Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 77 (1979)

Heft: 10

Artikel: Die Zentral- und Diagonalenbedingungen in ebenen Streckennetzen

Autor: Danial, N.F.

DOI: https://doi.org/10.5169/seals-229704

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

tenkarte (Eigen- und Schlagschatten) von Abbildung 5, mit ihren 1000×1500 Bildpunkten, beträgt die Rechenzeit auf dem Grosscomputer 400 Sekunden, d. h. 0,26 ms pro Punkt im Durchschnitt. Die gewonnenen Daten werden via ein Magnetband auf den Minicomputer übertragen, wo dann die eigentliche fotografische Aufzeichnung stattfindet.

Die perspektivischen Schattenbilder werden direkt auf dem Minicomputer berechnet und auf einem Fernsehschirm dargestellt. Der Rechenaufwand ist sehr unterschiedlich. Normalerweise wird von einem Geländeausschnitt ausgegangen, der durch entsprechende Transformationen in die Bildebene projiziert wird. Dementsprechend steigt die Rechenzeit mit der Anzahl Geländestützpunkte einerseits und der der Bildelemente andererseits. Vor allem ist aber die Rechenzeit sehr stark abhängig von der Komplexität der Bilder, welche z. B. den Flächenverdeckungsfaktor oder den Clippingverlust umfasst. Das Schattenbild der Abbildung 9 stützt sich auf ein 11,25×11,25 km grosses Gelände mit 46×46 Stützpunkten. Die Bildebene besteht aus einem Bildspeicher mit 256×256 Bildpunkten. Für dieses typische Bild beträgt die Rechenzeit auf dem Minirechner 500 s.

7. Zusammenfassung

Die Bildsynthese wurde an Hand eines Geländemodells der Schweiz demonstriert. Die erzeugten Schattenkarten ergeben einen guten plastischen Eindruck des reinen Reliefs, und zwar unabhängig von der Bodennatur oder Bodenbedeckung. Eine grosse Flexibilität bietet die Möglichkeit, die Beleuchtungsrichtung beliebig zu wählen. Auf diese Weise können alle Sonnenlagen aber auch künstliche Lichtquellen simuliert werden. Ein anderer Aspekt der Schattenkarte ist die physikalische Bedeutung der dargestellten Helligkeit als Bestrahlungsstärke des Bodens. Selbstverständlich können aus einem Geländemodell auch viele andere Informationen gewonnen werden. Die Neigungskarte der Schweiz ist ein Beispiel dafür.

Aufwendiger ist die Synthese von perspektivischen Schattenbildern. Damit wird aber die Möglichkeit geboten, beliebige Geländeteile unter beliebigen Blickrichtungen, Sichtwinkeln und Entfernungen zu generieren. Die Beispiele zeigen zwei Verfahren zur Darstellung der Geländeoberfläche. Je nach Anwendung wird man zwischen dem modellgetreuen Facettenbild und dem realistischen sanften Bild wählen müssen.

Für die Bildsynthese eignet sich ein Allzweck-Minicomputersystem mit der Möglichkeit, Halbtonbilder darzustellen. Damit können sowohl Schattenkarten als auch perspektivische Schattenbilder produziert werden. Die Bildsynthese ist somit reif für die Anwendung.

Der Verfasser dankt Herrn Prof. Dr. E. Baumann für die Unterstützung dieser Arbeit. Ebenfalls sei Herrn PD Dr. T. Celio für viele wertvolle Anregungen gedankt.

Adresse des Verfassers: H. Hügli, dipl. El. Ing. ETH Institut für Technische Physik, ETH-Hönggerberg, CH-8093 Zürich

Literatur

[1] Ware Myers, «Interactive Computer Graphics: Poised for Takeoff?», Computer, January 1978, p. 60–74

[2] Yoeli P.: «Analytische Schattierung», Kart. Nachrichten, Jg. 14, Nr. 4, 1965/b, S. 142–148
[3] Brassel K.: «Modelle und Versuche zur automatischen Schräglichtschattierung», Diss. Universität Zürich, 1973

[4] Celio T. und Graf J.P.: «Elektronische Erstellung von Bestrahlungs- und Beschattungskarten dreidimensionaler Gegenstände». Mitteilungen GFF, Nr. 1/2, Juni 1977, S. 37–39

[5] Celio T.: «Bildverarbeitung». 40 Jahre AFIF, Sonderschrift, September 1977, S. 33–35

[6] Lévy F.: «Le traitement automatisé de l'image». Interphotothèque no. spécial 33–34, décembre 1977, p. 293–301

[7] Batson R.M., Edwards K. and Eliason E.M.: «Computer-Generated Shaded-Relief Images». Optronics Journal, No. 6, November 1978, p. 1–4

[8] Blinn J.F.: «Models of Light Reflection for Computer Synthesized Pictures». Computer Graphics, Vol. 11, Summer 1977

[9] Celio T. und Graf J.P.: «Schattenkarte von Fernsehsatelliten». Mitteilungen GFF, Nr. 1/2, Juni 1978, S. 42–43

[10] Karte 1:750 000 Vorarlberg und Südtirol. Militär. Geogr. Institut, Wien, 1883

[11] Newman W.M. and Sproull R.F.: «Principles of Interactive Computer Graphics», Mc. Graw-Hill, 1973

[12] Harvey J.F.: «Current Trends and Issues in Visual Simulation». Proceedings of SPIE, Vol. 162, 1978, p. 2–5

Die Zentral- und Diagonalenbedingungen in ebenen Streckennetzen

N. F. Danial

On peut obtenir les conditions dans un réseau de distances en le divisant en systèmes centraux. Chaque système central fournit alors une équation de condition dont les coefficients peuvent être déterminés par construction géométrique.

On peut simplifier et contrôler les calculs en appliquant la méthode du travail minimum. On considère alors les distances mesurées comme les barres droites et élastiques d'un treillis. Chaque système central contient une barre surabondante. En coupant cette dernière, on supprime une liaison et le treillis se détend. La déformation résultante est l'écart de fermeture linéaire de l'équation de condition. Si l'on applique sur la

barre coupée une charge virtuelle de + 1, les autres barres sont mises sous tension. L'article montre que les tensions sont numériquement égales aux coefficients de l'équation de condition.

La méthode est générale et ne s'applique pas qu'aux systèmes centraux. Pour les réseaux de distances avec de longues diagonales par exemple, on peut obtenir les équations de condition sans subdivision en systèmes centraux et sans introduire d'observations fictives. Cette possibilité est montrée à l'aide d'un exemple numérique.

Les distances entre points fixes reçoivent des poids infinis afin qu'elles ne soient pas modifiées par la compensation

Einleitung

Streckennetze können vermittelnd oder bedingt ausgeglichen werden. Im allgemeinen zieht man die Methode der bedingten Beobachtungen vor, weil weniger Bedingungen auftreten als Unbekannte in der vermittelnden Ausgleichung. Die Zahl der Bedingungen ist sehr leicht zu ermitteln. Sie ist genau dieselbe wie die Anzahl der Seitengleichungen in einem entsprechenden Triangulationsnetz. Jedes Streckennetz kann in eine Anzahl von Zentralfiguren zerlegt werden. Eine Zentralfigur stellt eine einfach überbestimmte Konfiguration von Strecken dar und liefert deswegen eine Bedingung. Diese wird normalerweise durch die Winkelsummenbedingung im Zentralpunkt ausgedrückt. Die Winkel können aus den gemessenen Strecken berechnet werden.

