Offnung und das
Fachwerk entspannt sich. Die entste-
hende Offnung ist der lineare Wider-
spruch in der Bedingungsgleichung. Be-
lastet man den durchschnittenen Stab
mit einer virtuellen Belastung +1, so
spannen sich demzufolge die anderen
Stabe. Es wird hier bewiesen, dass diese
Spannungen numerisch gleich sind wie
die Koeffizienten der Bedingungsglei-
chung und dass sie zu den selben be-
kannten Koeffizienten fihren.

Die beschriebene Methode ist nicht
nur flr Zentralsysteme gedacht, sondern
ist allgemein gultig. Fur Streckennetze
mit langen Diagonalen zum Beispiel
kann man die Bedingungsgleichung di-
rekt ermitteln, ohne das Netz in Zentral-
systemen zu zerlegen und ohne dass fin-
gierte Beobachtungen gefihrt werden
mussen. Anhand eines Zahlenbeispiels
wurde dies bestatigt.

Feste Strecken erhalten unendliche
Gewichte, damit sie in der Ausgleichung
ungedndert bleiben.
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