Mehrere Autoren haben verschiedene Gleichungen abgeleitet, die diese Bedingung darstellen. In seiner Abhandlung hat Tarczy-Hornoch [4] solche Gleichungen aufgrund eines Streckenvierecks hergeleitet. Er hat auch eine Methode entwickelt, in der er die einfach zu ermittelnden Verbesserungsgleichungen der vermittelnden Beobachtungen in Bedingungsgleichungen umwandelt. Die Koeffizienten dieser Gleichungen sind eher kompliziert.

Bekanntlich besteht eine Analogie zwischen überbestimmten Systemen in der Statik und überbestimmten geometrischen Figuren in der Vermessung. Im ersten Fall handelt es sich um Stäbe und Knoten, im zweiten Fall um Strecken und Punkte. Ansermet [1] hat von dieser Analogie Gebrauch gemacht, um die wahrscheinlichsten Koordinaten einer Fachwerkkuppel zu berechnen. Er verwendete dazu die Methode der vermittelnden Ausgleichung.

In umgekehrter Weise können Sätze der Mechanik in der Ausgleichungsrechnung angewandt werden. Das Prinzip ist allgemein anwendbar. Die folgende Untersuchung beschränkt sich aber auf Figuren, die nur durch Strecken vermessen sind. In diesem Fall stellt man sich vor, dass die in einer geometrischen Figur gemessenen Strecken gerade elastische Stäbe in einem Fachwerk seien. Fehlerhafte überschüssige Strecken oder Stäbe verursachen Spannungen in sich selber und in allen anderen Stäben. Demzufolge erleiden alle Stäbe kleine Formänderungen, die den Verbesserungen der gemessenen Strecken entsprechen.

Die Zentralbedingung

Abbildung 1a zeigt ein Zentralsystem mit n Umfangspolygonpunkten, indem alle 2n Strecken gemessen worden sind. Die gegenseitige Festlegung aller n+1 Punkte braucht 2n-1 Messungen. Wenn keine Beobachtungsfehler vorliegen, wird die überschüssige Beobachtung L_{2n} der Distanz P_nP₁ gleich sein, die durch Rechnung ermittelt wird. Andernfalls entsteht ein Widerspruch, der zu einer Bedingung führt und durch Ausgleichung eliminiert werden muss. Diese Bedingung wird Zentralbedingung genannt, da sie von einem Zentralsystem stammt.

Nach der früher erwähnten Überlegung stellt man sich vor, dass die gemessenen Strecken gerade elastische Stäbe seien. Setzt man die Stäbe L_1 , L_2 ,... L_{2n-1} zusammen, so entsteht ein entspanntes Fachwerk. Stimmen die Längen L_{2n} und $\overline{P_n}P_1$ nicht überein, so wird es schwierig sein, den überschüssi-

gen Stab L_{2n} im Fachwerk zu montieren. Um diese Schwierigkeit zu überwinden, belastet man ihn mit einer Zug- oder Druckkraft C, je nachdem er kürzer oder länger ist als $\overline{P_nP_1}$. Damit spannen und deformieren sich alle Stäbe. Die angewandte Kraft C muss voll genügend sein, um die deformierte Länge L'_{2n} genau gleich der Distanz $\overline{P'_nP'_1}$ zu machen, die von allen anderen deformierten Längen $L'_{11}, L'_{21}, \ldots L'_{2n-1}$ berechnet wird.

L'1, L'2,... L'2n-1 berechnet wird.

Die Kraft C kann am besten bestimmt werden, wenn man die Methode der virtuellen Arbeit anwendet. Durchschneidet man den überschüssigen Stab in der Mitte, so entsteht eine Öffnung W, und das Fachwerk entspannt sich. Man belastet nachher beide Teile des durchschnittenen Stabes mit einem virtuellen Kräftepaar von +1. Diese äussere Belastung verursacht eine kleine Verschiebung D in ihrer Richtung und die daraus resultierende Aussenarbeit wird

$$A_{aussen} = 1 \cdot D$$
 (1)

Unter dieser Belastung entwickeln sich Spannungen $s_1, s_2, \ldots s_{2n}$, welche der Reihe nach die Formänderungen $\delta L_1, \delta L_2, \ldots \delta L_{2n}$ in diesen Stäben verursachen. Damit wird die ausgeführte Innenarbeit

$$A_{innen} = \sum s_{i} \cdot \delta L_{i}$$
 (2)

Wenn das Hooksche Gesetz vorausgesetzt wird, so gilt

$$\S L_{\underline{i}} = \frac{s_{\underline{i}} \cdot L_{\underline{i}}}{f_{\underline{i}} \cdot E_{\underline{i}}}$$
 (3)

worin δL_i der Zuwachs in der Länge L_i des Stabes i bedeutet, der von einer in ihm wirkenden Spannung s_i resultiert. f_i ist der Querschnitt des Stabes und E_i ist der Elastizitätskoeffizient. i = 1, 2, ..., 2n.

Nach dem Gesetz der Energiekonservierung ist

$$A_{aussen} = A_{innen}$$

Demnach folgt aus den Gleichungen (1) und (2)

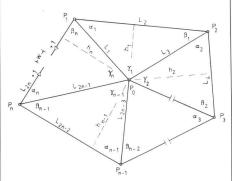


Abb. 1a

$$1 \cdot D = \sum s_i \cdot \delta L_i \qquad (4)$$

Setzt man Gleichung (3) in (4) ein, so wird

$$D = \sum \frac{s_{i}^{2} \cdot L_{i}}{f_{i} \cdot E_{i}}$$
 (5)

was folgendermassen formuliert werden

$$D = \sum s_{i}^{2} \cdot \frac{1}{\frac{f_{i} \cdot E_{i}}{L_{i}}} = \sum \frac{s_{i}^{2}}{k_{i}}$$

worin k_i die Steifigkeit des Stabes i be-

$$k_{i} = \frac{f_{i} \cdot E_{i}}{L_{i}} \tag{6}$$

Die entstehende Öffnung W im durchschnittenen Stab kann geschlossen werden, wenn

$$C \cdot D + W = 0 \tag{7}$$

Die Gleichungen (5) und (7) ergeben zusammen

$$C \cdot \sum \frac{s_i^2}{k_i} + W = 0$$
 (7')

Somit ergibt sich die gesuchte Kraft C

$$C = \frac{-W}{\sum \frac{s_i}{k_i}} = \frac{-W}{\left[\frac{ss}{k}\right]}$$
(8)

Ersetzt man die virtuelle Belastung (+1) durch die eingeführte Kraft C, so schliesst sich die Öffnung W. Gleichzeitig entwickelt sich in jedem Stab i eine Kraft

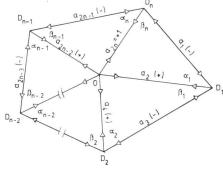


Abb. 1b.

$$F_i = C \cdot s_i$$

welche einen endgültigen Zuwachs

$$\Delta L_{i} = \frac{F_{i} \cdot L_{i}}{f_{i} \cdot E_{i}} = C \cdot \frac{s_{i} \cdot L_{i}}{f_{i} \cdot E_{i}} = C \cdot \frac{s_{i}}{k_{i}}$$
(10)

in seiner Länge Li verursacht. Setzt man Gl. (6) in (7') ein, so erhält man

$$\mathbf{s}_{1} \frac{\mathbf{C} \cdot \mathbf{s}_{1} \cdot \mathbf{L}_{1}}{\mathbf{f}_{1} \cdot \mathbf{E}_{1}} + \mathbf{s}_{2} \frac{\mathbf{C} \cdot \mathbf{s}_{2} \cdot \mathbf{L}_{2}}{\mathbf{f}_{2} \cdot \mathbf{E}_{2}} + \cdot \cdot \cdot + \mathbf{s}_{2n} \frac{\mathbf{C} \cdot \mathbf{s}_{2n} \cdot \mathbf{L}_{2n}}{\mathbf{f}_{2n} \cdot \mathbf{E}_{2n}} + \mathbf{W} = 0 \quad (11)$$

welche unter Berücksichtigung von Gl. (10) zur folgenden Bedingung wird

$$s_1 \cdot \Delta L_1 + s_2 \cdot \Delta L_2 + \cdot \cdot \cdot + s_{2n} \cdot \Delta L_{2n} + W = 0$$
 (12)

Der Vergleich mit der folgenden bekannten Bedingungsgleichung

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_{2n} v_{2n} + W = 0$$
 (13)

der Methode der kleinsten Quadrate zeigt deutlich, dass Gleichheit zwischen beiden Bedingungen besteht. Wichtig ist zu erkennen, dass die in allen Stäben wegen der im überschüssigen Stab wirkenden virtuellen Belastung + 1 entstehenden Spannungen s_i , die Koeffizienten a_i der Bedingungsgleichung sind. Selbstverständlich entsprechen die endgültigen Zuwächse ΔL_i den Verbesserungen v_i der beobachteten Längen L_i .

Die Lösung der Bedingungsgleichung (12) ist in Gl. (10) angegeben, welche ähnlich der Gleichung

$$\mathbf{v}_{\mathbf{i}} = \mathbf{K} \cdot \frac{\mathbf{a}_{\mathbf{i}}}{\mathbf{p}_{\mathbf{i}}} \tag{14}$$

der Methode der kleinsten Quadrate ist. Aus der Analogie erkennt man, dass die Kraft C, die genau die Öffnung W schliesst, dieselbe ist, wie die Korrelate K und dass die Steifigkeit k_i eines Stabes dieselbe ist, wie das Gewicht p_i der entsprechenden Beobachtung.

Selbstverständlich decken die hier für den Fall von nur einer Bedingung ermittelten Resultate auch den Fall von mehreren Bedingungen. Letzterer liegt aber ausserhalb des Rahmens dieser Arbeit und wird hier nicht behandelt. Der interessierte Leser wird auf Danial [2] verwiesen.

Die Berechnung der Koeffizienten eines Zentralsystems

In einem Zentralsystem treffen sich drei Stäbe an jedem Umfangspolygon-punkt. Die Spannungen in diesen drei Stäben (oder Koeffizienten der drei beobachteten Strecken) lassen sich durch ein massstäblich gezeichnetes Kräftedreieck graphisch bestimmen.

Man zeichnet zuerst eine Parallele zum überschüssigen Stab L_{2n} (Abb. 1a) und misst darauf eine Distanz OD_n (Abb. 1b) ab, die der virtuellen Belastung (+ 1) entspricht. An den Endpunkten D_n und O dieser Distanz werden zwei Parallelen D_nD₁ und OD₁ zu den zwei anderen Stäben L₁ und L₂ gezeichnet. Sie schneiden sich in Punkt D₁. Damit entsteht das erste Kräftedreieck OD, D1. Die Spannungen s₁ und s₂ (oder die Koeffizienten a₁ und a2) können aus der Zeichnung entnommen werden. Mit s2 nun bekannt, zeichnet man die Parallelen D₁D₂ und OD₂ zu den Stäben L₃ und L₄, somit werden die Spannungen s3 und s4 bekannt. Verfährt man ähnlicherweise, bis die Spannung s_{2n} im überschüssigen Stab erreicht wird, so entsteht ein Kräfteplan. Wenn keine Zeichenfehler unterlaufen sind, sollte der Kräfteplan genau schlies-

Man beachte, dass:

- 1. der Kräfteplan eines Zentralsystems auch eine Zentralfigur ist,
- 2. die Spannungen in den Umfangspolygonstäben als radiale Linien und solche in den radialen Stäben als Umfangspolygonlinien im Kräfteplan dargestellt werden, und schliesslich
- 3. die Winkel α_i , β_{i-1} zwischen den an irgendeinem Umfangspolygonpunkt i des Zentralsystems wirkenden drei Stäben in einem Kräftedreieck erscheinen, welches die Spannungen in diesen drei Stäben ergibt.

Es kann gesagt werden, dass der Kräfteplan eines Zentralsystems dessen Inverse ist.

Der Kräfteplan eines Zentralsystems ist ein ausgezeichnetes Mittel zur numerischen Berechnung der Spannungen si (oder der Koeffizienten ai). Löst man die in Abb. 1b gezeigten Kräftedreiecke

 $\mathsf{OD}_n\mathsf{D}_1$, $\mathsf{OD}_1\mathsf{D}_2$, ... $\mathsf{OD}_{n-1}\mathsf{D}_n$ der Reihe nach, so erhält man die Koeffizienten der vom Zentralpunkt ausgehenden Strekken $\mathsf{L}_1,\mathsf{L}_3,\ldots\mathsf{L}_{2n-1}$

$$a_{1} = -a_{2n} \frac{\sin(\alpha_{1} + \beta_{n})}{\sin \alpha_{1}}$$

$$a_{2} = -a_{2} \frac{\sin(\alpha_{2} + \beta_{1})}{\sin \alpha_{2}}$$

$$a_{2i-1} = -a_{2i-2} \frac{\sin(\alpha_{i} + \beta_{i-1})}{\sin \alpha_{i}}$$

$$a_{2n-1} = -a_{2n-2} \frac{\sin(\alpha_{n} + \beta_{n-1})}{\sin \alpha_{n}}$$

und der Strecken des Umfangpolygons $\mathsf{L}_2, \mathsf{L}_4, \dots \mathsf{L}_{2n}$

$$a_{2n} = +1$$

$$a_{2} = +a_{2n} \qquad \frac{\sin \beta_{n}}{\sin \alpha_{1}}$$

$$a_{4} = +a_{2} \qquad \frac{\sin \beta_{1}}{\sin \alpha_{2}}$$

$$a_{2i} = +a_{2i-2} \qquad \frac{\sin \beta_{i-1}}{\sin \alpha_{i}} \qquad (15b)$$

$$a_{2n} = +a_{2n-2} \qquad \frac{\sin \beta_{n-1}}{\sin \alpha_{n}}$$

$$= +1$$

Der lineare Widerspruch

Der lineare Widerspruch W ist die Differenz zwischen der beobachteten Länge L_{2n} der überschüssigen Strecke und der durch Lösung aller Dreiecke erhaltenen Länge $\overline{P_nP_1}$. Die Reihenfolge dieser Rechnungen ist

1. die Berechnung aller Zentralwinkel γ_i der gemessenen Seiten. Wenn der Kosinussatz angewandt wird, bekommt man

$$\Upsilon_{i} = \text{arc cos } \frac{L_{2i-1}^{2} + L_{2i+1}^{2} - L_{2i}^{2}}{2 \cdot L_{2i-1} \cdot L_{2i+1}}$$
 (16)

worin i = 1, 2, ... (n-1)

2. die Berechnung des der überschüssigen Strecke gegenüberliegenden Zentralwinkels γ'_n

$$\gamma_n' = 360^{\circ} - \sum_{1}^{n-1} \gamma_1'$$
 (17) 3. die Distanz $\overline{P_n P_1}$ kann von den radialen Seiten L_1 und L_{2n-1} wie folgt bestimmt werden:

$$\overline{P_{n}P_{1}} = \sqrt{L_{1}^{2} + L_{2n-1}^{2} - 2L_{1}L_{2n-1}\cos r_{n}}$$
(18)

4. Der lineare Widerspruch Wist die Differenz zwischen den gemessenen und gerechneten Strecken

$$W = L_{2n} - \overline{P_n P_1}$$
 (19)

Die Berechnung des linearen Widerspruches kann auf einfacherem Weg erfolgen. Baut man das Fachwerk, beginnend vom ersten Stab L₁ in der Lage P₁P₀ (Fig. 2a) auf, so erhält man Punkt P'1 anstatt Punkt P1 am Ende des Zusammensetzens der fehlerhaften 2n-1 Stäbe. Der Winkelwiderspruch $\Delta \gamma$ ist somit der eingeschlossene Winkel zwischen beiden Richtungen PoP'1 und PoP1. Er lässt sich numerisch bestimmen als Differenz zwischen den gemessenen und gerechneten Zentralwinkeln γ_n und γ'_n .

$$\Delta X = Y_n - Y_n^i$$
 (20)

 γ_n kann aus den gemessenen Seiten L₁, L_{2n-1} , und L_{2n} gerechnet werden. γ'_n ist der selbe Winkel, wie er in Gl. (17) ange-

Nennt man die Distanz $\overline{P'_1P_1} = W'$, so wird im Dreieck P'₁P₀P₁

$$W' = L_1 \cdot 2\sin \frac{\Delta Y}{2} = L_1 \cdot \frac{\Delta Y}{9}$$

da $\Delta \gamma$ ein kleiner Winkel ist. Wenn man

$$P_n P_1 P_0 = P_n P_1 P_0 = \beta_n$$

annimmt, so wird der lineare Widerspruch W in der Richtung P_nP₁, wie die (20) sich im Fachwerk ergibt

$$W = W'\cos(90^{\circ} - \frac{\Delta Y}{2} - \beta_n) = W'\cos(90^{\circ} - \beta_n)$$
 (22)

Gleichungen (21) und (22) ergeben zusammen

$$W = L_1 \frac{\Delta Y}{g} \sin \beta_n \qquad (23a)$$

$$W = h_n \frac{\Delta Y}{\rho}$$
 (23b)

worin hn der senkrechte Abstand zwischen dem Zentralpunkt P_0 und der Widerspruch in Gl. (13) e überschüssigen Strecke $\overline{P_nP_1}$ ist. Glei- die Bedingungsgleichung

chung (23a) oder (23b) zeigt, dass der lineare Widerspruch W in direktem Zusammenhang mit dem Winkelwiderspruch Δγ steht. Dieser Zusammenhang ist in Abb. 2b graphisch dargestellt.

Der Übergang von der hier ermittelten zur bekannten Bedingungsgleichung eines Zentralsystems

Setzt man die von Gl. (15a), (15b) und Gl. (23a) erhaltenen Koeffizienten und Widerspruch in Gl. (13) ein, so entsteht

$$-a_{2n} \cdot \frac{\sin(\alpha_{1}+\beta_{n})}{\sin\alpha_{1}} \cdot v_{1} + a_{2n} \cdot \frac{\sin\beta_{n}}{\sin\alpha_{1}} \cdot v_{2}$$

$$-a_{2} \cdot \frac{\sin(\alpha_{2}+\beta_{1})}{\sin\alpha_{2}} \cdot v_{3} + a_{2} \cdot \frac{\sin\beta_{1}}{\sin\alpha_{2}} \cdot v_{4}$$

$$-a_{2n-2} \cdot \frac{\sin(\alpha_{n}+\beta_{n-1})}{\sin\alpha_{n}} \cdot v_{2n-1} + a_{2n-2} \cdot \frac{\sin\beta_{n-1}}{\sin\alpha_{n}} \cdot v_{2n}$$

$$+ L_{1}\sin\beta_{n} \cdot \frac{\Delta V}{S} = 0$$
(24)

worin der Koeffizient der Verbesserung der überschüssigen Beobachtung v_{2n}

$$a_{2n-2} = \frac{\sin \beta_{n-1}}{\sin \alpha_n} = a_{2n} = +1$$

ist wie zu Beginn angenommen und in Gl. (15b) angegeben wurde.

Dividiert man Gl. (24) durch $L_1 \sin \beta_n$, so erhält man andere Koeffizienten ā, für die Verbesserungen vi.

$$\begin{array}{ll} \gamma_n \text{ kann aus den gemessenen Seiten } L_1, \\ L_{2n-1}, \text{ und } L_{2n} \text{ gerechnet werden. } \gamma_n' \text{ ist der selbe Winkel, wie er in GI. (17) angegeben ist.} \\ \\ Nennt man die Distanz \overline{P_1'P_1} = W', \text{ so wird im Dreieck P'}_1P_0P_1 \\ \\ W' = L_1 \cdot 2\sin\frac{\Delta N}{2} \stackrel{\checkmark}{=} L_1 \cdot \frac{\Delta N}{2} \\ \text{da } \Delta \gamma \text{ ein kleiner Winkel ist. Wenn man die Winkel} \\ \end{array}$$

$$= -a_{2n} \frac{\sin(\alpha_1 + \beta_n)}{\sin(\alpha_1)} \cdot \frac{1}{L_1 \sin(\beta_n)} \\ = -(\frac{\sin(\alpha_1 \cos \beta_n) + \cos(\alpha_1 \sin \beta_n)}{L_1 \sin(\alpha_1 \sin \beta_n)}) \\ = -(\frac{\cot(\beta_n)}{L_1} + \frac{\cot(\alpha_1)}{L_1}) \\ = -(\frac{\cot(\beta_n)}{L_1} + \frac{\cot(\alpha_1)}{L_1} + \frac{\cot(\alpha_1)}{L_1}$$

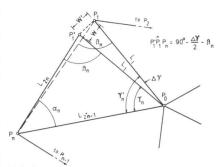


Abb. 2a

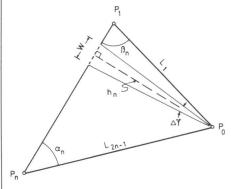
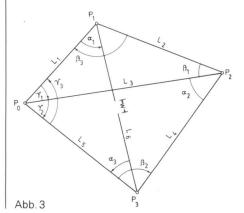


Abb. 2b



Man erkennt von Abb. 1a, dass

$$L_{2i-1} \sin \alpha_i = L_{2i+1} \sin \beta_i = h_i$$
(25)

worin h_i der senkrechte Abstand zwischen dem Zentralpunkt P_0 und der Umfangpolygonseite 2i ist. Damit wird wenn i=1

$$\bar{a}_2 = + \frac{1}{h_1}$$

Analog wird

$$\overline{a}_3 = -\left(\frac{\cot \beta_1}{L_3} + \frac{\cot \alpha_2}{L_3}\right)$$

$$\bar{a}_4 = + \frac{1}{h_2} \cdot \frac{\cot \beta_{i-1}}{L_{2i-1}}$$

Im allgemeinen kann für die Koeffizienten der vom Zentralpunkt ausgehenden Strecken

$$\overline{a}_{2i-1} = -\left(\frac{\cot \beta_{i-1}}{L_{2i-1}} + \frac{\cot \alpha_{i}}{L_{2i-1}}\right)$$
(26a)

und der Strecken des Umfangpolygons

$$\bar{a}_{2i} = +\frac{1}{L_{2i-1}\sin\alpha_i} = +\frac{1}{h_i}$$
(26b)

geschrieben werden, wobei i = 1, 2, ... n, und $\beta_{i-1} = \beta_n$ wenn i = 1.

Der neue Widerspruch wird unter Berücksichtigung von Gl. (23a)

$$\overline{W} = \frac{W}{L_1 \sin \beta_n} = \frac{\Upsilon \Delta}{2}$$
 (27)

Die neuen Koeffizienten \bar{a}_i der Verbesserungen v_i und der neue Widerspruch \bar{w} stimmen genau mit jenen Werten überein, die Rinner [3] angegeben hat.

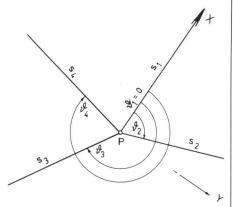


Abb. 4

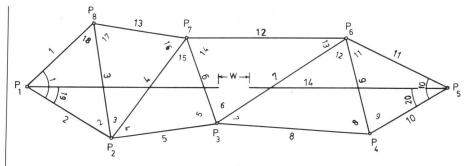


Abb. 5

Strecke	Nr.	m	Strecke	Nr.	m
P ₁ P ₈	Ly	454,250	P ₃ P ₄	L ₈	762,390
P ₁ P ₂	L ₂	491,720	P ₄ P ₆	L ₉	488,910
P ₂ P ₈	L3	569,140	P ₄ P ₅	L ₁₀	449,530
P ₂ P ₇	L ₄	610,960	P ₅ P ₆	L ₁₁	571,090
P ₂ P ₃	1.5	525,700	P ₆ P ₇	L ₁₂	786,640
P ₃ P ₇	L ₆	457,120	^P 7 ^P 8	L ₁₃	475,730
P3P6	L ₇	763,280	P ₁ P ₅	L ₁₄	2098,780

Tab. 1 Die beobachteten Strecken

Nr.	Winkel $oldsymbol{eta}$	Nr.	Winkel \beta		
	Dreieck P ₁ P ₂ P ₈	Dreieck P3P6P7			
1	73°51'22,756"	6	75°40'00,589"		
2	50 03 18,147	13	34 15 52,715		
18	56 05 19,097	14	70 04 06,696		
Σ	180 00 00,000	Σ	180 00 00,000		
	Dreieck P2P7P8	Dreieck P ₃ P ₄ P ₆			
3	47 23 01,808	7	37 22 51,392		
16	61 41 27,178	8	71 24 29,982		
17	70 55 31,014	12	71 12 38,626		
Σ	180 00 00,000	Σ	180 00 00,000		
	Dreieck P2P3P7	Dreieck P4P5P6			
4	46 41 02,923	9	74 50 16,776		
5	76 31 06,425	10	55 43 13,493		
15	56 47 50 , 652	11	49 26 29,731		
Σ	180 00 00,000	Σ	180 00 00,000		

Tab. 2 Die aus den gemessenen Seiten gerechneten Winkel

Damit ist bewiesen, dass die hier vorgeschlagene Methode zum selben Resultat führt, wie in der Literatur bekannt ist. Sie hat aber die folgenden Vorteile:

- 1. Die Berechnung der Koeffizienten erfolgt in Schleifen. Sie muss mit dem selben Wert (+ 1) enden, wie sie begonnen wurde. Demzufolge hat man eine Rechenkontrolle, die keinen besonderen Aufwand erfordert. Diese Kontrolle ist wichtig, wenn die Ausgleichung von kleineren Streckennetzen manuell durchgeführt wird.
- 2. Die Methode ist allgemein gültig. In Streckennetzen mit langen Diagonalen zum Beispiel können die Koeffizienten der Bedingungsgleichungen direkt ermittelt werden, ohne dass man fingierte Beobachtungen einführt und das Netz in Zentralfiguren teilt. Das Zahlenbeispiel am Ende dieses Artikels erläutert diesen Fall.
- 3. Für weniger anspruchsvolle Arbeiten können die Koeffizienten graphisch ermittelt werden.
- 4. Die Koeffizienten sind dimensionslos. Die Verbesserungen und die Widersprüche haben die selbe lineare Einheit.

Ein Spezialfall der Zentralfigur

Die in Abb. 1a gezeigte Konfiguration von Strecken stellt den normalen Fall des Zentralsystems dar. Eine abweichende Konfiguration dieses Systems kommt vor, wenn der Zentralpunkt Poausserhalb des Umfangpolygons liegt. Dieser Spezialfall braucht keine besonderen Berechnungen, wie das im folgenden Fall bei einem Streckenviereck gezeigt wird.

Die Bedingungsgleichung eines Streckenvierecks

Das Streckenviereck wurde in vielen Publikationen als Grundfigur in Strekkennetzen angenommen und seine Bedingungsgleichung geometrisch hergeleitet. Betrachtet man eine seiner vier Ecken (P_0 in Abb. 3) als Zentralpunkt, so verwandelt es sich in eine Zentralfigur mit den drei Dreiecken $P_1P_0P_2$, $P_2P_0P_3$, und $P_3P_0P_1$. Die in Gl. (15) abgeleiteten Koeffizienten können hier angewandt werden, wenn die drei Winkel α_3 , β_3 , und γ_3 des ausserhalb des Umfangpolygons liegenden Dreiecks $P_3P_0P_1$ als negativ betrachtet werden. Damit wird die Bedingungsgleichung (24) mit n = 3 zu

$$- a_{6} \frac{\sin(\alpha_{1} + (-\beta_{3}))}{\sin \alpha_{1}} \cdot v_{1} + a_{6} \frac{\sin(-\beta_{3})}{\sin \alpha_{1}} \cdot v_{2}$$

$$- a_{2} \frac{\sin(\alpha_{2} + \beta_{1})}{\sin \alpha_{2}} \cdot v_{3} + a_{2} \frac{\sin \beta_{1}}{\sin \alpha_{2}} \cdot v_{4}$$

$$- a_{4} \frac{\sin((-\alpha_{3}) + \beta_{2})}{\sin(-\alpha_{3})} \cdot v_{5} + a_{4} \frac{\sin \beta_{2}}{\sin(-\alpha_{3})} \cdot v_{6}$$

$$+ L_{1} \sin(-\beta_{3}) \cdot \frac{\Delta Y}{P} = 0$$
(28)

	,					
Pkt.	Stab	Spannung	Angle	Azimuth	ΔX	ΔΥ
P ₁	1 14 2	s ₁ + 1,000000	44,290006° 29,566315	0,0 44,290006 ⁰ 73,856321	+ s ₁ + 0,715815 + 0,278046 s ₂ s ₁ = -0,513687	0,0 + 0,698290 + 0,960567 s ₂ s ₂ = -0,726956
P ₈	13	^S 13 ^S 3 - 0,513687	70,925282 56,088638	0,0 70,925282 127,013920	+ s ₁₃ + 0,326801 s ₃ + 0,309244 s ₁₃ =-0,451076	0,0 + 0,945093 s ₃ - 0,410173 s ₃ = +0,434003
P ₂	5 2 3 4	s ₅ - 0,726956 + 0,434003	215,876978 50,055041 47,383836	0,0 215,876978 265,932019 313,315855	+ s ₅ + 0,589036 - 0,030788 + 0,686020 s ₄ s ₅ = -0,551762	0,0 + 0,426030 - 0,432909 - 0,727583 s ₄ s ₄ = -0,009455
P ₇	12 6 4 13	s ₁₂ s ₆ - 0,009455 - 0,451076	70,068527 56,797403 61,690883	0,0 70,068527 126,865930 188,556813	+ s ₁₂ + 0,340896 s ₆ + 0,005672 + 0,446055 s ₁₂ =-0,430133	0,0 + 0,940101 s ₆ - 0,007564 + 0,067116 s ₆ = -0,063346
P ₃	8 5 6 7	*8 - 0,551762 - 0,063346	170,433776 76,518452 75,666830	0,0 170,433776 246,952228 322,619058	+ s ₈ + 0,544089 + 0,024800 + 0,794617 s ₇ s ₈ = -0,525165	0,0 - 0,091696 + 0,058289 - 0,607112 s ₇ s ₇ = -0,055025

P ₆	11 9 7 12	⁸ 11 ⁸ 9 - 0,055025 - 0,430133	49,441592 71,210729 34,264643	0,0 49,441592 120,652321 154,916964	+ s ₁₁ + 0,650223 s ₉ + 0,028053 + 0,389569 s ₁₁ =-0,614197	0,0 + 0,759744 s ₉ - 0,047337 - 0,182347 s ₉ = +0,302318
PZ	10 8 9	^s 10 - 0,525165 ^s 9	213,753678 71,408328	0,0 213,753678 285,162007	+ s ₁₀ + 0,436640 + 0,261549 s ₉ s ₁₀ =-0,515711	0,0 + 0,291794 - 0,965190 s ₉ s ₉ = +0,302318
Reoh	14 11 10	strolle *14 *11 - 0,515711	25,222297 304,279585	0,0 25,222297 329,501882	+ s ₁₄ + 0,904661 s ₁₁ - 0,444360 s ₁₄ =+1,000000	0,0 + 0,426131 s ₁₁ + 0,261728 s ₁₁ =-0,614197

Tab. 3 Die Berechnung der Spannungen oder der Koeffizienten B nach der Methode der minimalen Arbeiten

worin

$$a_6 = +1$$

$$a_2 = +a_6 \frac{\sin(-\beta_3)}{\sin\alpha_1}, \text{ und}$$

$$a_4 = +a_2 \frac{\sin\beta_1}{\sin\alpha_2}$$

$$\Delta X = Y_1 + Y_2 + (-Y_3)$$

Dividiert man GI. (28) durch $L_1 \sin(-\beta_3)$ und reduziert die Glieder, wie im vorletzten Abschnitt gezeigt wurde, so bekommt man die Bedingungsgleichung

$$\begin{array}{l} -\left(\begin{array}{ccc} \frac{\cot g(-\beta_{3})}{L_{1}} & + & \frac{\cot g \, \alpha_{1}}{L_{1}} \end{array} \right) \, v_{1} \, + \, \frac{1}{L_{1} \sin \alpha_{1}} \, \cdot v_{2} \\ \\ -\left(\begin{array}{ccc} \frac{\cot g \, \beta_{1}}{L_{3}} & + & \frac{\cot g \, \alpha_{2}}{L_{5}} \end{array} \right) \, v_{5} \, + \, \frac{1}{L_{3} \sin \alpha_{2}} \, \cdot v_{4} \\ \\ -\left(\begin{array}{ccc} \frac{\cot g \, \beta_{2}}{L_{5}} & + & \frac{\cot g(-\alpha_{3})}{L_{5}} \right) \, v_{5} \, + \, \frac{1}{L_{5} \sin(-\alpha_{3})} \, v_{6} \\ \\ + \, \frac{\Delta \Upsilon}{3} \, = \, 0 \end{array} \right)$$

Diese Gleichung stimmt genau mit der von Tarczy-Hornoch [4] abgeleiteten überein. Man stellt sich vor, dass Punkt A in Abb. 1 jener Publikation der Zentralpunkt sei und ändert die Nummerierung der Seiten c, a, b, f, e, und d in L₁, L₂, ... L₆ und die der Winkel α_1 , α_2 , α_3 , β_3 , β_1 , γ_1 , γ_2 , δ_2 , und δ_3 , in γ_1 , γ_2 , γ_3 , β_3 , α_1 , β_1 , α_2 , β_2 , und α_3 der Reihe nach.

Die Diagonalenbedingung

Es gibt Fälle, wo lange Seiten in Strekkennetzen eine Vielzahl von Dreiecken queren. Diese langen Seiten, Diagonalen genannt, sind meistens überschüssig und liefern deswegen Bedingungen. Die Koeffizienten einer solchen Bedingungsgleichung können nach dem selben Prinzip gerechnet werden, wie im Fall der Zentralsysteme. Man durchschneidet die Diagonale in der Mitte und belastet beide durchschnittenen Teile mit der virtuellen Belastung + 1. Wie vorher bewiesen wurde, ergeben sich die Koeffizienten der verschiedenen Beobachtungen als die numerischen Werte der in den entsprechenden Stäben entwickelten Spannungen.

Wie Abb. 4 zeigt, treffen an manchen Punkten mehr als drei Strecken zusammen. Die Kräftedreiecke können daher für die Berechnung der Spannungen in den entsprechenden Stäben an diesen Punkten nicht verwendet werden. Man stellt deshalb am besten die Gleichgewichtsbedingungen an jedem Punkt auf, indem man die Summen der X- und Y-Komponente der an diesem Punkt wirkenden Spannungen gleich Null setzt. Das rechtwinklige XY-Koordinatensystem kann beliebig gewählt werden.

$$\sum \Delta \mathbf{x} = \sum \mathbf{s_i} \cos \vartheta_i = 0 \quad (30a)$$

	T -	T	I	Ι	1	
Nr.	Distance	a	Ъ	С	B'	В
1	454,250	- 0,331327			- 0,513473	- 0,513687
2	491,720	- 0,855878	+ 0,599262		- 0,727132	- 0,726956
3	569,140	+ 0,279931			+ 0,433822	+ 0,434003
4	610,960	+ 0,305608	- 0,482686		- 0,009071	- 0,009455
5	525,700	- 0,883295	+ 0,816701		- 0,552182	- 0,551762
6	457,120	- 0,306126	+ 0,410773		- 0,063645	- 0,063346
7	763,280		+ 0,211708	- 0,353663	- 0,055391	- 0,055025
8	762,390		2	- 0,695651	- 0,525381	- 0,525165
9	488,910			+ 0,400461	+ 0,302443	+ 0,302318
10	449,530	2		- 0,683128	- 0,515923	- 0,515711
11	571,090		- 0,281166	- 0,440696	- 0,613995	- 0,614197
12	786,640		- 0,429616		- 0,429616	- 0,430133
13	475,730	- 0,290944			- 0,450889	- 0,451076
14	2098,780		+ 1,000000		+ 1,000000	+ 1,000000
15	968,018	+ 1,000000	- 1,549746			
16	1163,275		- 0,755236	+ 1,000000		
W		0,0	+ 0,0794	0,0	+ 0,0974	+ 0,0974
_	^b 15 ^a 15	+ 1,549746				
- ^b 16 c ₁₆				+ 0,755236		

Tab. 4 Die Berechnung der Koeffizienten B' nach der konventionellen Methode

			Fall (1)			Fall (2)		
Nr.	gemessene Distanz m	Koef- izient E	р	Verbes- serung	ausgegl. Distanz	Ī	Verbes- serung m	ausgegl. Distanz m
1	454,250	- 0,5137	1	+ 0,011	454,261	1	+ 0,015	454,265
2	491,720	- 0,7270	1	+ 0,016	491,736	1	+ 0,021	491,741
3	569,140	+ 0,4340	1	- 0,009	569,131	1	- 0,013	569,127
4	610,960	- 0,0095	1	± 0,000	610,960	1	<u>+</u> 0,000	610,960
5	525,700	- 0,5518	1	+ 0,012	525,712	1	+ 0,016	525,716
6	457,120	- 0,0633	1	+ 0,001	457,121	1	+ 0,002	457,122
7	763,280	- 0,0550	1	+ 0,001	763,281	1	+ 0,002	763,282
8	762,390	- 0,5252	1	+ 0,011	762,401	1	+ 0,016	762,406
9	488,910	+ 0,3023	1	- 0,006	488,904	1	- 0,009	488,901
10	449,530	- 0,5157	1	+ 0,011	449,541	1	+ 0,015	449,545
11	571,090	- 0,6142	1	+ 0,013	571,103	1	+ 0,018	571,108
12	786,640	- 0,4301	1	+ 0,009	786,649	1	+ 0,013	786,653
13	475,730	- 0,4511	1	+ 0,010	475,740	1	+ 0,013	475,743
14	2098,780	+ 1,0000	1	- 0,022	2098,758	∞	<u>+</u> 0,000	2098,780

Tab. 5 Die Ausgleichung der beiden Fälle: (1) gemessen und (2) festen Diagonale.

$$\sum \Delta y_{=} \sum s_{i} \sin \vartheta_{i} = 0 \quad (30b)$$

worin ϑ_i der Winkel ist, den die Richtung der Spannung s_i mit der X-Achse macht.

Mit GI. (30a) und (30b) kann man in jedem Punkt zwei unbekannte Spannungen ermitteln, wenn alle anderen an diesem Punkt wirkenden Spannungen bekannt sind. Einfachheitshalber wählt man eine der Achsen so, dass sie durch eine unbekannte Spannung geht. Damit wird es möglich, die zwei unbekannten Spannungen in je einer Gleichung zu er-

mitteln, anstatt der zwei Gleichungen mit zwei Unbekannten lösen zu müssen (vgl. Tab. 3)

Man beginnt die Berechnung der Spannungen von einem Endpunkt des überschüssigen Stabes, in welchem eine virtuelle Belastung + 1 wirkt. Das Gleichgewicht wird dann Punkt für Punkt hergestellt, bis der andere Endpunkt des überschüssigen Stabes erreicht wird. Eine Rechenkontrolle ist vorhanden, wenn man am letzten Punkt die Spannung + 1 erhält, wie dies am Anfang der Rechnung angenommen worden ist.

Der Widerspruch in einer Diagonalenbedingung ergibt sich als Differenz zwischen der gemessenen und gerechneten Länge der Diagonale. Letztere kann ermittelt werden, wenn man die Endpunkte der Diagonalen durch einen aus Netzseiten gebildeten Polygonzug verbindet. Die Berechnung des Polygonzuges ist ein Routineverfahren.

Zahlenbeispiel

Abbildung 5 zeigt ein freies Netz mit acht Punkten, in welchem die Strecken L_1 , L_2 ,... L_{14} gemessen worden sind. Die Beobachtungen sind in Tabelle 1 angegeben. Da die gegenseitige Lage von n Punkten nur (2n–3) Strecken braucht, so wird mit n = 8 die Anzahl der Bedingungen

$$14 - (2 \cdot 8 - 3) = 1$$
.

Diese Bedingung ist leicht erkennbar. Die gemessene Länge L_{14} der Diagonale muss gleich der Distanz P_1P_5 sein, wie sie sich im Fachwerk ergibt, oder mit anderen Worten, wie sie aus allen anderen Distanzen errechnet werden kann.

Die Reihenfolge der Berechnung ist:

1. Die Winkel

Alle zwischen den gemessenen Strekken eingeschlossenen Winkel müssen gerechnet werden. Zu diesem Zweck verwendet man gewöhnlich den Kosinussatz. Die gerechneten Winkel werden kontrolliert, indem man die Winkelsumme in jedem Dreieck bildet und sie mit 180° vergleicht. Die so erhaltenen Winkel sind in Tabelle 2 aufgetragen.

2. Der Widerspruch

Die Berechnung der Diagonale $\overline{P_1P_5}$ erfolgt mittels eines offenen Polygonzuges, der durch gemessene Seiten geht. In diesem Beispiel wurden die Strecken $\overline{P_1P_2}$, $\overline{P_2P_3}$, $\overline{P_3P_4}$, und $\overline{P_4P_5}$ als Polygonseiten gewählt. Die Polygonzugswinkel bildeten sich aus den Winkelsummen ($\beta_2+\beta_3+\beta_4$), ($\beta_5+\beta_6+\beta_7$), und ($\beta_8+\beta_9$). Die Berechnung des Polygonzuges ergibt

 $\overline{P_1P_5} = 2098,7006 \text{ m}$

und die Endwinkel an den Endpunkten P_1 und P_5

$$\beta_{19} = 29^{\circ} 33'58,733''$$

 $\beta_{20} = 30^{\circ} 29'53,224''$

Der Widerspruch wird damit

$$W = 2098,780 - 2098,7006 = +0.0794 \text{ m}$$
(31)

3. Die Koeffizienten

Die Ermittlung der Spannungen, oder der Koeffizienten, erfolgte nach der Me-

thode der Spannungskomponente, da an manchen Punkten mehr als drei Stäbe zusammentreffen. Die Berechnung beginnt am Endpunkt P_1 , wo die Diagonale $\overline{P_1P_5}$ mit einer virtuellen Kraft $s_{14} = a_{14} = +1$ belastet wird. Aus dem Gleichgewicht an diesem Punkt bekommt man

$$s_1 = a_1 = -0,513687$$

und

$$s_2 = a_2 = -0.726956$$

Mit nun bekanntem s_1 analysiert man die Kräfte im Punkt P_8 und erhält dabei die Spannungen s_3 und s_{13} der Stäbe L_3 und L_{13} . Im folgenden Punkt P_2 werden die Spannungen s_4 und s_5 in den Stäben L_4 und L_5 mit Hilfe der nun bekannten Spannungen s_2 und s_3 ermittelt. Man verfährt in ähnlicher Weise Punkt für Punkt, bis der Endpunkt P_5 erreicht wird. Bei der Wahl der Reihenfolge der Punkte wurde darauf geachtet, dass die Zahl der unbekannten Spannungen in keinem Punkt grösser als zwei ist.

Da alle Spannungen ermittelt werden, bevor der Endpunkt P_5 erreicht ist, bietet die Spannungsanalyse in diesem Punkt eine Rechenkontrolle. Es wird hier angenommen, dass s_{14} und s_{11} unbekannt seien. Die Berechnungen ergeben für diese Spannungen + 1,000000 bzw.

– 0,614197. Diese Werte sind genau die selben, wie sie für s₁₄ angenommen und für s₁₁ ermittelt worden sind (vgl. Tab. 3).

Die Berechnung der Koeffizienten nach der konventionellen Methode

Bei konventioneller Methode teilt man das Streckennetz in Zentralfiguren, welche alle gemessenen Strecken enthalten. Nicht komplette Figuren können mit Hilfe fingierter Beobachtungen ergänzt werden. In unserem Zahlenbeispiel wurden die drei folgenden Zentralfiguren gewählt, in denen die Strecken $\overline{P_1P_3} = L_{15}$ und $\overline{P_3P_5} = L_{16}$ fingiert sind.

- 1. $P_2-P_1P_3P_7P_8$ mit Zentralpunkt P_2 und der fingierten Beobachtung $\overline{P_1P_3}$ als überschüssige Strecke (Abb. 6a). Die Winkel des Dreiecks $P_2P_1P_3$ sind negativ.
- 2. $P_3-P_1P_5P_6P_7P_2$ mit Zentralpunkt P_3 und der ursprünglichen Diagonale P_1P_5 als die überschüssige Strecke (Abb. 6b). Die Winkel der Dreiecke $P_3P_1P_5$ und $P_3P_2P_1$ sind negativ.
- 3. $P_4-P_3P_6P_5$ mit Zentralpunkt P_4 und der fingierten Beobachtung P_3P_5 als die überschüssige Strecke (Abb. 6c). Die Winkel des Dreiecks $P_3P_4P_5$ sind negativ.

Die Längen der fingierten Strecken wurden aus den beobachteten Strecken und den früher ermittelten Winkeln wie folgt gerechnet

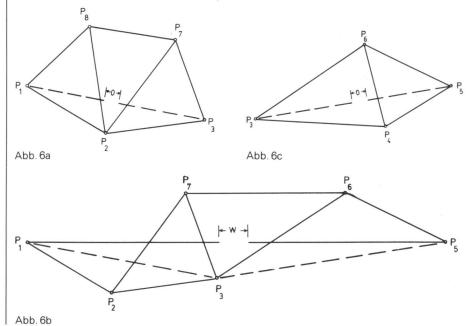
$$\overline{P_1P_3} = \sqrt{\overline{P_1P_2^2 + P_2P_3^2} - 2 \cdot \overline{P_1P_2} \cdot \overline{P_2P_3} \cdot \cos(\beta_2 + \beta_3 + \beta_4)} = 968,0176 \text{ m}$$

und

$$\overline{P_3P_5} = \sqrt{\overline{P_3P_4^2 + P_4P_5^2} - 2 \cdot \overline{P_3P_4 \cdot P_4P_5} \cdot \cos(\beta_8 + \beta_9)} = 1163,2750 \text{ m}$$

Die erste und die dritte der durch die fingierten Beobachtungen ergänzten Zentralfiguren (Abb. 6a und Abb. 6c) liefern zwei Bedingungsgleichungen (32a)

und (32c) ohne Widersprüche. Dagegen liefert das zweite Zentralsystem (Abb. 6b), mit der ursprünglichen Diagonale L_{14} , eine Bedingungsgleichung (32b) mit



demselben Widerspruch, welcher in (31) | (17), (18), und (19) für dieses Zentralsyangegeben ist. Man erhält auch densel- | stem anwendet. Die drei Bedingungsben Widerspruch, wenn man die Gl. (16), | gleichungen sind

$$a_1v_1 + a_2v_2 + \cdots + a_14v_{14} + a_{15}v_{15} = 0$$
 $b_1v_1 + b_2v_2 + \cdots + b_14v_{14} + b_{15}v_{15} + b_{16}v_{16} + w = 0$
 $(32a)$
 $c_1v_1 + c_2v_2 + \cdots + c_14v_{14} + c_16v_{16} = 0$
 $(32c)$

Die Koeffizienten a, b, und c wurden mit Hilfe von Gl. (15) ermittelt und sind in Tabelle 4 aufgetragen.

Da die fingierten Strecken L₁₅ und L₁₆ nicht gemessen wurden, erhalten sie keine Verbesserungen. Die Verbesse-

rungen v₁₅ und v₁₆ müssen deshalb aus allen drei Bedingungsgleichungen eliminiert werden. Man rechnet sie als Funktion aller anderen Verbesserungen und erhält aus den Gleichungen (32a) und (32c)

$$\mathbf{v}_{15} = -\frac{\mathbf{a}_1}{\mathbf{a}_{15}} \quad \mathbf{v}_1 - \frac{\mathbf{a}_2}{\mathbf{a}_{15}} \quad \mathbf{v}_2 - \dots - \frac{\mathbf{a}_{14}}{\mathbf{a}_{15}} \quad \mathbf{v}_{14}$$
 (33a)

$$\mathbf{v}_{16} = -\frac{\mathbf{c}_1}{\mathbf{c}_{16}} \quad \mathbf{v}_1 - \frac{\mathbf{c}_2}{\mathbf{c}_{16}} \quad \mathbf{v}_2 - \dots - \frac{\mathbf{c}_{14}}{\mathbf{c}_{16}} \quad \mathbf{v}_{14}$$
 (33b)

Setzt man diese Gleichungen in (32b) ein, so erhält man die endgültigen Koeffizienten B' der einzigen Bedingungsgleichung wie folgt

$$B_{i}' = b_{i} - \frac{b_{15}}{a_{15}} a_{i} - \frac{b_{16}}{c_{16}} c_{i}$$
 (34)

worin i = 1, 2, ... 14. Diese Koeffizienten sind in der zweitletzten Kolonne der Tabelle 4 angegeben. Sie unterscheiden sich wenig von den Koeffizienten B, die durch die Methode der minimalen Arbeiten erhalten wurden und in der letzten Kolonne der Tabelle angegeben sind. Die kleinen Unterschiede liegen ausserhalb der bedeutenden Dezimalstellen und haben keinen Einfluss auf die Ausgleichung. Normalerweise reichen vier Dezimalstellen vollständig aus für solche Berechnungen.

Netze mit festen Strecken

Ein Streckennetz kann an einem bestehenden Netz beginnen oder an ein solches anschliessen. Dann werden manche Strecken nicht gemessen, und ihre Längen dürfen in der Ausgleichung nicht geändert werden. Da diese Strekken aber notwendig für die Berechnung der Koeffizienten sind, werden ihnen unendliche Gewichte zugeteilt, was sehr steifen Stäben in einem mechanischen Fachwerk entspricht. Nimmt man in unserem Beispiel an, dass die Endpunkte P₁ und P₅ der Diagonale fest sind, so erhält die Distanz $\overline{P_1P_5}$ das Gewicht p_{14} = ∞. Die Koeffizienten und der Widerspruch bleiben unverändert.

Die Ausgleichung der beiden Fälle der gemessenen und der festen Diagonale ist in Tabelle 5 enthalten.

Zusammenfassung

Die Bedingungen in einem Streckennetz werden ermittelt, indem man das Netz in Zentralsysteme teilt. Jedes Zentralsystem liefert eine Bedingungsgleichung, deren Koeffizienten normalerweise geometrisch ermittelt werden.

Man kann diese Berechnungen ver-

einfachen und kontrollieren, wenn die Methode der minimalen Arbeiten verwendet wird. Bei dieser Methode stellt man sich vor, dass die gemessenen Strecken gerade, elastische Stäbe in einem Fachwerk seien. In jedem Zentralsystem befindet sich ein überschüssiger Stab. Durchschneidet man diesen in der Mitte, so entsteht eine Öffnung und das Fachwerk entspannt sich. Die entstehende Öffnung ist der lineare Widerspruch in der Bedingungsgleichung. Belastet man den durchschnittenen Stab mit einer virtuellen Belastung +1, so spannen sich demzufolge die anderen Stäbe. Es wird hier bewiesen, dass diese Spannungen numerisch gleich sind wie die Koeffizienten der Bedingungsgleichung und dass sie zu den selben bekannten Koeffizienten führen.

Die beschriebene Methode ist nicht nur für Zentralsysteme gedacht, sondern ist allgemein gültig. Für Streckennetze mit langen Diagonalen zum Beispiel kann man die Bedingungsgleichung direkt ermitteln, ohne das Netz in Zentralsystemen zu zerlegen und ohne dass fingierte Beobachtungen geführt werden müssen. Anhand eines Zahlenbeispiels wurde dies bestätigt.

Feste Strecken erhalten unendliche Gewichte, damit sie in der Ausgleichung ungeändert bleiben.

Literatur

[1] Ansermet, A.: A propos de l'extension a la statique de la methode aux variations de coordonnees, Schweiz. Zeitschrift für Vermessung, Photogrammetrie und Kulturtechnik, 1966, Nr. 4, 110–113. [2] Danial, Naguib F.: Virtual work adjust-

ment of trilateration nets, Journal of the Surveying and Mapping Division, Proceedings of the American Society of Civil Engineers. Erscheint Nov. 1979.

[3] Rinner, K. und Benz, F.: Handbuch der Vermessungskunde, 10. Auflage, Band 6, Jor-dan, Eggert und Kneissel, J. B. Metzlersche Verlagsbuchhandlung, Stuttgart, 1966, S. 627-

[4] Tarczy-Hornoch, A., Über einige Ausglei-chungsprobleme der streckenmessenden Traingulation. Aus der Geodätischen Lehre und Forschung, Festschrift zum 70. Geburtstag von Professor Walter Grossmann, Verlag Konrad Wittwer, Stuttgart 1967, S. 114-122.

Adresse des Verfassers:

N. F. Danial, Assoc. Prof. University of Petroleum and Minerals, Dhahran, Saudi Arabia

GRANITSTEINBRÜCHE CH-6799 PERSONICO Tel. 092 72 24 52

MARKSTEINE BORNES